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Fluids in which the interparticle potential has a hard core, is attractive at moderate separations, and repulsive
at large separations are known to exhibit unusal phase behavior, including stable inhomogeneous phases. Here
we report a joint simulation and theoretical study of such a fluid, focusing on the relationship between the
liquid-vapor transition line and any new phases. The phase diagram is studied as a function of the amplitude of
the attraction for a certain fixed amplitude of the long ranged repulsion. We find that the effect of the repulsion
is to substitute the liquid-vapor critical point and a portion of the associated liquid-vapor transition line, by two
first-order transitions. One of these transitions separates the vapor from a fluid of spherical liquidlike clusters;
the other separates the liquid from a fluid of spherical voids. At low temperature, the two transition lines
intersect one another and a vapor-liquid transition line at a triple point. While most integral equation theories
are unable to describe the new phase transitions, the Percus-Yevick approximation does succeed in capturing
the vapor-cluster transition, as well as aspects of the structure of the cluster fluid, in reasonable agreement with
the simulation results.
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I. INTRODUCTION

Until quite recently, it was commonly supposed that the
gamut of equilibrium fluid phase behavior exhibited by a
single component system of particles interacting via an iso-
tropic pair potential, does not extend beyond a liquid phase
and a vapor phase. While this certainly appears to be true for
prototype models such as the Lennard-Jones fluid, it is now
recognized that considerably richer phase behavior can occur
�1�. For instance, systems whose particles have a repulsive
core that is sufficiently soft, may exhibit one or more stable
liquid-liquid phase transitions over and above the liquid-
vapor transition �2–4�. Furthermore, and notwithstanding
their isotropy, such soft potentials can give rise to inhomo-
geneous fluid phases composed of clusters, or patterned mor-
phologies such as stripes and lamellae �5–9�.

Another class of isotropic pair potential exhibiting rich
phase behavior are those that are attractive for short dis-
tances �beyond a hard core diameter� but repulsive at large
distances, i.e., they are short-range attractive and long-range
repulsive �SALR�. Effective potentials of the SALR form
can be found in colloid-polymer mixtures �10–13�: The long
ranged repulsion arises from the weakly screened charge car-
ried by the colloids, while the attraction at short distances
stems from the depletion forces associated with the nonad-
sorbing polymers �14�. The competition between attraction
and repulsion on distinct length scales is responsible for be-
havior such as the appearance of equilibrium cluster phases
and nonequilibrium gel states �11,12�. SALR potentials are
further appropriate for the description of protein solutions
�10,15�, star-polymer systems �16�, the effective interactions
between solute particles in a subcritical liquid solvent �17�,
and colloidal monolayers �18,19�. In the latter �two-
dimensional� systems, the short-range attraction arises from
the van der Waals and capillary forces, while the longer
range repulsion is thought to be due to dipole-dipole interac-
tions �18,19�. Such two-dimensional systems have also been

observed to form cluster and stripe morphologies �18–21�.
Beyond their relevance to the real systems listed above,

models whose particles interact via a SALR potential are of
considerable interest from the fundamental perspective of
statistical mechanics. Specifically, they elicit basic questions
such as the following: What is the scope and character of
their phase behavior, and how can this be described theoreti-
cally? Below we briefly review the progress to date in ad-
dressing these issues.

A number of theoretical and simulation studies have con-
sidered aspects of the phase behavior of a variety of fluids
interacting via SALR potentials �22–40�. In pioneering early
work �22–24�, a mean-field �Landau� theory approach was
developed for systems with competing interactions. This pre-
dicted that when the amplitude of the long ranged repulsion
is sufficiently large �relative to that of the attraction�, modu-
lated phases appear in the region of the phase diagram
where, if one were to allow only for the occurrence of ho-
mogeneous phases, the theory would predict the liquid-vapor
critical point to be located. More recent field-theoretic stud-
ies �25–27� have arrived at similar conclusions.

Adopting a phenomenological approach, Groenewold and
Kegel �29,30� developed a model to explain how competition
between short ranged attraction and a longer ranged repul-
sion in colloidal systems could promote cluster formation.
They concluded that depending on the relative strengths and
ranges of the competing attractive and repulsive contribu-
tions to the pair potential, large clusters �up to several thou-
sands of particles� would be stable. Signatures of such clus-
tering were observed by Sear and Gelbart within a mean-
field �random phase approximation �RPA�� liquid state theory
�28� study of a model in which the attractive and repulsive
contributions to the potential are both rather long ranged
�justifying the mean-field approximation�. They showed that
the propensity to clustering is manifest by a peak in the static
structure factor, S�k�, at a small but nonzero wave vector kc.
In fact, the mean-field theory predicts a line in the phase
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diagram at which S�k� diverges at k=kc�0, and it was in-
ferred that this line indicates microphase separation to a
modulated phase�s�. Such a line has previously been dubbed
the “� line” �32� in terminology borrowed from other con-
texts �41–43�.

Within the framework of integral equation theory, Chen
and co-workers �33–35� solved the Ornstein-Zernike �OZ�
equation for the structure of a fluid of particles interacting
via a SALR potential in which the attractive and repulsive
contributions are both assigned the Yukawa form �a “double-
Yukawa” potential� �44–46�. Two closures were examined:
the mean spherical approximation �MSA� and the
hypernetted-chain �HNC� approximation. Focusing on the
portion of the phase diagram where the peak in S�k� at k
=kc is developing, the authors found that both theories pro-
vide a good description of the fluid structure, as gauged by
comparison with Monte Carlo �MC� simulations. As will be
demonstrated in the present work, however, neither the MSA
nor the HNC is reliable for describing the fluid structure in
the vicinity of transitions to inhomogeneous phases.

