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Formation of traveling waves in nematics due to material parameter ramps
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We propose a simple one-dimensional linear model to describe the formation of localized traveling waves
due to material parameter ramps in nematic liquid crystals. We assume that due to some external perturbation
the material parameters (conductivity, dielectric constants, viscosity, elasticity) of the liquid crystal become
slowly varying functions of position. Temperature gradient in localized regions induced by a laser beam could
be one such perturbation. We obtain a 4 X4 system of electrohydrodynamic equations [partial derivative
equations (PDE) with respect to time and position]. At first we assume that all parameters change from their
nonperturbed value by the same ramp function. Then, to reveal the parameters which slowly change are
predominant in the formation of localized traveling waves, we obtain four more systems of equations. Each
time we assume that just one of the material parameters changes while the others are held constant. Accord-
ingly, by reducing 4 X 4 systems of equations into one equation and using a WKB-like approach for nonuni-
form media, we obtain the relevant dispersion relations. We show that ramps of elasticity and dielectric
parameters play the dominant role in the formation of localized traveling waves in nonuniform nematic media.
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I. INTRODUCTION

During recent years there has been considerable interest in
electroconvection (EC) within nematic liquid crystal (NLC).
EC investigations have been carried out for both alignment
types in nematic liquid crystal cells: planar [1-4], and ho-
meotropic [5-8]. The most familiar results of EC are forma-
tion of normal stationary Williams rolls (William domain
mode: WDM) [9], and dynamic rolls (dynamic scattering
mode: DSM) [10] with the characteristic wavelengths about
equal to the cell thickness. These rolls have been observed in
4-methoxy-benzilidene-4-butylaniline (MBBA) NLC, which
has negative dielectric anisotropy and positive conductivity
anisotropy, in cells with a planar configuration. One-
dimensional modeling of these rolls was carried out by Carr
[11] and Helfrich [12]. Boundary conditions were introduced
later by Penz and Ford [13] and Pikin [14]. As a result two-
dimensional modeling of the rolls were carried out. Goossens
discussed one- and two-dimensional models and the bound-
ary condition problem for the two-dimensional case [15].
However, recently there have been several reports of forma-
tion of spatially localized states, known as pulses, in nemat-
ics. Dennin and co-workers obtained spontaneously arising
worm pulses near threshold in 152 NLC [16-19]. Joets and
Ribotta reported observations of small traveling waves re-
gions near the EC threshold in MBBA [20]. Rolls traveling
in the same direction were observed within inclusions. The
direction of travel for different inclusions varied randomly to
the right or left along the director. Brand and co-workers
observed spatially localized rolls working at a temperature
close to a smectic-nematic phase transition in the liquid crys-
tal 10E6 with negative conductivity anisotropy [21]. Gie-
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bink, e al. recently reported that a continuous laser beam
(488 nm) with a v-shaped ramp intensity profile and with a
cross section comparable to the WDM wavelength size gen-
erates counterpropagating waves along the director traveling
in dye-doped MBBA cells with a planar configuration [22].
The result was obtained working 10-20% below WDM
threshold voltage (low frequency voltages; 70—100 Hz dc
approximation) for a laser-free sample. The rolls moving at
frequencies of tenths of Hz were confined within a robust
pulse shaped as an ellipse with the semimajor axis parallel to
the nematic director, and with a typical size of several WDM
wavelengths. In work [23], Spiegel, Johnson, and Saucedo
reported an experiment in which a controlled spatial ramp of
the temperature, caused by a ramp-shaped intensity laser
(488 nm) profile, produces spatially localized electroconvec-
tion rolls in dye-doped MBBA cells with a planar configura-
tion. The authors of Refs. [22,23] proposed that the theoret-
ical modeling of these pulses should be based on control-
parameters ramp models. Periodic spatial patterns have been
observed and discussed in other systems as well: fluids
[24-26], crystal growth [27], and chemical-reaction-
diffusion systems with autocatalytic elements [28,29]. How-
ever, the theoretical work directed towards an understanding
of the wavelength selection process [26,30-35] has dealt for
the most part with Rayleigh-Benard convection (RBC) and
the Taylor systems in simple fluids [24-26]. Cross and co-
workers [31,35] have clarified that nonperiodic boundary
conditions can influence the band of allowed wavelengths
but in general do not select a unique wavelength. Pomeau
and Manneville [34] introduced the concept of a small cur-
vature into quasi-infinite axis-symmetric systems to single
out specific wavelength state. Kramer ef al. [36] using WKB-
like approach analyzed wavelength selection for a simple
reaction-diffusion equations system with periodicity in one
dimension and slowly varying external parameters. Such
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ramps lead to a unique final state acting as selecting bound-
aries. Motivated by the experimental results reported in [22]
(see above) we propose a one-dimensional material param-
eter ramp model describing the formation of patterns under
applied external constant force in a nonuniform media. Lig-
uid crystal cell with planar configuration and under applied
external constant electric field represents such a media. Note
that we do not try to compare our results with the experimen-
tal data obtained in [22], rather motivated by these results we
intend to examine the role of different material parameters
variation in pattern formation in NLC with negative dielec-
tric and positive conductivity anisotropies. In this work we
apply Kramer’s WKB-like approach to the electrohydrody-
namic equations for NLC [15] considering the fact that the
material parameters slowly vary in a localized region. His-
torically, WKB method first was applied to the time-
independent one-dimensional Schrodinger equation [37]:

