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Parallel kinetic Monte Carlo simulations of two-dimensional island coarsening
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The results of parallel kinetic Monte Carlo (KMC) simulations of island coarsening based on a bond-
counting model are presented. Our simulations were carried out both as a test of and as an application of the
recently developed semirigorous synchronous sublattice (SL) algorithm. By carrying out simulations over long
times and for large system sizes the asymptotic coarsening behavior and scaled island-size distribution (ISD)
were determined. Our results indicate that while cluster diffusion and coalescence play a role at early and
intermediate times, at late times the coarsening proceeds via Ostwald ripening. In addition, we find that the
asymptotic scaled ISD is significantly narrower and more sharply peaked than the mean-field theory prediction.
The dependence of the scaled ISD on coverage is also studied. Our results demonstrate that parallel KMC
simulations can be used to effectively extend the time scale over which realistic coarsening simulations can be
carried out. In particular, for simulations of the late stages of coarsening with system size L=1600 and eight
processors, a parallel efficiency larger than 80% was obtained. These results suggest that the SL algorithm is

likely to be useful in the future in parallel KMC simulations of more complicated models of coarsening.
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I. INTRODUCTION

Coarsening plays an important role in a wide variety of
processes ranging from grain growth in alloys [1], to soot
formation [2], to the formation of galaxies [3]. One example
of particular current interest is the coarsening of two-
dimensional (2D) or three-dimensional islands on a surface
[4], since the coarsening process determines the nanoscale
ordering and surface structure. As a result, island coarsening
has recently been the subject of a large amount of experi-
mental and theoretical work [4—14].

For the case of 2D clusters on a surface, it is useful to
consider two particular limiting regimes in which the coars-
ening is dominated by diffusion—Ostwald ripening [15,16]
and cluster diffusion and coalescence [5—13]. In the case of
Ostwald ripening the islands are assumed to be immobile,
while the coarsening is mediated by a background density of
diffusing atoms such that islands bigger than a critical island
size grow while smaller islands shrink or evaporate. This
results in power-law growth of the average island size S(¢)
corresponding to the average number of atoms in an island,
i.e., S(r)~ 1" where n=1/3 for the case of 2D clusters on a
2D substrate [17,18]. It also leads to a scale invariant island-
size distribution at late time. In the case of cluster diffusion
and coalescence, power-law growth of the average island
size and a scale-invariant island-size distribution are also ob-
served. In particular, if the cluster diffusion coefficient D(s)
decays as a power law with island size s, i.e., D(s) ~s™, then
n=1/2(1+x) [5]. Three different limiting cases have been
considered to be of particular interest [6—12]—cluster diffu-
sion due to periphery diffusion (x=3/2, n=1/5), cluster
diffusion due to correlated evaporation and/or condensation
(x=1, n=1/4), and finally cluster diffusion due to uncorre-
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lated evaporation and/or condensation (x=1/2, n=1/3). Al-
though asymptotically, one might expect one of these pro-
cesses to dominate for a particular case, in general one might
expect all these processes to play a role.

Besides the coarsening exponent, one quantity of particu-
lar interest is the asymptotic scaled island-size distribution.
In particular, if N,(7) is the density of islands of size s at time
t (where s is the number of atoms in an island) then one may
write [19]

f(s/S) = S>N(1)/6, (1)

where S(1)=2sN,/ZN, is the average island size and 6 is the
coverage and f(u) is the scaled island-size distribution (ISD).
At late time one expects that f(«) will be independent of
time. We note that there have been a number of theoretical
efforts to determine the asymptotic scaled ISD and its depen-
dence on coverage. For example, for the case of Ostwald
ripening the mean-field theory of Lifshitz-Slyozov-Wagner
(LSW) leads to an analytical expression for the scaled ISD
which is valid in the limit §— 0. However, for finite cover-
age one expects that correlations may play a significant role.
As a result, there have also been a number of theoretical
attempts [20-24] to extend the LSW theory to finite coverage
in two and three dimensions, although these efforts have fo-
cused primarily on the low-coverage limit in which islands
may be treated as isolated droplets. For the case of 2D island
coarsening, a number of numerical simulations have also re-
cently been carried out [25-28]. However, because of the
role of correlations as well as the relatively slow conver-
gence to the asymptotic distribution, determining the
asymptotic scaled ISD remains a challenging problem.