A generally more accurate integral equation theory, the
self-consistent Ornstein-Zernike approximation �SCOZA�,
has been applied in conjunction with hierarchical reference
theory �HRT� calculations, by Pini et al. �31,47� to a double-
Yukawa SALR potential. The authors investigated the influ-
ence on the structure and phase behavior of the fluid as the
amplitude of the repulsive contribution was increased from
zero. Doing so was found to depress the vapor-liquid critical
temperature and led to the appearance of an anomalously
large region around the liquid-vapor critical point in which
the fluid compressibility is very high �31,47�. Unfortunately,
Pini et al. were unable to obtain solutions either from the
SCOZA or the HRT in the regime where inhomogeneous
phases might be expected to occur �31,32,47�. The SCOZA
results were subsequently compared with a RPA density
functional theory �DFT� by Archer et al. �32�. In common
with earlier mean-field approaches �28�, the RPA DFT pre-
dicts a � line to occur in the phase diagram when the ampli-
tude of the repulsive part of the potential exceeds a threshold
value �32�. In parts of the phase diagram away from the �
line, reasonable agreement with SCOZA was found for the
fluid structure and thermodynamics.

Sciortino and co-workers �36–38� have employed a vari-
ety of theoretical and simulation techniques to investigate the
properties of SALR systems. They focused attention on po-
tentials having a particularly short ranged attractive part �i.e.,
a small fraction of the particle diameter�, chosen to mimic
the effective pair potential in certain colloidal systems. They
found—as has been shown experimentally �12�—that the
system exhibits both a fluid cluster phase and a gel phase
comprising interconnected chains composed of face-sharing
tetrahedral clusters. Indeed, as has been recently emphasized
�27,40�, it is a general feature of models having particularly
short ranged attraction, that the microphase separation can
occur in a regime where the system dynamics are very slow
and a transition to a nonergodic state is possible. Another
SALR potential having a similarly short ranged attraction
was studied using simulation by de Candia et al. who ob-
served columnar and lamellar phases �39�. It has even been
suggested that for such very short ranged attractive poten-

tials, the presence of a long ranged repulsion might not be a
prerequisite for cluster formation �48�.

Notwithstanding the extensive body of impressive results
on a variety of model SALR systems, displaying an intrigu-
ing wealth of inhomogeneous phases, central questions re-
main unanswered. Specifically, the detailed relationship be-
tween the liquid-vapor transition and the inhomogeneous
phases still seems obscure �recall that mean-field theories
predict a � line enclosing a region of the phase diagram in
which a naive application of the theory would predict the
liquid-vapor critical point to be �32��. Furthermore, if the
vapor-liquid critical point is lost when long ranged repulsion
is introduced, what happens to the remainder of the liquid-
vapor transition line? In the present work, we attempt to
answer these questions by deploying simulation and theory
to investigate the structure and phase behavior of a model
system whose particles interact via a double-Yukawa SALR
potential.

Our principal findings are as follows. Our Monte Carlo
simulations show that for a certain �moderately large�
strength of the repulsive contribution to the pair potential,
the liquid-vapor critical point is absent. In its stead we find
two lines of first-order phase transitions, each of which sepa-
rates a homogeneous phase from an inhomogeneous �cluster�
phase. One of these two transition lines is located at low
particle number density, and separates the vapor from a fluid
of spherical liquidlike clusters; it appears to terminate at a
critical point at high temperatures. The other line—located at
high density—separates a phase of spherical voids from the
homogeneous liquid; it too appears to terminate at a critical
point. At low temperature, the two transition lines intersect
one another and a vapor-liquid transition line at a triple
point.

We complement our simulation studies with an investiga-
tion of the utility of a number of standard liquid state theo-
ries for describing the phase behavior of our model. We first
apply the DFT of Ref. �32� to trace the locus of the � line,
noting that if one interprets this line as representing the tran-
sition to periodically modulated phases, then its topology is
incompatible with the phase diagram emerging from the
simulations. Turning our attention to integral equation theo-
ries, we find that the HNC has a no-solution region in the
portion of the phase diagram where the transitions to inho-
mogeneous phases occur, although it does yield a portion of
the vapor-liquid transition. Use of a simple modified HNC
�MHNC� approximation similarly fails to provide a solution
in the region of interest. We further find that �for separate
reasons� the MSA is of little use in this region of the phase
diagram. Interestingly, however, the Percus-Yevick �PY� ap-
proximation is able to describe the vapor-cluster phase tran-
sition as well as key aspects of the structure of the cluster
fluid, in reasonable agreement with the MC results.

Our paper is organized as follows. We introduce our
model SALR potential in Sec. II. The MC simulation meth-
odology used to study the model, and our findings concern-
ing the phase behavior and the character of the inhomoge-
neous phases are described in Sec. III. An investigation of
the utility of mean-field DFT and integral equations for de-
scribing the phase behavior is detailed in Sec. IV. Finally, a
discussion of the implications of our findings and the outlook
for future work are the features in Sec. V.
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II. MODEL

The model that we have elected to study comprises an
isotropic two-body interparticle potential of the hard-core
plus double-Yukawa form,

�v�r� = �� , r � � ,

− �� exp�− z1�r/� − 1��/r
+ A� exp�− z2�r/� − 1��/r , r � � .

�1�

Here �=1/kBT is the inverse temperature, which we set
equal to unity, while � is the particle diameter. The first
Yukawa term represents an interparticle attraction whose
strength is controlled by a parameter ��0, while the second
term, with strength parameter A�0, represents a repulsion.
We shall focus on the regime in which the range of the re-
pulsion exceeds that of the attraction, i.e., z1�z2, leading to
a repulsive tail to the potential.

The specific choice of z1 and z2 requires a balance to be
struck between a number of competing desiderata. First, the
attractive part should not be so short ranged that the equilib-
rium liquid-vapor phase behavior is wholly preempted by
freezing �47,49� or dynamic arrest �gelation� �40�, phenom-
ena which—while undoubtedly of interest in their own
right—are not the specific concern of this work. Second, the
range of the repulsive part must exceed that of the attractive
contribution, and be sufficiently large to enable meaningful
comparisons with mean-field theories, the accuracy of which
increases with the potential range. Finally, from a purely
practical standpoint, the range should not be so great that
very large system sizes are necessary in order to obviate
cutoff artifacts when the potential is truncated in the interests
of computational efficiency. A satisfactory compromise in
these respects was found by assigning z1=2, z2=1, and trun-
cating the potential at r=rc=7.0�. For reasons relating to the
occurrence of large length-scale inhomogeneous phases, no
mean-field correction was applied for the effects of the po-
tential truncation, since such corrections assume the system
is homogeneous.

