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Discreteness effects in a reacting system of particles with finite interaction radius
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An autocatalytic reacting system with particles interacting at a finite distance is studied. We investigate the

effects of the discrete-particle character of the model on properties like reaction rate, quenching phenomenon,
and front propagation, focusing on differences with respect to the continuous case. We introduce a renormal-
ized reaction rate depending both on the interaction radius and the particle density, and we relate it to macro-
scopic observables (e.g., front speed and front thickness) of the system.
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I. INTRODUCTION

Most of the chemical and biological processes that appear
in nature involve the dynamics of particles (e.g., molecules
or organisms) that diffuse and interact with each other and/or
with external forces [1-3]. If the total number of particles per
unit volume, N, is very large, a macroscopic description of
the system in terms of continuous fields, e.g., density or con-
centration, is usually appropriate. A prototypical model for
these reaction-diffusion systems is the Fisher-Kolmogorov-
Petrovskii-Piskunov (FKPP) equation [4,5] describing the
spatiotemporal evolution of a concentration

8,0(x,1) =D 0+ pb(1 - 6), 1)

where D is the diffusion coefficient, p is the reaction rate that
determines the characteristic reaction time, 7=1/p, and
0(x,1) is the concentration field (for simplicity we have as-
sumed one spatial dimension). It is well-known [1,6,7] that
Eq. (1) admits uniformly translating solutions—fronts—with
a speed vo=2VDp and a front thickness Ay=8\D/p. For-
mally, one can have fronts with any speed; however, in [4] it
has been proven that only speeds v=v,, are possible. In ad-
dition (see [6,8]) there exists a selection mechanism such
that v=v, is the unique possibility, at least with nonpatho-
logical initial conditions. The above results do not depend on
the precise details of the reaction rule. Replacing in Eq. (1)
6(1—6) with a convex function g(6), with g(6)>0 for 0
<6<1, g(0)=g(1)=0, and g'(0)=1, g'(1) <0, one has the
same behavior for v, and A [8].

On the other hand, if the number of particles per unit
volume is not very large, the continuous description might be
inappropriate. In such a case, one can consider a discrete
particle model with N particles whose positions x,(7) evolve
according to the Brownian motion

an([) [~ 1~

=\2Dpy,, a=1,...,N, 2
5 = \2Dm (2)

where 7, are white noise terms. Moreover, each particle is
characterized by a color C,(t) which determines the particle

type. The model is completed by the reaction rule between

1539-3755/2007/76(3)/031139(9)

031139-1

PACS number(s): 05.40.—a, 82.39.—k, 82.40.—g

particles. In order to obtain an autocatalytic reaction

P
A+B—2B, 3)

one can consider just two types of particles C=0 (unstable)
and C=1 (stable) that correspond to the species A and B,
respectively, with the following dynamics: particles of type 1
always remain 1, and particle O changes to 1 with a given
probability that depends both on p, the reaction rate, and on
how many 1 particles are around it. It is not difficult to
realize that in a suitable continuum limit, Eq. (1) gives the
evolution of the color concentration of this microscopic sys-
tem (see Sec. IT). The aim of this work is precisely to study
the case in which the density of individuals is small, and
therefore the discrete nature of the system can play a role
[9,10].

Several approaches have been adopted to investigate the
relevance of the correction to the continuum limit. On one
side, it has been assumed that the dynamics of the system is
given by deterministic macroscopic equations, like Eq. (1),
with an additional noise term of order 1/yN accounting for
microscopic fluctuations originated by the finite number of
particles [11]. On the other side, following the work of Bru-
net and Derrida [12], this problem has been successfully
studied by using a cutoff at the density value 1/N for the
continuous field equations. This has been employed to deter-
mine corrections to some front properties in FKPP-like equa-
tions (see [13] for a review). In particular, it has been shown
that the deviation from the continuous value of the front
speed is of the order 1/(In N)?, which is rather significant
[12].