Here we present the results of parallel kinetic Monte
Carlo (KMC) simulations of 2D island coarsening which
were carried out using our recently developed synchronous
sublattice (SL) algorithm [29]. We note that in contrast to a
variety of other algorithms for parallel KMC via domain
decomposition which are rigorous and which require global
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communications [30-33], the SL algorithm only requires lo-
cal communications with nearest-neighbor processors. As a
result it is both relatively simple to implement and in general
significantly more efficient. In particular, for a fixed proces-
sor size, we have demonstrated [29] that it exhibits linear
scaling as a function of the number of processors, i.e., the
parallel speed-up is proportional to the number of processors.
On the other hand, it is only semirigorous [29]. Therefore, it
is of interest to examine the accuracy and efficiency of the
SL algorithm in simulations of coarsening, since we have so
far only applied it to parallel KMC simulations of growth. In
addition we would like to use it to compare the asymptotic
island-size distribution with the predictions of theories of
Ostwald ripening. As discussed in more detail below, we find
that the SL algorithm can indeed be used to accurately and
efficiently carry out parallel KMC simulations of island
coarsening, and in contrast to previous work on a similar
model [25], we are able to reach the asymptotic scaling re-
gime corresponding to n=1/3. Our results also indicate that
the asymptotic scaled island-size distribution is significantly
different from the prediction of a recent mean-field theory of
Ostwald ripening at finite coverage developed by Yao et al.
[24]. We believe that this is due to the existence of correla-
tions as well as cluster diffusion which are not taken into
account in Ref. [24].

The organization of this paper is as follows. In Sec. II, we
describe the bond-counting model used in our coarsening
simulations and then briefly review the SL algorithm. In Sec.
III, we present a comparison between parallel and serial re-
sults for the average island size and island-size distribution at
early and intermediate times in order to validate our long
time simulation results. We then present our parallel KMC
results for the evolution of the average island size and island-
size distribution at much longer times along with a compari-
son with the theory of Yao et al. [24] for two different cov-
erages, #=0.1 and 6=0.2. We also study the efficiency of the
SL algorithm and its dependence on the number of proces-
sors and cycle time. Finally, in Sec. IV, we discuss our re-
sults.

II. MODEL AND SIMULATIONS

Since one of the main goals of this work is to carry out a
first test of the accuracy and efficiency of the SL algorithm
when applied to coarsening, we have considered the simplest
possible model, corresponding to “bond counting” on a
square lattice. In particular, in our model atoms are assumed
to diffuse in all four possible nearest-neighbor directions
with a configuration-dependent hopping rate D, given by

Dn = V()e_Ea/kBT’ (2)

where the prefactor v,=10'%> s7!, E ,=E,+nE, is the
configuration-dependent activation energy, E(, corresponds to
the activation energy for monomer diffusion, n=0-4 is the
number of in-plane nearest neighbors, and 7 is the substrate
temperature. In our simulations a value Ey=0.4 eV, which is
a typical value for metal (100) surfaces, was assumed along
with a moderate “bond strength” E,=0.1 eV, while our
coarsening simulations were carried out at a temperature T
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=250 K. We note that Lam et al. [25] have recently carried
out KMC simulations of island coarsening at 700 K using a
similar bond-counting model, but using larger values for the
activation energies for diffusion (Ey,=1.3 eV and E,
=0.3 eV) which are more typical of semiconductors. How-
ever, once the higher coarsening temperature is taken into
account, the effective parameters (Ey/kgT and E,/kgT) are
close to those used in the model previously studied by Lam
et al. [25].