As described in the Introduction, physically one can re-
gard the potential of Eq. �1� as capturing the combined over-
all effect of a screened Coulombic repulsion between
charged colloidal particles, and a shorter ranged attraction
engendered by a depletion agent such as polymer chains. In
this spirit, it is natural to regard � as a measure of the poly-
mer fugacity, A as a measure of the colloidal charge, and
treat both parameters independently. In the present work,
however, we shall primarily be concerned with the phase
behavior as a function of �−1 at fixed A. For the latter, we
have assigned the value A=0.55. This choice was motivated
by a preliminary study of the model within DFT �32�, which
suggested that �given the choice z1=2, z2=1� this strength of
repulsion is sufficient to engender a � line encompassing the
critical region of the liquid-vapor line. One might therefore
hope that qualitative alterations to the standard scenario of
liquid-vapor phase behavior would ensue.

The form of the potential �v�r� is shown in Fig. 1 for
parameter values �−1=0.4, A=0.55, z1=2, z2=1. Also shown
is the form of �r /��2�v�r�, which provides a useful indica-
tion of which cutoff values, rc, are likely to result in signifi-

cant corrections to the internal energy compared to the full
potential. The figure confirms that for our choice of the cut-
off, rc=7.0�, only small corrections to the limiting behavior
are to be expected. It should be noted, however, that because
this cutoff value is much larger than the values typically
employed in the simulation of simple fluids such as the
Lennard-Jones system, any simulation study is expected to
entail a considerable computational investment.

III. SIMULATION STUDIES

A. Techniques

We have studied the phase behavior of the model of Sec.
II using a grand canonical MC simulation algorithm �50�.
Where possible, accurate location of points of first-order
phase coexistence was facilitated by the use of the multica-
nonical preweighting technique �51�, aided by multihisto-
gram reweighting �52� according to the procedure described
in Ref. �53�. Most of the results we shall present were ob-
tained for a system of linear size L=21�, although some data
was also collected for L=28� in order to gauge the scale
of finite-size effects. Periodic boundaries were employed
throughout.

As shall be described below, techniques were imple-
mented to determine the distribution of sizes of particle clus-
ters in selected regions of the phase diagram. A cluster com-
prises a subset of particles that are interlinked via pathways
of interparticle bonds. However, in contrast to lattice models,
the definition of a bond in a system with continuous transla-
tional symmetry is somewhat ambiguous. We adopt a crite-
rion which derives from that used for cluster identification in
spin models. Specifically, we determine the interaction en-
ergy v between each pair of particles and assign a bond with
probability pbond=1−exp��v�. Clusters of bonded particles
are then identified using the efficient enumeration algorithm
of Hoshen and Kopelman �54�.

B. Phase diagram

Prior to commencing exploration of the phase diagram, an
initial estimate was required for the range of values of the
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FIG. 1. The form of the potential �v�r� �Eq. �1�� for parameters
�−1=0.4, A=0.55, z1=2, z2=1. Also shown for comparison is the
form of �r /��2�v�r�.
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attractive strength for which nonhomogeneous states might
be expected to occur. Guided by the DFT calculations re-
ported in Sec. IV �which predict that for A=0.55, a � line
appears for 0.54��−1�0.48�, we selected �−1=0.5 as a suit-
able candidate. Subsequently it was found that smaller values
of �−1 were necessary to generate inhomogeneous phases.

For each value of �−1 studied, the dependence of the av-
erage of the fluctuating particle number density, 	̄, on the
applied chemical potential 
 was measured. The resulting
forms of 	̄�
� are shown in Fig. 2�a�. From this figure one
observes that for the initial value �−1=0.5, 	̄�
� is essentially
smooth, having a form reminiscent of a one-phase �super-
critical� fluid. However, as �−1 is reduced from this value, the
gradient of the curves for moderate densities gradually in-
crease in magnitude, indicating an increase in the fluid com-
pressibility. Concomitantly, kinks in the curves start to
develop at low and high density, which sharpen into discon-
tinuities as �−1 is further decreased. For �−1�0.42, these low
and high density kinks are supplemented by additional ones
at intermediate densities, as is apparent from the close-up of
the data for �−1=0.41 and �−1=0.4 shown in Fig. 2�b�.

We address first the phenomena underlying the appear-
ance of the discontinuities in 	̄�
� at low and high density.
These arise from first-order phase transitions. In the low den-

sity case, the transition is between a vapor and an inhomo-
geneous phase composed of large spherical liquidlike clus-
ters; in the high density case it is from a liquid to an
inhomogeneous liquid phase containing large spherical va-
porlike voids �i.e., bubbles�. Discussion of the character of
these inhomogeneous structures is deferred until Sec. III C.

Evidence for the existence of these phase transitions
comes from the measured forms of the distribution of the
fluctuating instantaneous number density p�	� at the model
parameters for which the kinks occur. For the low density
transition, these distributions are shown in Fig. 3�a�. One
observes a two-peaked structure; the narrow peak at low den-
sities corresponds to the vapor phase, while a much broader
higher density peak corresponds to the cluster phase. At
small values of �−1 the two peaks are widely separated, the
trough between them is deep �cf. the log scale of Fig. 3�b��,
and the cluster peak is very broad �this latter feature reflects
the large compressibility associated with the steepness of
	̄�
� at these values of �−1—recall Fig. 2�a��. As �−1 is in-
creased, the two peaks approach one another and eventually
merge into a single peak; this occurs at a value of �−1 con-
sistent with that at which the sharp low density kink in 	̄�
�
becomes smoothed out.
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FIG. 2. �a� Measured forms of 	̄�
� for z1=2, z2=1, A=0.55,
and various �−1. �b� An enlargement showing the data for �−1

=0.41 and �−1=0.4 as described in the text.
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FIG. 3. �a� The distribution of the fluctuating number density for
state points corresponding to the low density vapor-spherical cluster
transition. �b� The same data plotted on a log scale.
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The computational cost of performing long simulations in
the region of the high density transition, verges on the pro-
hibitive �55�. Consequently, we have been able to obtain the
coexistence form of p�	� for only a single value of �−1,
namely �−1=0.41. This distribution is shown in Fig. 4 and
exhibits a narrow liquidlike peak at high density together
with a much broader peak at lower densities which corre-
sponds to a liquid containing a large void, as will be dis-
cussed in Sec. III C. Again the parameters at which we find
the double-peaked structure match those of the correspond-
ing kink in 	̄�
�, which can therefore be taken as an alterna-
tive signature of the transition.