(d*Yldx*) + ¢*(x) =0,
q=VK*-U(x),

K?=(2M/h)E,, h=h/2m,

U=(Q2MIh)V,. (1)

This equation describes the quantum mechanical motion of a
particle with M mass and E) energy in one dimension under
the influence of a V), potential. Here ¢ is the wave function
and & is Planck’s constant. One can look for an approximate
solution of Eq. (1) in the form

r=exple(x)]. 2)

Here ¢ is the phase of the exponential function. Substitution
of Eq. (2) into Eq. (1) leads to the result

Y=g '? exp(ii f qu). (3)
The validity of this result is given by
(U dx)
q

It is clear that the method is applicable only when the varia-
tion of U(x) over a wavelength becomes smaller. Note that
the method fails when either the variation of the potential
function becomes bigger or when ¢ vanishes. Note that we
apply WKB-like method to separate material parameters.
Considering the fact that “real-world” patterns in nature will
essentially never occur in perfectly uniform media, our
method should be applicable to other pattern-forming sys-
tems like RBC and Taylor-vortex flow [24-26]. It is impor-
tant to indicate that in [22,23] the authors reported that the
localized pulse has a typical size of several wavelengths.
However from a theoretical perspective it is preferable when
the overall size of the localized region is much larger than
the rolls wavelength. Most importantly, for this case one can
apply WKB-like approach to the differential equations char-
acterizing the system (as discussed above). In our calcula-
tions we assume that a localized ellipse-shaped pulse length
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FIG. 1. (a) Schematics of the liquid crystal cell; S—cell thick-
ness; E—applied electric field vector; n—nematic’s director;
6—molecules distortion angle; 2L—Ilocalized ramp region’s length;
x*, z—Cartesian coordinate system; the sinusoidal-shape lines in-
side the localized region represent the counterpropagating waves.
(b) Dependence of ramp function f(x) vs normalized coordinate x.

is larger than characteristic WDM wavelength by two orders
of magnitude. Note that due to the small time scales consid-
ered in our model we ignore the heat transfer effects and
consider isothermal process.

In Fig. 1(a) a schematics of NLC cell with planar configu-
ration is depicted. We assume that the length of localized
pulse (in x direction) 2L is 100 times larger than the WDM
wavelength which is equal to twice the cell thickness S. For
instance, if the cell has a 40 micron thickness then the pulse
has 0.8 cm length. Note that the glass plate length (in x di-
rection) is assumed to be a few orders of magnitude larger
than pulse length, so we have a quasi-infinite system with
uncertain boundary conditions.

II. VARIATION OF MULTIPLE PARAMETERS

At first we introduce four original electrohydrodynamic
equations of nematics [15]. The first equation is from elec-
trostatics (Gauss law),

div D =4mq,

D=¢E, e=g¢g,=¢70,+enn, &,=&,—¢,

S,

u

1 whenu=v,
»= (5)

0 whenu+#v, uv=1,2,3.