In order to study the asymptotic coarsening behavior, as
well as the coverage dependence, we have carried out simu-
lations of coarsening at two different coverages, #=0.1 and
6=0.2. In each case, the initial island distribution was pre-
pared by depositing particles with deposition rate F
=1 ML/s at T=250 K up to the desired coverage. Starting
at this point (¢=0) coarsening simulations were then carried
out over times ranging from 10° s to 10° s while periodic
boundary conditions were assumed. For the very short time
simulations, system sizes of L=256 and L=512 were used,
while for the much longer time simulations, systems of size
L=1600 were used to avoid finite-size effects. In order to
obtain good statistics, the short time results were typically
averaged over 500 runs while the longer time results were
averaged over 78 runs. In all of our simulations the island-
size distribution N, (where N, is the density of islands of size
s) was measured along with the total island density N
=3 ,-,N,, monomer density N;, and average island size S
=23 =»5N,=(6-N,)/N.

While serial KMC simulations were used for comparison
and for testing, in order to reach longer times, most of our
simulations were carried out using the recently developed
semirigorous synchronous sublattice parallel KMC algorithm
[29] with strip geometry. In this algorithm, different parts of
the system are assigned via spatial decomposition to different
processors. However, in order to avoid conflicts between
processors due to the synchronous nature of the algorithm,
each processor’s domain is further divided into different re-
gions or sublattices. In particular, for the case of strip geom-
etry considered here, our square system was divided into N,
strips (where N, is the number of processors) of width N,
=L/N, with each strip corresponding to a different processor.
Each strip was then divided into two halves—one corre-
sponding to a A sublattice and the other corresponding to a B
sublattice. A complete synchronous cycle corresponding to a
time interval 7is then as follows. At the beginning of a cycle,
each processor’s local time is initialized to zero. One of the
sublattices is then randomly selected so that all processors
operate on the same sublattice during that cycle. Each pro-
cessor then simultaneously and independently carries out
KMC events in the selected sublattice until the time when
the next event exceeds the time interval 7. As in the usual
serial KMC, each event is carried out with time increment
At;==In(r;)/R;, where r; is a uniform random number be-
tween 0 and 1, and R; is the total event rate for that sublat-
tice. Each processor then communicates any necessary
changes (boundary events) with its neighboring processors,
updates its event rates, and moves on to the next cycle using
a new randomly chosen sublattice.

We note that in the standard SL algorithm the cycle time 7
must be smaller than the inverse of the fastest possible
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FIG. 1. System morphology at different times for 6=0.1 and #=0.2. Pictures correspond to 256 X 256 portions of a 1024 X 1024

system.

single-event rate in the system [29]. This ensures that, for
example, particles near the processor or sublattice boundary
will only move once (on average) before moving on to the
next cycle and so will not be “trapped” in the “ghost” region
just outside the boundary. Accordingly, in most of our paral-
lel simulations a value 7=1/D, was used for the cycle time.
In our previous tests of this algorithm using a variety of
models of epitaxial growth [29] it was found that using such
an upper bound on the cycle time led to results which were
identical to serial KMC results—except for extremely small
processor sizes (N,=8) when the sublattice size was less
than a “diffusion length.” However, we have also carried out
additional test simulations of coarsening with a larger cycle
time since this may increase the parallel efficiency. As our
results demonstrate, in the case of coarsening, the cycle time
can be significantly increased without affecting the accuracy.

In order to study the asymptotic coarsening behavior
while avoiding finite-size effects, our long time parallel
KMC simulations (r=10° s) were carried out using large
system sizes (L=1600) with N,=8. However, in order to
validate our parallel KMC results we have first carried out
short and intermediate time tests (r=10>—10> s) in which we
have compared serial and parallel simulation results for dif-
ferent numbers of processors N,. In these tests systems of
size L=256 and 512 were used, while the number of proces-
sors ranged from N,=1 (serial) to N,=64. We note that the
processor width N, ranged from L (serial runs) to very small
values (N,=4) for the case of L=256 with N,=64.