Unfortunately, it proved impossible to accurately quantify
the number and energy densities of the cluster phases that
coexist with the respective vapor and liquid phases. The
problems are traceable to the large length scale associated
with the typical cluster size, as illustrated in Fig. 5�a�, which
shows the measured density distribution p�	� for two system
sizes at a near-coexistence point located well inside the two-

phase vapor-cluster region. From the figure, it is evident that
while the position of the vapor phase peak is essentially sys-
tem size independent, the density of the cluster peak shifts
strongly to lower density as L is increased. Thus, the system
sizes attainable in this work fail to provide access to the
thermodynamic limit for this phase. Analogous effects are
found for the energy distribution �data not shown�.

The low and high density first-order transition lines in �-

space are presented in Fig. 6. In this figure, the estimates of
points on the low density transition line derive from the data
of Fig. 3 by locating the values of 
 for which p�	� exhibits
two peaks of approximately equal weight. Those for the high
density transition derive both from the data of Fig. 4 for the
case �−1=0.41, and otherwise from the position of the high
density kink in the 	̄�
� curves. The loci of the two transition
lines delimits a region within which inhomogeneous struc-
tures occur. For small �−1�0.39, this region tapers down to a
point, beyond which we were unable to stabilize inhomoge-
neous phases, instead finding a single transition from a vapor
to a liquid. This suggests that a triple point occurs at �−1

�0.39 below which standard vapor-liquid coexistence oc-
curs. We have estimated the locus of a portion of the vapor-
liquid coexistence from the center of the hysteresis loop in
�-
 formed by traversing the transition from vapor to liquid
and back again, and these estimates are also marked in Fig.
6. Owing to the great number of particles in the liquid phase,
the considerable potential cutoff distance, and the substantial
density difference between the liquid and vapor, it was not
possible to link the phase spaces of coexisting vapor and
liquid directly using biased sampling techniques, as was
done for the low density �vapor-cluster� transition.

As regards the nature of the transitions for large �−1, one
observes from Fig. 3 that for the vapor-cluster transition, the
two peaks in p�	� coalesce at a value of �−1 close to that at
which the low density kink in 	̄�
� disappears. It seems rea-
sonable to assume that a critical point occurs in this region
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FIG. 4. The distribution of the fluctuating number density for
the state point �−1=0.41,�
=−3.91, lying on the high density
spherical bubble-liquid transition.
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FIG. 5. Near-coexistence density distributions for �a� �−1

=0.415 and �b� �−1=0.425. In each case data is shown for two
system sizes.
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and that, by extension, the high density transition similarly
end at a critical point near to where the high density kink in
	̄�
� vanishes. However, accurately pinning down the re-
spective critical point parameters, proved problematic. The
source of the difficulty is, again, the large cluster length
scale. Specifically, on increasing �−1, the two peaks merge
before any system size dependence of the vapor peak be-
comes apparent. This implies that �in contrast to, e.g., a
liquid-vapor transition in a simple fluid �56�� the double
peaked structure of p�	� is lost before the thermal correlation
length becomes comparable with the system size. Accord-
ingly, the value of �−1 at which the peaks merge in a finite-
sized system constitutes an underestimate of the true critical
point value of �−1 and can thus, strictly speaking, only pro-
vide a lower bound on the critical point value of �−1�57�. The
existence of an additional large length scale for one of the
phases severely complicates the implementation of standard
finite-size methods for locating criticality, which are based
on the assumption of a single dominant length scale in the
near-critical region, namely the thermal correlation length.
Nevertheless, for �−1�0.43 the low and high density kinks
in 	̄�
� have disappeared, the curves are smooth, and we
thus tentatively �and conservatively� assign 0.425��c

−1

�0.440 for both the low density and high density transitions.

C. Nature of the coexisting phases at the low
and high density transitions

In Sec. III B we mapped the boundary between the homo-
geneous and inhomogeneous phases. Here we ponder the
character of the inhomogeneous phases in more detail. Fig-
ures 7�a� and 7�b� show, for �−1=0.41, typical configuration
snapshots of the inhomogeneous phase which coexists with
homogeneous vapor �liquid� at the low �high� density transi-
tions respectively. For the low density transition, a vapor
coexists with a phase containing an approximately spherical
cluster, whose local density is liquidlike. For the high density
transition, a dense liquid coexists with a phase containing a
large spherical bubble of vapor.

The visual identification of clusters at the low density
transition is corroborated by measurements of the radial dis-
tribution function g�r� of the coexisting phases. Figure 8 dis-
plays the measured forms of g�r� for the vapor and the co-
existing spherical cluster phase at �−1=0.41. One notes that
while the vapor phase is, to a great extent, structureless �i.e.,
g�r� effectively reaches its asymptotic value of unity for r
�3��, the cluster phase exhibits unusual features, namely a
very pronounced enhancement in the value of g�r� extending
over a considerable length scale that is indicative of the clus-
ter radius. Furthermore, as the inset shows, g�r=10.5��
�0.8—significantly less than unity. This latter feature her-
alds the onset of large-length-scale oscillations in g�r� which
have their origin in the intercluster correlations of the cluster
fluid phase �32�. Further evidence for this assertion derives
from our integral equation calculations to be presented in
Sec. IV B.