Here E is the electric field, n the director, g the charge den-
sity, D the electric field in dielectric, ¢,, the dielectric pa-
rameter tensor, J,, the unity matrix, and &, and &, are dielec-
tric constants parallel and perpendicular to the director
directions, respectively. The second equation is from electro-
dynamics (continuity equation),

aqlat+div J =0,
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J=0E, o=0,=0,0,+0mn, 0,=0,-0, (6)

Here J is the current density, o, the conductivity tensor, and
o, and o, are conductivity constants parallel and perpendicu-
lar to the director directions, respectively. Note that for the
uniform medium geometry and small distortion angle the
electric field and director vectors have the following compo-

nents [see Fig. 1(a)]:

E ={E,(x,0),0,E},

n={1,0,6(x,1)}. (7)

The third equation is the rotational equivalent of the second
law of motion for the director,

>

T, +T,=I(dld)Q,

HdldQ =0, T,=-iix (5FI5),

-

I',=-nXx (71]\7"' YzAA'ﬁ),

QO =nX(dnldt), F=F,+F,,

F,=0.5[K,,(div n)? + Ky (7 - rot n)? + K33(n X rot n)?],

Fy=- 88—“(,; “E)%, N=dildt—05(rot VX 1),
a

A=A,,=A,, =05V, /dr,+dV /o), uv=1223,

V={0.0,V.()}, rnr,=x.y.z. (8)

Where I, and [, are elastic and viscous torques per unit
volume on the director, respectively, / is the moment of in-
ertia per unit volume, () is the angular velocity of the direc-
tor, F is free energy density, F, the elastic component of free
energy density, F', the viscous component of free energy den-
sity, V the local velocity of the fluid. Note that we neglect the
internal term in the equation as it is negligible in comparison
with elastic and viscous terms (about fourteen orders
smaller) [15]. The fourth equation is the z component of the
equation of motion for the moving fluid

w(dvide) = gE +div 7,
wldVide) =0, (div 1), = (Adr )t =t
tyy=—p0,,— (Fldn,, In, ,+1,,
(oFlon,, )n,,, =0,

L= aimp A, + aon Ny, + azn Ny, + asA, + asn,mAy,

+ agn VnkAku >
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u,v,w,k,p=1,2,3. 9)

The left-hand side is the inertial term (u-fluid density) which
is negligible in comparison with right-hand side terms [15].
The first term is the external electric force acting on the fluid.
The second term on the right-hand side is the force the due to
stress associated with the fluid. And 7, , is the v component
of this force. Here ¢, is the stress tensor. The first term in the
expression of this tensor is the hydrostatic pressure (p). The
second term is the stress connected with the free energy. For
small deformations (such as our case) this term plays no role
and can be neglected [15]. The third term is the viscous part
of the stress. In the expression for this part ¢, is viscosity
coefficients associated with the stress. Note that a small
angle distortion assumption [see Eq. (7)] yields the following
z component of Eq. (9):

((9/(9)6')?)(2 + qE =0,
T..= ay(30/9t) + 0.5[— ar + ay + as](/ox) V.,

7 =0.5[- a, + a, + as). (10)

For nonuniform medium the material parameters are not con-
stants. We assume they are slowly varying functions of the
spatial coordinate. The word slowly needs further clarifica-
tion, which we will do after introducing some new functions.
First of all we would like to obtain a dimensionless spatial
coordinate and time. We normalize coordinate x* and time
as x=x"/L [see Fig. 1(a)], and t=¢"/P. P could be a very
short period of time: 1073 seconds, which is less than the
reciprocal of the applied low frequency (70— 100 Hz) electric
field by one order of magnitude. Then we introduce a small
parameter € <1 which is of the same order of the fraction
Nwpa/2L=1072. The modified coordinate and time can be
obtained now as X=ex and T=&” t. Note that the time scale
is “slower” since the material parameters are independent of
time. In this model we assume that all material parameters
vary with a same linear ramp function [see Fig. 1(b)]:

1, x>1
= ex+l-g, 0O0=x=1
fo) = fX) = —ex+1l-g, -1=<x=<0|’
1, x<-1
0, x>1
, 0=x=1
(dfdx)f(x) = —e, —1=x=<0]|’
0, x<-1

(@dx"f(x)=0, n=2,3.4.... (11)