III. RESULTS

Figure 1 shows typical results for the system morphology
as a function of time up to t=103 s for #=0.1 and 6=0.2, for
the case L=1024. As can be seen, while the islands are ini-

tially very small and somewhat irregular, with increasing
time the average island-size increases while the islands be-
come smoother and appear to approach a “squarelike” shape
with rounded corners. We now present results for the com-
parison between serial and parallel simulations before study-
ing in more detail the quantitative evolution of the average
island-size and island-size distribution.

A. Comparison of serial and parallel results

As a first test of the accuracy of our parallel KMC simu-
lations, we have compared serial results for the monomer
and island densities as a function of time up to r=10° s at
coverage 6=0.1 (system size L=256) with the corresponding
parallel results obtained with the SL algorithm with cycle
time 7=1/D, and the number of processors ranging from
N,=4 (N,=64) to N,=64 (N,=4). As can be seen in Fig.
2(a), both the island and monomer densities decrease with
time although the island density appears to be decreasing
more quickly. The small value of the monomer density also
indicates that to a good approximation the average island
size S is directly related to the island density N, ie., S
= @/N. In addition, we find that for all values of N, there is
excellent agreement between the parallel and serial results
for the island density even for extremely small processor
sizes, thus indicating that there is a negligible finite
processor-size effect. Similar agreement is obtained for the
monomer density N, (see Fig. 2) although for the very small-
est processor size (N,=4, N,=64) there is a small finite
processor size for the monomer density, i.e., the monomer
density obtained in the parallel simulations is slightly higher
than the serial result. Figure 2(b) shows similar results for
the scaled ISD at t=100 s for a slightly larger system size
(L=512) with the number of processors ranging from N,
=1 (serial) to N,=64. As can be seen, there is essentially no
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FIG. 2. Comparison of serial and parallel coarsening results at short and intermediate times for different values of N, (NX=L/N[,) at 0
=0.1. All results are averaged over 500 runs. (a) Monomer and island densities (L=256). (b) Scaled ISD at t=100 s for system size L

=512.

difference between the serial and parallel KMC results for
the scaled ISD. These results indicate that, somewhat surpris-
ingly, the finite processor-size effect in island coarsening is
significantly weaker than during submonolayer island growth
[29]. We attribute this to the fact that the process of coars-
ening is somewhat closer to equilibrium than nucleation and
island growth.

B. Asymptotic coarsening behavior
and scaled island-size distribution

Based on these results, we have carried out parallel KMC
simulations over much longer times (r=10° s) and much
larger system sizes (L=1600) with N,=8 (N,=200) in order
to determine the asymptotic behavior. We note that the pro-
cessor width (N,=200) in these simulations is significantly
larger than the largest processor width (N,=4) for which a
noticeable finite-processor size effect was observed. In order
to obtain good statistics our results were averaged over 78
runs. Figure 3 shows the corresponding simulation results for
the average island size S as a function of time for #=0.1 and
0=0.2. As can be seen, after an initial “transient” period,
there is an “intermediate” period from t=10—10 s during
which an effective slope of 1/2 corresponding to a coarsen-
ing exponent n==1/4 is obtained. We note that this value
corresponds to the correlated evaporation-condensation
mechanism for cluster diffusion [7] and is also consistent
with the observation of significant cluster diffusion and
coalescence during this period. However, at later times
(t>10° s) the slope approaches the asymptotic value of 2/3
corresponding to a coarsening exponent n=1/3. While such
an exponent is consistent with both cluster diffusion due to
uncorrelated evaporation-condensation and Ostwald ripen-
ing, we have observed that there is significantly less cluster