The question naturally arises as to how the character of
the spherical cluster phase alters as one tracks the transition
line by varying �−1. To answer it, in part at least, we have

FIG. 7. �Color online� �a� A typical configuration of the spheri-
cal cluster phase which coexists with vapor �not shown� at the low
density transition. �b� A typical configuration of the spherical vapor
bubble phase that coexists with homogeneous liquid �not shown� at
the high density transition.
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FIG. 8. The measured form of the radial distribution function
g�r� in both the vapor phase and the spherical cluster phase that
coexist at the low density transition for �−1=0.41. The inset shows
an enlargement of the behavior at large r.
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implemented a cluster identification algorithm �54� and used
it to obtain the form of the cluster mass distribution P�s� at
the vapor-cluster transition, for a number of coexistence state
points. The results �Fig. 9� show, in each instance, a double
peaked distribution. The peak at low mass occurs at s=1,
indicating that little or no clustering occurs in the vapor. The
broad peak occurring at high mass indicates that the liquid-
like clusters contain several hundred particles. The latter
peak shifts strongly to greater masses with decreasing �−1,
showing that the typical radius of the clusters grows accord-
ingly; this feature has important implications for finite-size
effects, as we discuss below.

Finally in this section, we record that we have not at-
tempted to characterize in any detail the properties of the
inhomogeneous vapor-bubble phase occurring at the high
density transition, due to the prohibitively large computa-
tional effort that this would entail.

D. Further inhomogeneous states

We consider next the structures that form as one traverses
the region of inhomogeneous states separating the low and
high density transitions. On increasing 
 at constant �−1

=0.41 from its coexistence value at the low density �vapor-
cluster� transition, visual inspection of typical configurations
�Fig. 10� shows that the spherical clusters are replaced first
by cylindrical clusters �which span the periodic system in
one direction�, and then, at still higher densities �	̄�3�0.2�,
by slablike structures �which span in two directions�. In our
simulations, one structure appeared to evolve smoothly into
the next, and we could discern no clear signature of discon-
tinuities in the gradient of the 	̄�
� in this range of densities
�cf. Fig. 2�b��. Hence on this basis, there is no evidence for
the existence of first-order phase transitions between spheres
and cylinders or cylinders and slabs. However, given that the
characteristic length scales of these structures is comparable
with our system size, we cannot rule out that sharp transi-
tions could become apparent for much larger system vol-
umes.

Moving to higher densities �	̄�3�0.3�, two kinks are vis-
ible in the 	̄�
� curve for �−1=0.41 �see Fig. 2�b��. The first
kink, appearing at a density of 	̄�3�0.37, occurs in a region
in which the configurations are slablike, and appears to relate
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FIG. 9. Cluster mass distribution p�s� �shown on a log scale� for
a selection of points along the vapor-cluster transition. The curves
have been shifted vertically to aid their distinguishability.

FIG. 10. �Color online� Snapshots of the typical sequence of
finite system size-limited structures that were observed for �−1

=0.41 when traversing the region of densities intermediate between
the density of the spherical liquidlike cluster phase �which coexists
with the vapor, cf. Fig. 7�a��, and the density of the spherical void
phase �which coexists with the liquid, cf. Fig. 7�b��. �a� A cylinder,
�b� a slab, �c� a cylindrical void. See text for more details.
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to a single cuboidal slab being replaced by two parallel slabs.
Accommodating an additional slab within the simulation box
boosts the number of particles in each that are within range
of the long ranged repulsions from particles occupying the
other slab. Consequently it becomes energetically less favor-
able for the slabs to thicken as 
 is increased further, leading
to a decrease in the compressibility �and thus too, the gradi-
ent of 	̄�
��. Accordingly, the kink at 	̄�3�0.37 is some-
thing of a finite-size artifact. Visualization of configurations
on either side of the second intermediate density kink �oc-
curring at 	̄�3�0.47� reveals that this is associated with a
transition from the parallel slabs of liquid just described, to a
liquid containing large cylindrically shaped voids, or
“bubbles” of vapor which span the system in one direction
�Fig. 10�c��. A jump in the density at 	̄�3�0.7 corresponds
to cylindrical voids being replaced by spherical voids.

Turning now to the data for �−1=0.4, shown in Fig. 2�b�,
the kinks that form the plateau in 	̄�
� at moderate densities
have an origin distinct from that just described for the case
�−1=0.41. The configurations on either side of the first kink
contain a single liquidlike slab. The plateau seems to develop
because—as the density grows—the two surfaces of this
single slab are forced together via the periodic boundaries
until, at some point, the particles near one surface come
within the range of the repulsive part of the potential of the
particles at the other surface. Thus again, this feature would
appear to be a finite-size artifact. The second kink marks an
abrupt condensation of the slab into the homogeneous liquid
phase.

The character of the inhomogeneous structures that oc-
cupy the region separating the pure phases helps to explain
the dramatic increase in the compressibility �and hence the
gradient of 	̄�
�� on reduction of �−1. This increase is �we
believe� largely attributable to the increasing prevalence of
slablike structures as �−1 is reduced. Since the size of the
spherical clusters that coexist with the pure phases grows
with decreasing �−1, they eventually approach that of the
system size, at which point spheres or cylinders are no longer
stable and are replaced by slabs. Since it costs little free
energy to move a slab interface �except when the two inter-
faces interact via the periodic boundaries�, the compressibil-
ity grows very large. We further note that for values of �−1

�0.39, i.e., below that of the triple point, one should expect
such behavior since at densities intermediate between those
of the stable coexisting vapor and liquid phases, slablike
configurations dominate �58�.

Summing up the findings of this section, we have pre-
sented evidence for a variety of inhomogeneous structures:
spherical and cylindrical liquidlike clusters, single and mul-
tiple liquidlike slabs, cylindrical and spherical bubbles. How-
ever, the precise sequence of structures that occurs when
traversing the inhomogeneous region at fixed �−1 depends
both on the value of �−1 itself, and on the system size. This is
perhaps not altogether surprising, given that the typical
length scale of the inhomogeneous structures depends on �−1

�cf. Fig. 9�, and that for sufficiently small �−1, this length
scale can exceed the linear extent of the simulation box.
Additionally, it should be mentioned that protracted relax-
ation times were encountered in the inhomogeneous region
of the phase diagram. These arise because a local �i.e., single

particle� update procedure requires many iterations in order
to decorrelate a system having an inherently large length
scale. Accordingly, great computational expenditure is nec-
essary to ensure that the system attains the equilibrium struc-
ture for a given state point. In fact, we observed a certain
amount of irreproducibility regarding the precise form of
	̄�
� obtained on traversing the inhomogeneous region from
vapor to liquid compared to the reverse path. The source of
this irreproducibility is presumably traceable, in part at least,
to the extended relaxation times.