More recently, Kaneko and co-workers [14] analyzed the
dynamics of some chemical reactions, studying the influence
of the molecular discreteness. They identify typical length
scales in the system which may allow one to discriminate
between the continuous behavior and the discreteness-
influenced one. They report transitions to a novel state with
symmetry breaking that is induced by discreteness, but they
do not investigate features of front propagation. A crucial
quantity is the so-called Kuramoto length, [x=+2Dr, which
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measures the typical distance over which an unstable particle
diffuses during its lifetime (note that 7=1/p can be inter-
preted as the average lifetime, i.e., the time particles live
before they react). When the typical interparticle distance is
much smaller than /g, concentration can be regarded as con-
tinuous. On the other hand, when there are not many par-
ticles within a region of size I, discreteness effects should
be taken into account [14].

In our work we study the interplay between length scales
in the problem, our principal aim being to explain the effects
of the discrete nature of the system on properties such as
reaction rate, quenching, and front speed. Differently from
most of the works in discrete reaction-diffusion systems, we
do not consider a lattice model. Particles diffusively move in
space and interact when their distance is smaller than an
interaction radius R, which corresponds to a natural length
scale appearing in many chemical and biological systems
[10,15]. We study several properties of the system as a func-
tion of R, realizing, via comparison of different length scales,
when the effects of discreteness have a dominant role. As
expected, the continuum limit is described by the FKPP
equation. Nevertheless we remark that in order to have the
proper continuum limit it is not sufficient to have a very
large density of particles. The discrete model results are
found to differ from those valid in a continuous description
both at a quantitative level, small changes in the behavior of
some observables, and at a qualitative one, that is, the system
evolution drastically changes. We discuss the problem in the
framework of chemical reactions but everything can be trans-
lated to the context of population dynamics.

The paper is organized as follows. In the next section we
introduce the particle model for the autocatalytic reaction. In
Sec. III we study the renormalized reaction rate of the system
when particles of both types are in a closed vessel, initially
uniformly distributed at random in space. In Sec. IV we
study quenching phenomena when B particles can turn into A
particles; this causes the emergence of new properties that
will be studied in detail. Then, in Sec. V we investigate the
front properties of the model by choosing a proper initial
condition and considering an infinite system in the propaga-
tion direction. Section VI summarizes our conclusions.

II. MODEL

Consider N particles in a two-dimensional box of size
L, X L,. Each particle is identified by its position, x,(#), and
its color, C,(t), indicating the particle type. To specify the
dynamics it is necessary to give the evolution rule for the
position and the interaction rule between particles (chemis-
try). Space will be considered continuous while time will be
discrete (with time step Ar). Particle dynamics is synchro-
nous, i.e., all particle properties are updated at the same time.

The position evolution is given by

x,(t+Af) =x,(t) + V2DAr (1), a=1,...,N, (4)

where D is the diffusion coefficient, w,(1)=[u, (1), 1u,(1)]
are stochastic Gaussian variables with the properties (u,())
=0 and (u, (nAfug j(mA1))=6;;8,50,,, ie., particles per-
form a discrete-time Brownian motion.
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Let us start with the homogeneous case (premixed initial
conditions). As already mentioned, to model an autocatalytic
reaction (3), we consider two kinds of particles: type A par-
ticles, C,=0 (unstable), and type B particles, C,=1 (stable).
Their chemical evolution is given by the following stochastic
process:

(1) if C,(r)=0 then C,(t+Ar)=1 with probability P,p
=W,pAt; and

(2) if C(r)=1 then C (r+Ar)=1.