diffusion and coalescence during this late time period. In-
stead, what is observed is that the smaller clusters evaporate
while the larger clusters grow, as in Ostwald ripening. Such a
scenario is also consistent with the fact that, as indicated by
the inset in Fig. 3, at late time the island density is smaller
than the monomer density. Thus, at late time the islands are
essentially in quasiequilibrium with a “gas” of monomers as
is assumed in Ostwald ripening. We now consider the time
evolution of the scaled ISD as well as the dependence of the
asymptotic ISD on coverage.
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FIG. 3. Average island size S as a function of time for coverages
0=0.1 and #=0.2 (system size L=1600). Inset shows corresponding
results for island and monomer densities.
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FIG. 4. Comparison between parallel KMC simulation results
for scaled ISD at early and intermediate time (#=0.1) and mean-
field (MF) prediction of Yao er al. [24].

Figure 4 shows our results for the scaled island-size dis-
tribution,

f(s/S) = Ny(1)S/6, (3)

at early and intermediate times (t=150—10° s) along with
the initial scaled ISD at r=0 (dashed curve). We note that
these simulations were carried out using L=1600 with N,
=16. Also shown is the prediction of the mean-field theory of
Yao et al. [24] (solid curve) for 2D Ostwald ripening and 6
=0.1, which was obtained by numerically solving the system
of self-consistent equations given in Ref. [24]. We note that
in 2D the theory of Yao et al. [24] is based on the assumption
of circular islands, and leads to a prediction for the “scaled
droplet distribution function” g(r/R) where r is the cluster
radius, R is the average island radius, and S= 7R2. In order to
convert this result to a scaled ISD we have used the relation
f(u)=g(\u)/(2\u). As can be seen in Fig. 4 our simulation
results exhibit good scaling over a relatively large range of
times, thus indicating that the scaled ISD is approaching its
asymptotic behavior. However, there are significant devia-
tions between the simulation results and the asymptotic
mean-field theory prediction of Yao et al. [24]. In particular,
the scaled ISD obtained from our KMC simulations is nar-
rower and higher than the Yao model prediction.

Figure 5 shows our parallel KMC results for the scaled
ISD at much longer times (approximately 100 times longer)
for system size L=1600 and N,=8. As can be seen, at late
times the peak of the scaled ISD is slightly lower and is also
slightly shifted to the right compared to the ISD at interme-
diate times but is still significantly different from the mean-
field (MF) prediction of Yao et al. In particular, the peak of
the distribution is still significantly higher and narrower than
the Yao et al. [24] prediction while the peak position corre-
sponds to a scaled island-size close to 1, in contrast to the
prediction of Yao et al. In addition, both the small s/S por-
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FIG. 5. Comparison between parallel KMC simulation results
for scaled ISD at late time (#=0.1) and mean-field prediction of Yao
et al. [24].

tion of the distribution as well as the tail (s/S>2.0) deviate
even more strongly from the MF prediction than at interme-
diate times. We believe that these deviations are due to the
existence of correlations which are not taken into account in
the MF theory.

In order to study the coverage dependence of the scaled
ISD we have also carried out simulations of coarsening at
coverage 6#=0.2, as shown in Fig. 6. As can be seen, our
simulation results for the scaled ISD at #=0.2 are very simi-
lar to those obtained at #=0.1, thus indicating a relatively
weak coverage dependence. We note that for comparison,
also shown in Fig. 6 (solid and dashed curves) are the pre-
dictions of Yao et al. [24] for the asymptotic scaled ISD for
coverages #=0.1 and 6=0.16. We note that while these re-
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FIG. 6. Comparison of KMC simulation results for the scaled
ISD at late time (#=0.2) and the mean-field predictions of Yao et al.
[24] at #=0.1 (solid curve) and 6=0.16 (dashed curve).
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FIG. 7. Parallel efficiency (PE) as a function of number of pro-
cessors N,. Solid lines correspond to results obtained using 7
=1/D,, while dashed lines correspond to results for L=1600 using
a larger value of 7 (see text).