IV. MEAN-FIELD AND INTEGRAL EQUATION
THEORETICAL STUDIES

A. Mean-field theory of the fluid structure and thermodynamics

In Ref. �32� the authors developed a mean-field DFT
theory within the random phase approximation, for systems
interacting via potentials of the form in Eq. �1�. We will not
describe in detail the theory here—instead referring inter-
ested readers to Ref. �32�. The key idea behind this approach
�and indeed most other mean-field approaches� is to split the
pair potential into two contributions: a reference part, vr�r�
and the remainder or perturbation, vp�r�, i.e., v�r�=vr�r�
+vp�r�. For the present system an obvious choice for the
reference part is the hard-sphere potential, vr�r�=vhs�r�,
where

vhs�r� = �� , r � � ,

0, r � � ,
�2�

and therefore,

�vp�r� = �− � + A , r � � ,

�v�r� , r � � .
�3�

Note that there is no unique choice for vp�r� in the range r
��, inside the hard core. The choice made in Eq. �3� is the
same as that of Ref. �32�.

The Helmholtz free energy of the system is approximated
as follows �32�:

F�	� � Fhs
Ros�	� +

1

2
	 dr	 dr�	�r�	�r��vp�
r − r�
� ,

�4�

where 	�r� is the one-body density profile of the fluid and
Fhs

Ros�	� is the Rosenfeld approximation for the Helmholtz
free energy of a hard-sphere fluid �59–61�. For the bulk fluid
this amounts to the following �RPA� approximation for the
pair direct correlation function �32,44�:

c�r;	� = chs
PY�r;	� − �vp�r� , �5�

where chs
PY�r ;	� is the Percus-Yevick approximation for the

hard-sphere direct pair correlation function for a bulk fluid of
density 	 �32,44�.

For the potential parameters of concern in the present
work �z1=2, z2=1, and A=0.55�, the mean-field theory of
Ref. �32� yields the phase diagram displayed in Fig. 11. From
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this figure one sees that the theory predicts a � line enclosing
the region of the phase diagram containing the liquid-vapor
critical point. The � line is defined as the locus of points in
the phase diagram for which the static structure factor S�k�
diverges at a particular wave number kc�0 �32�. We take the
� line to indicate that the theory predicts a phase transition to
a periodically modulated inhomogeneous phase. This phase
preempts the standard liquid-vapor behavior that normally
occurs in the subcritical region of a simple fluid. We note,
however, that the topology of the � line and hence the region
of inhomogeneous phase�s�, is different from that obtained
from the MC simulations—compare Figs. 6 and 11�b�—the
� line suggests a closed loop around the inhomogeneous
phase�s�. This seems to be inconsistent with the simulation
results of Sec. III, because the fluid of spherical clusters that
we have identified is not periodically modulated. Thus while
the RPA provides a reasonable approximation for the fluid
structure and thermodynamics in regions of the phase dia-
gram away from the � line �32�, it would appear to be unre-
liable in its direct vicinity.

B. Integral equation theories for the bulk fluid structure
and thermodynamics

The structure of a fluid may be characterized by the radial
distribution function g�r�=1+h�r�, where h�r� is the total
correlation function, defined as the deviation of g�r� from the
ideal vapor result �44�. The radial distribution function is
important for two main reasons. First, it yields—via a Fou-
rier transform—the static structure factor

S�k� = 1 + 		 dr�g�r� − 1�exp�ik · r� , �6�

a quantity which, in principle, can be obtained in a scattering
experiment. Second, g�r� can be used to calculate thermody-
namic quantities such as the internal energy and the pressure.
For example, the pressure P can be obtained via the virial
equation �44�

P = 	kBT −
	2

6
	 drg�r�r

dv�r�
dr

, �7�

while, the Helmholtz free energy may be obtained by ther-
modynamic integration. In practice, however, since g�r� is
only approximately known, the value obtained for the free
energy is dependent upon the path of integration �62�.

A key equation used to calculate g�r� �or, equivalently
h�r�� is the Ornstein-Zernike equation �44�

h�r� = c�r� + 		 dr�c�
r − r�
�h�r�� , �8�

where c�r� is the pair direct correlation function. To solve the
OZ equation it must be supplemented by a closure relation.
The exact closure reads �44�

c�r� = − �v�r� + h�r� − ln�1 + h�r�� − b�r� , �9�

where −b�r� is the �unknown� bridge function. A simple ap-
proximation is to set b�r�=0. This is the HNC closure �44�,

cHNC�r� = − �v�r� + h�r� − ln�1 + h�r�� . �10�

We solve Eqs. �8� and �10� to obtain our approximation for
g�r�. Another approximation we consider is the PY closure
�44�,

cPY�r� = �1 − exp��v�r����1 + h�r�� , �11�

which is known to provide a good approximation for the
structure and thermodynamics of a hard-sphere fluid at low
and moderate densities.

Within the HNC approximation, the chemical potential
may be obtained from the following expression:

�
 = ln�	
3� + 		 dr
h�r�
2

�h�r� − c�r�� − c�r�� , �12�

where 
 is the �irrelevant� thermal de Broglie wavelength.
Coexistence between two phases occurs if they have equal
temperature, equal pressure, and equal chemical potential.
We employed Eqs. �7� and �12� to calculate the fluid pressure
and chemical potential to find the coexisting densities within
the HNC approximation. The results are displayed in Fig. 12.
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FIG. 11. Phase diagram for z1=2, z2=1, and A=0.55, obtained
from the RPA DFT theory of Ref. �32�. The solid line is the binodal
and the dashed line is the � line. �a� Plotted in the density 	 versus
�−1 plane, �b� plotted in the chemical potential 
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Unfortunately, only a small portion of the coexistence bin-
odal �at low values of �−1� could be determined since for the
HNC approximation there is a large region of the phase dia-
gram in which there is no solution to the OZ equation. This
region encompasses state points where we would expect
�on the basis of the simulation� to find inhomogeneous
phase�s�—see Fig. 12. We note that it is not unknown for the
HNC approximation to exhibit regions of no solutions
�63–66�. Indeed, one can obtain the HNC closure �10� as the
Euler-Lagrange equation from an associated free energy
functional and it can be shown that the lack of HNC solu-
tions is due to the loss of convexity in this free energy func-
tional �65,66�.