The probability (per unit time) W,z depends on the num-
ber of stable particles within the interaction radius. In fact,
when particles, of any type, are homogeneously distributed
in space, the autocatalytic reaction (3) is expected to obey
the mass action law %:—p 105, where © 4 and O are the
(spatially uniform) concentrations of particles A and B, re-
spectively, with ®,+®z=1. The probability that a particle A
(labeled with the index k) changes into a B particle is as-
sumed to be

_ NyR.0) _ Ny(R.)
BN eR))

W , (5)

mR*p
where N’;(R) indicates the number of B particles within the
interaction radius R around the kth particle A, (N,,.(R)) is the
spatial average number of particles (of any type) in a radius
R, and p=N/(L,L,) is the density of particles.

In a suitable limit the previous probabilistic rule con-
verges to a reaction equation, i.e., a homogeneous FKPP
equation, as discussed in the following. Let N4(r) and Ng(z)
be the total number of A and B particles, respectively; of
course N=N,(1)+Ng(r) is constant. The dynamics of the
number of B particles is given by the discrete stochastic pro-
cess

Ny(1)

Np(t+ A1) =Ng(t) + 2 vy, (6)
k=1

where k is the index identifying A particles and y, is a dis-
crete random variable which is 1 with probability ArW",
(when the kth particle A changes into a B particle), and is 0
with probability l—Ath; » (when the kth particle A does not
change). For the expected value of Ny(¢) one has, in a mean
field approximation, which is expected to hold in the homo-
geneous case and when the number of particles, N, is very
large,

Ny
E[Ng(t + AD] = E[N4(1)] + I’; 2p5(2 N’;(R,t)) At (7)

& k=1
The quantity E[N%(R,7)] does not depend on k. Therefore

E[NB(R’t)]At

mR*p

E[Ng(R,t
Np(R.]
mR"p

E[Np(t+ At)] = E[Ng(t) ] + pE[N(1)]

=E[Ng(t)] + p{N - E[Ng(1) ]}

(8)

After a little algebra we obtain
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Op(r+ A1) — O(1)

_®B(t) - Alzino At
_p[1 - @M R0 B(’; 0] ©)

where @z=FE[Ng(¢)]/N indicates the expected average con-
centration of B particles. In the case of an infinite number of
spatially premixed particles the last term on the right-hand
side of the above relation becomes ®g(r) and we finally ob-
tain the reaction equation

d
5,980 =pl1 = 05(0]0,(1). (10)
For very small density, and/or in the nonhomogeneous case,
Eq. (8) fails and the system cannot be described by simple
reaction equations such as Egs. (9) and (10) (see also next
section and, in particular, Fig. 5).

Concerning the relevant length scales of the system one
can identify the following ones: (i) the mean nearest-

neighbor distance between particles (in the homogeneous
L
case) dmzﬁz ~n » (ii) the interaction radius, R; (iii) the

Kuramoto length scale, lg; and (iv) the size of the system L.
It is expected that the continuum limit is obtained when d,,
<R<[g<<L. While the scale separation between d,, and L
can be easily achieved, in many situations it might happen
that the condition R<<[g is not verified, or that R is of the
same order of d,,. In this case the evolution of the system
could be very different from that of the continuum FKPP
limit. It is the objective of this work to investigate some
properties of the model in this regime.

Before starting with the discussion of the numerical re-
sults, some comments follow about the role of diffusion.
Since we introduce the natural length scale of the interaction,
R, a diffusive time related to this distance arises, 75(R)
=R?/D. When this time is much smaller than the reaction
time 7=1/p the system is locally homogenized before reac-
tion happens. In order to focus on the reaction properties
rather than on the diffusive effects we work in the limit 7p
>1/p.

III. PREMIXED PARTICLES IN CLOSED BASINS

First we study the model in a closed vessel, where, as the
initial condition, particles of both types are premixed and
uniformly randomly distributed in space. In such a case, the
system evolution necessarily ends with the complete filling
of the box with type B particles. Therefore the most signifi-
cant physical quantity is the filling rate of B particles, which
is related to the reaction rate. We proceed by fixing the value
of R and varying N in order to explore different situations:
(a) continuum limit, d,,<<R and (b) the effect of discreteness,
d,, = R. In this case, at variance with front propagation prop-
erties discussed in Sec. V, we will see that the Kuramoto
length does not play a fundamental role. The basic reason for
this is the spatially random distribution of particles.