One can see from Fig. 1(a) that the localized region has a
symmetry to the z axis. Thus in our calculations we consider
x varying from O to 1. Now we can clarify the expression
“slowly varying.” One can see from Eq. (11) that the first
derivative of this function, which indicates the function’s
change rate, is a small number in the order of 1072, At first
we assume that all material parameters slowly vary with the
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same ramp function f(x) and treat the electrohydrodynamic
equations [Egs. (5), (6), (8), and (10)] for this case. Then we
will assume that only one parameter varies while the others
are held constant. We apply this approach to examine the
potential of formation of traveling waves as a result of either
combined multiparameter perturbation or a single parameter
perturbation. By applying this approach we intend also to
reveal the parameters which perturbation could lead into for-
mation of traveling waves observed and reported in work
[22]. Note that in reality the temperature dependence (which
causes the spatial variations) is different for the parallel (in-
creases) and perpendicular (decreases) components of the di-
electric parameter. But considering the facts that for the most
nematics the change in magnitude for any of the relevant
parameters is less than one percent for an increment of five
degrees in Celsius, and that the authors in [22] applied only
a change of one degree, we treat all changes (such as both
components of dielectric parameter) as a perturbation in tem-
perature. So we assume that all parameters vary in a similar
way. For multiparameter spatial variations we have a,(x)
=arf(x), ay(x)=ayf(x), as(x)=asf(x), y(x)=yfx), &,(x)
=g,f(x), e(x)=¢,f(x), e, (0)=¢,f(x), 0,(x)=0,f(x), 0.(x)
=0,f(x), o,(x)=0,f(x), K33(x) =K;33f(x), where the constants
are the material parameters values for uniform medium. By
employing these functions into Egs. (5), (6), (8), and (10) we
obtain 4 X 4 partial derivative equations (PDE) system which
reduces to a PDE,

- am(x) oxxxr - bm gxxt + Cm(-x) 6,\:1 + dmat +8&m 0tt + hm(-x) axlt

+ 11, (%) O+ P 0 = 7 (X) O = 5,10, = 0,
ap(x) = K3af (%),
b,,=2Kxze,
cn() = [egE? + oyn 1 (%),
onv=0ydmle, ey=-g.eldme,,
d, =[eyE? + oyyn e,
7=y~ 022/771,
En=7¢,
hy =1 f(x),
my(x) = [egyoy + opyeEXf(x),
env=¢€4€,+ ar/ 7,
oy=0oylele, - 0lo,],
Pm=lenyoy + oyveylEe,

(%) = oy Kaaf(x),
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Sm:20-HVK33£' (12)

Here the subscripts in the first line indicate partial derivatives
of the distortion angle # with respect to the coordinate x and
time . For MBBA at room temperature the material param-
eters for uniform medium are as follows [13,15]: «,
=-0.8 P, o4=0.8 P, as=0.5P, ,=0.8 P, 8p=4.7, e,=54,
0,=13.5 sec™!, 0,=9 sec™!, K33=107% dyne, and we assume
that the control parameter E is changing within the range of
zero and 10 Statvolt/cm. We apply an WKB-like approach
[36,37] and seek a solution of the form

0= 6yexplie) + 6, explip) + ...,

O(x,1) = °6,(X.T), by, = By,

6,(x,1) =&6,(X,T),
o(x.t) ="' @(X,T),

@xEk=¢X7 ¢xxEkx=8¢XX7

(p[E—(Q:S(TéT. (13)

Where ¢ is a complex phase, k and w are complex wave
number and frequency, respectively. Note that we neglect all
terms with &2 and higher orders. We substitute Eq. (13) into
Eq. (12) and equate to zero terms of successive orders of the
small parameter. The hierarchy for £° and &' becomes, re-
spectively,

Lir,, ()& + 5,,k* + im,,(x)k + p,, 16, =0, (14a)

[ir,,(X)k> + 5,,k> + im,,(x)k + p,,16; + [a,,(x)>w — ib, ko

+ Cp(Xkw — id,w + 37,,(x)kk, — i5,,k, 100 + [37,,(x)k*

+ 028,k + m,,(x)]6,, = 0. (14b)

III. CONSTANT MATERIAL PARAMETERS MODEL

For constant parameters f(x)=1 and Eq. (12) converts to a
PDE which describes classical William’s rolls [15] mode for
a system without nonuniform localized region,

ab,—b0,,+cl,-do,, . +gb.=0,
a=7,
b=Ks,
c=7 opgy+ehk’,
d=oyyKss,

g=lenyoy - O'psasr/sz]E27 (15)

Hence, by introducing

0= 0y expl o(x,1)],
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o=ilkx - wt], (16)
we obtain the dispersion relationship for Eq. (15),
— iakw® +|bk® + cklw + |idk> + igk] = 0. (17)

For MBBA with its material parameters at room temperature
(see above)