We have also applied a modified HNC �MHNC� closure
in which we invoke a simple approximation for the bridge
function in Eq. �9�, chosen to be the PY expression for the
hard-sphere fluid bridge function at the same density 	. We
found that this MHNC approximation failed to converge for
the same state points as the HNC approximation. We did not
attempt to implement any other more sophisticated MHNC
approximations �62�.

Applying the PY closure �11� to the OZ equation �8� gives
some �perhaps� surprising results: As with the HNC, there
are regions of the phase diagram where we were unable to
obtain a solution. However, their location is different to that
found for the HNC—compare Figs. 12 and 13. The theory
also seems to succeed in capturing some key aspects of the
cluster transition. Specifically, if for some constant �−1

�0.48, one calculates the PY approximation for g�r� along a
path of increasing density, starting from very low densities,
one finds at some 	 that a discontinuous jump occurs in the
solution for g�r�—see, for example, the results in Figs. 14
and 15. The locus of points in the phase diagram at which
g�r� jumps in this way is displayed in Fig. 13. Note also, that
if one traverses the reverse path, one can follow the high

density branch of solutions to the PY displaying the cluster-
ing to very low densities. The low density solutions on this
branch are particularly striking. The location in the phase
diagram of the jump line is close to where the transition to a
cluster phase occurs, as determined from our MC simula-
tions.

In Fig. 16 we display 
h�r�
 obtained from the PY theory
for the state point �−1=0.41 and 	�3=0.220 �see also Fig.
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FIG. 12. The partial phase diagram in the �−1 versus 	 plane
obtained from the HNC integral equation theory for z1=2, z2=1,
and A=0.55. The shaded region denotes state points for which no
solution could be found. Outside this region, at low and moderate
densities, the HNC theory provides a good approximation for g�r�,
when compared with MC data. We find that at low values of �−1 the
HNC predicts liquid-vapor coexistence.
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FIG. 13. The partial phase diagram in the �−1 versus 	 plane as
obtained by the PY integral equation theory. The shaded region
denotes state points for which no solution could be found. The solid
line indicates the line in the phase diagram at which there is a
discontinuous change in g�r�—compare with Figs. 14 and 15. This
line is close to the vapor-cluster phase transition in our MC simu-
lations. The dotted-dashed line indicates the locus of state points at
which the pressure �obtained via Eq. �7�� equals that in the vapor
phase.
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FIG. 14. The radial distribution function, g�r�, obtained from
simulation �solid lines� and the PY theory �dashed lines� for �−1

=0.44 at the particular selection of densities indicated. Note that at
	�3=0.058, the PY theory predicts a dramatic jump discontinuity in
g�r�. An increase in the magnitude of the first and second maxima
also occurs in the MC simulation results at a slightly higher density,
but it is much less pronounced than that predicted by the PY theory
and does not appear to be discontinuous for this value of �−1.
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15�. The logarithmic vertical axis allows inspection of the
long wavelength oscillatory decay of this correlation func-
tion, arising from intercluster correlations. A precursor to this
oscillatory behavior is visible in our simulation results �Fig.
8�. We note that the amplitude of the oscillations decays
rather slowly indicating very long ranged correlations in the
cluster phase.

We have attempted to calculate the binodal of the vapor-
cluster transition from PY theory. Initially we sought to per-
form thermodynamic integration of the pressure �as obtained
from the virial �7�� to acquire the Helmholtz free energy �62�
and thence the coexisting state points. However, we were
unsuccessful in this endeavor due to insufficient self-
consistency within the theory. As an alternative, more ap-
proximate, approach we have performed the following: �i�
We assumed that the jump line obtained from the PY theory
�see Fig. 13� is roughly the coexistence curve for the vapor

phase—our MC simulation data supports this assumption.
�ii� To find the coexisting cluster phase density, we sought
the cluster phase state point having the same value of �−1 and
pressure �obtained via Eq. �7�� as the vapor phase at densities
just below the jump line. This approach yields the dotted-
dashed line in Fig. 13. Similar results can be obtained from
an alternative approach, which is to plot the pressure ob-
tained from the virial equation �7� as a function of density for
fixed �−1�0.477; this produces a curve exhibiting a van der
Waals loop �as well as a discontinuity at the jump line�.
Ignoring the discontinuity, one can perform the equal areas
construction in order to obtain coexisting state points.

In Fig. 17 we display the static structure factor S�k� ob-
tained from the PY theory for two state points on either side
of the vapor-cluster phase transition line. For these state
points the PY result for g�r� agrees well with our MC simu-
lation result—see Fig. 15. S�k� displays a peak at small wave
vector 0�kc�2� /� for states on both sides of the transition
line. This peak is known to be a signature of clustering.
However, in the cluster phase the peak height is several or-
ders of magnitude greater than in the vapor phase.

Figure 18 shows the peak �maximal� value of S�k� ob-
tained from the PY theory as a function of the fluid density 	,
for a selection of values of �−1. At low 	, S�k��1 ∀k. As the
density is increased, the peak that grows the fastest, is that at
k=kc, i.e., the curves in Fig. 18 represent the dependence of
S�kc� on 	 in this regime. For values of �−1�0.48, a jump
occurs in S�kc� at the density of the vapor-cluster transition.
Underlying this jump in the peak height is a wholesale dis-
continuous change in the entire form of S�k�. As we have
previously shown �32�, the value of the structure factor at
k=0 is roughly proportional to its value at k=kc, and conse-
quently, S�k=0� also jumps at the transition point. Given,
however, that S�0�=	kBT�T, where �T is the isothermal com-
pressibility, this in turn implies that a jump discontinuity
occurs in �T at the transition density, in accordance with the
simulation results.
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FIG. 15. The radial distribution function, g�r�, obtained from
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scale.
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As the density is increased past the value at which S�k�
jumps as a whole, the value of S�kc�, i.e., the peak height
decreases. Eventually, at some higher density �the precise
value depending on the particular value of �−1�, the maximal
value of S�k� no longer occurs at k=kc�0, but instead at k
�2� /�, the next maximum in S�k�. This next maximum
originates from the hard-sphere correlations in the fluid, and
the crossover in maximal value from one peak in S�k� to the
other, accounts for the higher density discontinuity in the
gradient of the curves displayed in Fig. 18. For example, for
the case when �−1=0.44, this occurs at 	�3�0.6.