sults were obtained by numerically solving the system of
self-consistent equations given in Ref. [24], for values of 6
larger than 0.16 it appears that there are numerical instabili-
ties in the solution of the self-consistent equations used by
Yao er al. [24]. As a result, this theory could not be used to
obtain a prediction for #=0.2. In any case, a comparison
between our scaled ISD results for #=0.2 with the MF pre-
dictions for #=0.1 and #=0.16 indicates that at larger cover-
age the discrepancy between the simulation results and the
MF prediction increases. This may be due in part to the fact
that this theory is only applicable at relatively small coverage
such that the screening length (corresponding roughly to the
distance between islands) is significantly larger than the is-
land radius.

C. Dependence of parallel efficiency on N, and cycle time 7

We now consider the parallel efficiency obtained in our
parallel KMC simulations. We note that in our simulations,
the parallel efficiency was calculated using the expression

Toeris
PE = serial (4)

b
N, )4 f parallel

where 7., corresponds to the time for a serial simulation
and 7,01 cOITEsponds to the time for a parallel simulation
of the same system with N, processors. The solid lines in
Fig. 7 indicate our results for the parallel efficiency obtained
from test runs of length t=10° s as a function of the number
of processors N, for different system sizes L=512, 1024, and
1600 using a cycle time 7=1/D,. As expected, for fixed sys-
tem size L the parallel efficiency decays with increasing N,
due to the decrease in the processor size and number of
events per cycle. This leads to an increase in the relative
communications overhead as well as in the relative fluctua-
tions in the number of events per processor which implies a
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FIG. 8. Evolution of monomer and island densities obtained
using SL algorithm with different values of cycle time 7 (L=1600
and N,=8).

decreased utilization per processor. However, for fixed N,
the parallel efficiency increases with increasing L since this
leads to an increased processor size. We note that for the
parameters used in most of our simulations (L=1600, N,
=8) the parallel efficiency is slightly larger than 80%.

We now consider the effects of increasing the cycle time 7
on the accuracy and efficiency of our parallel KMC simula-
tions. We note that in previous work on parallel KMC simu-
lations of submonolayer and multilayer growth using the SL
algorithm [29], we found that a “conservative” cycle time
corresponding to the inverse of the fastest possible single-
event rate was required to maintain the accuracy of the par-
allel simulation. Accordingly all of the coarsening results
presented so far were obtained using such a “conservative”
cycle time 7=1/D,. However, it is of interest to investigate
the effect of increasing the cycle time 7 since this may in-
crease the parallel efficiency of the simulations by decreasing
the relative fluctuation in the number of events in each pro-
cessor as well as the communications overhead. In addition,
we expect that since coarsening is a “slow” process which is
close to equilibrium, there should be less dependence on the
cycle time than in the previously studied cases of submono-
layer and multilayer growth [29].

Figure 8 shows the island and monomer densities during
coarsening (6=0.1) obtained in parallel simulations with L
=1600 and N,=8 for different values of the cycle time rang-
ing from 7=1/D, to 7=50/D,. As can be seen there is es-
sentially no dependence of the island density on the cycle
time for all values of 7, while the monomer density agrees
within error bars for all values of 7up 10/D,. However, for
longer cycle times (7=20/D,) there are noticeable devia-
tions in the monomer density. This relatively weak depen-
dence on the cycle time 7 is in striking contrast to our pre-
vious results for simple nonequilibrium growth models and
is due, we suspect to the fact that coarsening is much closer
to equilibrium. The corresponding results for the parallel ef-
ficiency are shown in Fig. 7 (dashed lines). As can be seen,
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using 7=5/D, leads to a significant increase in the parallel
efficiency for the case of L=1600 with N,=8, while using a
significantly longer cycle time (7=20/D,) does not further
improve the parallel efficiency. We also note that for N,=2,
using 7=5/D, leads to a parallel efficiency which is slightly
larger than 1. This is due to the existence of cache effects
which have a stronger effect in serial simulations than in
parallel simulations due to the larger processor size [32].