[bk* + c]* > 4aldk* + g]. (18)

Therefore the two roots of Eq. (17) are purely imaginary,
which indicate that there is no temporal oscillation of the
distortion angle in the uniform medium. The negative root
indicates that the distortion angle amplitude decreases expo-
nentially in time and approaches a constant value asymptoti-
cally. The positive root indicates that the amplitude increase
in time exponentially so that the condition of small angle
distortion is not valid anymore. By equating positive root to
zero one can obtain the equation relating wave number to
threshold field,

k2=—g/d,
E=E,,. (19)

IV. VARIABLE CONDUCTIVITY MODEL

Now we consider that only the conductivity of the me-
dium varies, 0,(x)=0,f(x), 0,(x)=0,f(x), 0,(x)=0,f(x),
while the other parameters are held constant. We obtain the
following PDE for this case from the electrohydrodynamic
equations (see above),

—d. axxxxt + bc(x) exxt +C. axxtt - dc(x) Hxxxx + gc(x) axx - hc exxx

+m.0,+p.60,=0,
a.=Ks;,
be(x) = eyE> + oy f(x),
=7,
d (x) = opyKaaf(x),
8(x) = [egyoy + opyey]E*f(x),
h.=20hyK33¢,
m.=2[epyoy + opveylE’e,

De=20yyE. (20)

By substituting Eq. (13) into Eq. (20) we obtain the hierar-
chy for the small parameter successive orders:

[-d.(x)k* +ih k> - g (x)k* +im k]6,=0,  (21a)

[ d.()k* + ih &> — g ()k* + im k160, + [iak*w + ib (X)KPw
+i6d.(x)k’k, + ig (x)k, + 3h Kk, + p kw] 0, + [i4d (x)k>
+3h %+ 28 (x)k +m.]6y, =0. (21b)
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V. VARIABLE VISCOSITY MODEL

By assuming that the viscosities of the medium varies
slowly, ar(x)=a,f(x), as(x)=asf(x), as(x)=asf(x), y(x)
=7,f(x), while the other parameters are held constant, we
obtain PDE

- avexxxt + bv(x) ext + Cy(x) axtt + dvatt - gvexxx + hvax +m, 01
=0,

a,=Ks;,

b,(x) = eyE” + opyn f(x),
c,(x) = 7 f(x),
d,=7e,
8v=Kzopy,
h,=egyoy + oyyvey)E?,

m,=17 opyE. (22)
By substituting Eq. (13) into Eq. (22) we obtain

lig k> +ih,k]6,=0, (23a)

[ig k> + ih k16, + [a fPw + b (x)kw + 3g Kk, — im,»]6,
+[3g,k*+h,]6,,=0. (23b)

VI. VARIABLE DIELECTRIC MODEL

By assuming that dielectric parameters of the medium
vary slowly, &,(x)=¢,f(x), &,(x)=¢,f(x), &,(x)=&,f(x), while
the other parameters are held constant, we obtain PDE

- ad(x) axxxxt + bd(x) axxl + Cd(x) axt + dd(x) axxtl + gd(x) axx

+hg0, =m0, FPaOi = raOrin =0,
aq(x) = K33f(x),
b (x) = eygE* P (x) + opyy
cqx) = 4eyE*f(x)e,
dy(x) = 7 f(x),
ga(x) =[egvoy + opyeylE*f(x),
hy=2lepyoy + opven)Ee,
my=2Kx3¢,
Pa=2 77*8,

rq=opykKs;. (24)
The substitution of Eq. (13) into Eq. (24) yields
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[- rk* = g (K + ihk]6,=0, (25a)

[— rgk* = g (0K + ih k16, + [iay (x)k* @ + iby(x)k*w
+c (ko + ig,()k, + mgk w + i6r k*k, 0,

+ [idr k3 + 2 ,(X)k + hy] 6, = 0. (25b)

VII. VARIABLE ELASTICITY PARAMETER MODEL

At this time we assume that the bend elasticity of the
medium varies slowly, Ks3(x)=Kj33f(x), while the other pa-
rameters are held constant. This assumption yields PDE

- ae(-x) exxxz - beaxxt + ceaxtt - de(x) axxx - geaxx + he ext +m, ex

=0,
a,(x) = K33f(x),
b,=2Ks;z¢,
=7,
d (x) = oyKaaf(x),
8.=20yyKs;¢,

2 #
h,=eyE”+ oyym

m, = [eyyoy + opvenlE. (26)
The substitution of Eq. (13) into Eq. (26) yields
lid,(x)k> + g k* + im k6, =0, (27a)