In Fig. 19 we display the direct pair correlation function
for the state point A=0.55, �−1=0.41 and density 	�3

=0.220. For this state point the PY approximation for g�r�
is in good agreement with the results from our MC
simulations—see Fig. 15. Note that for 1�r /��1.3,
c�r��−�v�r�. We believe it is for this reason that the MSA
closure to the OZ equation,

h�r� = − 1, r � � ,
�13�

c�r� = − �v�r�, r � � ,

completely fails to describe the fluid structure in the region
of the phase diagram near the vapor-cluster phase
transition—the MSA approximation forces c�r� to be much
smaller than it is in reality for 1�r /��1.3. We believe that
it is also for this reason that the RPA closure, Eq. �5�, is
unreliable in the vicinity of the vapor-cluster transition.

V. DISCUSSION

In summary, we have studied the phase behavior of a
system of particles which interact via a SALR potential, as a
function of the strength of the short ranged attraction, for a
fixed strength of the long ranged repulsion. The effect of the
repulsion is to substitute the liquid-vapor critical point and a
portion of the associated liquid-vapor transition line, with
two first-order phase transitions: one from the vapor to a
fluid of spherical liquidlike clusters, and the other from the
liquid to a fluid of spherical voids. Each of these phases is
highly compressible compared to the respective homoge-
neous phase with which it coexists. At low temperature, the
two transition lines intersect one another and the vapor-liquid
transition line at a triple point, while at high temperatures,
they appear to terminate at distinct critical points. Although
SCOZA, HRT and most of the standard integral equation
theories are unable to describe the new transitions, somewhat
surprisingly the Percus-Yevick approximation does succeed
in capturing the vapor-cluster phase transition, as well as key
aspects of the structure of the cluster fluid.

Owing to the high computational cost of the current study
�which consumed 2–3 years of CPU time on a 3 GHz pro-
cessor�, we have obtained the phase behavior only for a
single value of the strength of the repulsion namely A
=0.55. Consequently, it is difficult to comment authorita-
tively on the topology of the phase diagram in the full space
of 
, �, and A. Nevertheless, it is worthy of note that the
phase diagram of Fig. 6 is largely consistent with a cut at
constant A through a phase diagram originally obtained by
Barbosa in a mean-field study of an Ising model having iso-
tropic competing interactions �67�. Figure 20�a� recasts Bar-
bosa’s phase diagram in terms appropriate for the present
fluid model. One sees from the figure that as A is increased
from zero, the liquid-vapor critical point shifts to lower �−1

in accordance with SCOZA and HRT studies �31� of SALR
potentials. At some value of A=AL—corresponding to a Lif-
shitz point—inhomogeneous phases start to occur and two
sheets �or wings� of first-order phase transitions emerge from
a triple line to delineate a region of inhomogeneous states.
This region is capped off at high �−1 by a surface of continu-
ous transitions. A cut through the phase diagram at constant
A�AL has the form shown in Fig. 20�b�, which is qualita-
tively very similar to our Fig. 6, except that we have not, as
yet, been able to identify a line of continuous transitions.

A phase diagram of the form Fig. 20�a� might shed light
on the observation by Pini et al. of an anomalously large
region of high compressibility around the critical point �31�.
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If the strength of the repulsion is such that A�AL, then the
system will exhibit a liquid-vapor critical point, but will be
located �in the full phase diagram� close to the Lifshitz point.
As we have seen in the present work, the inhomogeneous
states that form for A�AL are highly compressible compared
to the vapor or the liquid, and even though they are not stable
for A�AL, they would be expected to have an influence on
the free energy landscape. This could account for the anoma-
lously large region of high compressibility.

As described in Sec. III D, when traversing the inhomo-
geneous region separating the low and high density transi-
tions, a variety of finite-size limited �spanning� structures
were observed depending on the value of � and the system
size. Evidence was found for cylinders and slabs, as well as
cylindrical voids. It is interesting to note that a similar se-
quence of inhomogeneous structures has also been reported
in simulations of the subcritical Lennard-Jones fluid using
periodic boundary conditions �68�. There the observed struc-
tures occurred for values of the density intermediate between
the coexisting stable vapor and liquid phases, and were meta-
stable with respect to these phases. It therefore seems that the
effect of adding a long ranged repulsion to a purely attractive
fluid, is to stabilize these structures with respect to the ho-
mogeneous phases. We further note that while the clusters
that occur at the low and high density transitions have a
length scale smaller than our system size �at least for larger
�−1�, and are therefore expected to persist in the thermody-
namic limit, our system sizes are too limited to make defini-
tive statements regarding the situation at moderate densities.
Here it seems more likely that modulated structures occur,
the wavelength of which exceeds our linear system sizes.

With regard to the prospects for extensions to the present
work, we were not able to satisfactorily address the question
of the nature of the putative critical points which terminate
the vapor-cluster and liquid-cluster transitions. To do so will
require the identification of the appropriate order parameter
for the transitions, and a reformulation of finite-size scaling
methodologies to take account of the large cluster length
scale �69�. Once this is achieved, the question as to whether
a line of continuous transitions really does link the �tri�criti-
cal points �cf. Fig. 20�b�� could be tackled. As for future
integral equation studies, another closure approximation for
the OZ equation, in common employ, is the Rogers-Young
�RY� closure �62,70�. This interpolates between the PY and
HNC theories in such a way as to enforce consistency be-
tween the virial and the compressibility routes to the thermo-
dynamics. Since the PY theory is able to describe the vapor-
cluster phase transition, in contrast to the HNC, it would be
interesting to see how the RY closure fares in this respect.
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