IV. DISCUSSION

We have presented the results of parallel kinetic Monte
Carlo simulations of 2D island coarsening using our recently
developed semirigorous synchronous SL algorithm. Our re-
sults indicate that parallel simulations can be used to effec-
tively extend the time scale over which realistic coarsening
simulations can be carried out. In particular, using a conser-
vative cycle time 7=73=1/D, corresponding to the inverse
of the fastest possible single-event rate, we have demon-
strated that the SL algorithm leads to results which are iden-
tical to those obtained using serial KMC except for ex-
tremely small processor sizes. In addition, for system sizes
which were not too small the parallel efficiency was found to
be relatively large. In particular, for our simulations of the
late stages of coarsening with system size L=1600 and N,
=8, a parallel efficiency larger than 80% was obtained.

We have also used the SL algorithm to carry out parallel
KMC simulations of the asymptotic coarsening behavior for
our bond-counting model, which is similar to that previously
studied by Lam er al. [25]. We note that, in part because of
the longer simulation times available via our parallel simu-
lations, our coarsening exponents are significantly larger than
obtained previously by Lam er al. [25], and so we were able
to observe the asymptotic coarsening behavior. In particular,
an asymptotic growth exponent n=1/3 was obtained for
both #=0.1 and #=0.2. In addition, our results indicate that
while cluster diffusion and coalescence play a role at early
and intermediate times up to about 10° s, at late times the
coarsening proceeds via Ostwald ripening.

By carrying out simulations of coarsening over long times
and for large system sizes we have also studied the
asymptotic behavior of the scaled ISD. For both #=0.1 and
6=0.2, we find that the asymptotic scaled ISD is reached
fairly quickly, i.e., there are only small changes in the scaled
ISD for > 10 s. However, the scaled ISD’s obtained in our
simulations are significantly narrower and more sharply
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peaked than the mean-field theory predictions. As already
noted, we believe that these deviations are primarily due to
the existence of correlations which are not taken into account
in the MF theory. However, other factors such as the exis-
tence of significant cluster diffusion for small islands in our
model (due to evaporation condensation), as well as the
shape of our islands (which are square rather than circular)
might also play a role.

Finally, we have also compared the results of parallel
KMC simulations of coarsening carried out using cycle times
larger than the maximum ‘“‘conservative” cycle time 7, with
the corresponding serial results. Somewhat surprisingly, we
found that for cycle times as large as 107, our results for the
island and monomer densities are identical to the serial re-
sults. Interestingly, for even larger cycle times the island
density is still unaffected, although there are noticeable de-
viations in the monomer density. This is in contrast to our
previous studies of submonolayer and multilayer nucleation
and growth using the SL algorithm [29,34], in which a cycle
time significantly longer than the inverse of the fastest pos-
sible single-event rate led to results for the island density
which deviate from the serial results. We believe that this
relative insensitivity to the cycle time is due to the fact that
coarsening is closer to equilibrium than nucleation and
growth.

In conclusion, we have used the recently developed SL
algorithm to carry out parallel kinetic Monte Carlo simula-
tions of a simple bond-counting model of 2D island coarsen-
ing. Our results for this model indicate that while cluster
diffusion via correlated evaporation-condensation and coa-
lescence play a role at early and intermediate times, at late
times the coarsening proceeds via Ostwald ripening. In addi-
tion, we found that the asymptotic scaled ISD is significantly
narrower and more sharply peaked than the mean-field
theory prediction of Yao et al. [24]. Our results also indicate
that the SL algorithm can be used to effectively extend the
time scale over which realistic coarsening simulations can be
carried out. Based on these results we expect that the SL
algorithm will be useful in the future in parallel KMC simu-
lations of more complicated models of coarsening.
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