[id,(x)k> + g k* + im k10, + [a,(x)k*w — ib k*w + 3d,(x)kk,
—ig ky+ hkw] Oy + [3d,(x)k* = i2g k +m,] 6y, = 0.
(27b)

VIII. RESULTS AND DISCUSSIONS

First of all let us note that when f(x)=1 (outside of the
localized region, where the medium is uniform) Egs. (12),
(20), (22), (24), and (26) convert to constant parameters
model, Eq. (15). Equations (14a), (21a), (23a), (25a), and
(27a) are polynomial equations with respect to the complex
wave number. We are interested in the positive roots of these
equations. In Fig. 2 the dependence of real (oscillatory) wave
number versus coordinate at different applied field values is
depicted for all models. As one can see, for multiparameter,
viscosity, and conductivity models the wave number is a con-
stant regarding to the spatial coordinate. This is the case for
the constant parameters model described above. Note that
one can obtain the same dependence using Eq. (19), where
each value of the applied field can be considered as a thresh-
old value for a specific NLC cell thickness, since the latter is
half of the wavelength [15]. For the dielectric model the
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FIG. 2. Dependence of the real wave number versus normalized
coordinate at three different values of applied electric field: E;
=2.4 statvolt/cm, E,=2.5 statvolt/cm, E;=2.6 statvolt/cm; dotted
line—elasticity model; solid line—multiparameter, viscosity, and
conductivity models; dashed line—dielectric model.

wave number increases slowly and becomes a constant-
parameter model value at the localized region limit. The
wave number for elasticity model shows the same behavior
by decreasing. We will see soon that these two models lead
to the formation of traveling waves. In Fig. 3 the slopes of
wave number coordinate dependence at different field values
for dielectric and elasticity models are illustrated. One can
see that for both cases the slope absolute value increases with
the increase of the applied field, so the rate of change of
wavelength versus coordinate decreases. Eqgs. (14a), (21a),
(23a), (25a), and (27a) eliminate terms with 6, in Egs. (14b),
(21b), (23b), (25b), and (27b), which become differential
equations for the amplitude 6, with the solution

6y = const exp{— f [a(x)/,@(x)]dx} . (28)
Here a(x) and B(x) are coefficients of 6, and 6,,, respec-
tively. If the dispersion relations and initial conditions are
known one can obtain the exact solutions for the amplitude
6y. Note that one can obtain the dispersion relations from
Egs. (14b), (21b), (23b), (25b), and (27b) by equating a(x)
coefficients to zero only when either the coefficients of B(x)
are zero or 6, itself is zero. Since the B(x) coefficients are

20
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\

Slope (cm'1)
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ey
o

|
N
o

5 10
E (statvolt/cm)

FIG. 3. Real wave number’s slope as a function of applied elec-
tric field; dotted line—elasticity model; dashed line—dielectric
model.
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FIG. 4. Dependence of the absolute values of real frequency
versus applied electric field; dotted line—elasticity model; dashed
line—dielectric model (the values of the real frequency are negative
for this case).

not zero one can obtain the dispersion relations only when
0o, 1s zero. To achieve this we assume that the material pa-
rameters ramps affect just the phase of the distortion angle
but not the amplitude. Now in Eq. (13) for 6, and 6,, the
coordinate and time change, in the same “very slow” way, so
that they can be considered as constants,

oo(x,t) = soéo(szx,szt), aox = Szaox =~ O,

6,(x,t) = £6,(e%x, £%). (29)

After equating a(x) coefficients to zero one can see from
Egs. (14b), (21b), and (23b) that, due to the fact of k, being
zero for the multiparameter, conductivity, and viscosity mod-
els, the frequency for these cases is zero as well. This result
is expected from the above discussion, and shows that (simi-
lar to the constant parameters model) there is no oscillation
in time for the distortion angle. From Egs. (25b) and (27b)
we obtain the dispersion relations for the dielectric and elas-
ticity models, respectively,

—ig (xX)k, — i6rk*k,
iag(x)k* + ib (xX)k* + ¢ (x)k + mgk>’
(30)

W(k) = wlk) =

ig.k,—3d (x)kk,
a,(x)k> = ib * + hk

W, (k) = w(k) = 31)
In Fig. 4 the real (oscillatory) frequency dependence versus
applied field for the dielectric and elasticity models is illus-
trated. There are two facts that demand attention. First, for
the dielectric model the frequency is negative, which means
the waves travel from the right to the left towards the center
of the localized region for 0 <x <L, and from the left to the
right for —L <x<0. In other words, this model predicts the
formation of a sink in the localized region. Second, the fre-
quency for both models is in the order of tenths of Hz. In an
experimental work [22], as discussed above, the authors re-
ported counterpropagating waves along the director in dye-
doped MBBA cells with tenths of Hz frequency. Therefore
we assume that for arbitrarily small ramps [df(x)/dx<<1; see
Fig. 1(b)] of the dielectric parameters we expect the forma-
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FIG. 5. Group and phase lines for elasticity model; solid line—
group line, dashed line—phase line at E,=2 statvolt/cm; dash-dot
line—group line, dotted line—phase line at £,=10 statvolt/cm.

tion of counterpropagating traveling waves inside a localized
nonuniform region. Using the following equations

Abs[Re(w(k))/Re(k) = x/t,,

iAbs[Re(w(k))] =xt,, (32)

we obtain the phase and group lines for the dielectric and
elasticity models. Here 7, and t, represent time for phase and
group lines, respectively. In Figs. 5 and 6 the group and
phase lines at two applied field values for dielectric and elas-
ticity models are illustrated, respectively. For both models, as
one can see, the phase velocity is larger than the group ve-
locity. This indicates the fact that individual waves move
faster than the wave’s package. Also it is clear that with
increase of the applied field the difference between both ve-
locities decreases.

We assume that the temporal distortion angle oscillations
for variable dielectric model are caused by the existence of a
nonzero net x component of the reduced in dielectric medium
electric field within one wavelength,

1 7
J E . s
I - 7’
o8t , [/ — N .
! g
0.6 l' — E2 P
2
~0.4[ '/ g
] 7z
1 s ’
0.2 4 ’ ’
i T
o0 0.5 1 1.5
= X -

x 107

FIG. 6. Group and phase lines for dielectric model; solid line—
group line, dashed line—phase line at £, =2 statvolt/cm; dash-dot
line—group line, dotted line—phase line at E,=10 statvolt/cm.
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D,

= ole + ikf(x)Jexp(ie),

on = 817Ex0 + ESaao,

D, =D,f(x)exp(ie). (33)

Here for simplicity once again (see above) we assume that
the ramps of the dielectric parameters affect just the phase
and not the amplitude of the distortion angle 6 and x com-
ponent of the applied field E,. Hence in the equations,

0= 0() exp("P) 5

Ex = ExO eXP(ZQD) > (34)

the amplitudes 6, and E are constants. Note that we obtain
Eq. (33) by using Eq. (5) which relates D to E. In Fig. 7 a
schematics of the periodic director pattern with charge sepa-
ration for the dielectric model is illustrated. The net field
causes space-charges displacement from the equilibrium po-
sitions. This motion is opposed by viscous and elastic terms.
At some charges the resistance force overtakes the net elec-
tric field and pushes the charges back to the equilibrium po-
sitions. The process repeats, causing charges to drift forth
and back periodically with time. The charges motion in turn
generates periodic temporal oscillations of the distortion
angle. For a uniform medium, as one can see from Eq. (33),
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FIG. 7. Schematics of periodic director pattern with charge
separation inside the ramp region for the variable dielectric model;
—g and +¢ are induced by applied electric field E negative and
positive space charges, respectively; D, (x) and D, (x+\/2) are the x
components of the reduced electric field vector at x and x+\/2
coordinates, respectively; Fp is the resistance force with viscous
and elastic terms; n is the nematic’s director; sinusoidal line with A
wavelength represents the distribution of liquid crystal molecules.

the net x component of the reduced in size electric field over
one wavelength is zero (the term in square brackets becomes
one in this case). Hence the schematics depicted in Fig. 7
becomes a Carr-Helfrich-type instability (stationary Williams
rolls) schematics, where D,(x)=D,(x+\/2) and space
charges remain at the equilibrium positions [11,12,15]. Fi-
nally, it would be interesting to develop a two-dimensional
model considering cell thickness also (z axis). This would be
credible from the point of view of understanding and mod-
eling the formation of patterns of a different nature in non-
uniform liquid crystal media.
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