We adopt periodic boundary conditions on a square do-
main of side L,=L,=1; the reaction rate is set to p=1; and
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FIG. 1. The growth rate g(®pz) vs Op [see Eq. (11)] for N

=1000 (), and N=100000 (O) with p=1, D=0.001, and R

=0.05; the initial concentration corresponds to 97% of type A par-

ticles and 3% of B particles, uniformly distributed. The solid and

the dashed lines correspond to the quantity px(N)®5(1-0p), where

pr(N) is fitted from numerical results of the discrete particle model:
the solid line is for pgr(N)=1 and the dashed line for pr(N)=0.8

averages are numerically computed over a large number of
noise realizations.

Since particles are well-premixed, the process is spatially
homogeneous, and we may assume that the growth rate of
O5(1) is [see Eq. (9)]

E[Np(R.1)]
8(0y) =p[1-0,(n]=—7—. (11)
7R’p
In the case of large particle density one expects that
2(0,)=pOy(1-0y), therefore it is natural to assume that for

finite N one can replace Eq. (11) with
8(0p) =pr(N)O(1 - BOp), (12)

where pr(N) is a renormalized reaction rate of the discrete
particle model. In this way the evolution of @y is given by a
reaction equation with a renormalized (R-and N-dependent)
reaction probability, where 7x(N)=1/pg(N) is the renormal-
ized reaction time for the system. Note that pg(N) contains
all of the dependence of our system on the interaction radius
and the number of particles. This is, therefore, the proper
quantity to consider in order to investigate the relevance of
discreteness in the model.

In Figure 1 it is shown, for a given R, the function g(®p),
given by Eq. (12) for two different values of N. With the
appropriate pg(N) value, the fit is rather good and, for large
N, pr(N)—p.

The equation %sz(N)Q@B(l —®p) can be easily solved:
0 5(0)ePrN!
1+ 04(0)(ePr M — 1)

Thus looking at the evolution of ®z=E[Ng(7)]/N and us-
ing Eq. (13) we have a value of pg(N) which is, in principle,
different from the one in Eq. (12). In Fig. 2, we show O

Op(1) = (13)
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FIG. 2. Op(t) versus t in the same experimental asset (and using
the same symbol) of Fig. 1. The solid and the dashed lines corre-
spond to the fit of Eq. (13) to the experimental measures. In par-
ticular the solid line is for pgr(N)=1.0 and the dashed line for
Pr(N)=0.82.

versus time, as obtained from the numerical simulation of the
particle model, and the best fit using Eq. (13) from which a
value of pgr(N) comes out. Let us observe that there are other
different procedures to define a renormalized reaction prob-
ability for a particle system. They all have an empirical char-
acter but it suffices that they indicate quantitative differences
in the reaction activities. In the present case, the rates ob-
tained using Eq. (12) or Eq. (13) are very similar, and from
now on we use only the last one. As previously shown in Fig.
1, for large N the value of pg(N) goes to the continuum limit
p. In Fig. 3, the renormalized reaction probability versus N
(at fixed R) is plotted. It can be seen that the continuum limit,
pr(N)=p, is obtained with good accuracy for large N values,
as expected.

More important for our purpose is the behavior of pg(N)
versus R. With a fixed total number of particles, N, and a
well premixed initial condition, we compute pg(N) varying

1.0

0.7 t © g

0.4 b

Pr(N)

02 © R

01 L L L L
100 1000 10000 100000

N

FIG. 3. pgr(N) versus N. The parameters are the same as in Fig.
1. In particular, R=0.05, and the continuum limit is obtained for
N=1000 for which d,,~0.015.
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FIG. 4. The renormalized reaction probability pr(N) versus R,
using the fit of Eq. (13). N=1000, [,=0.045, and d,,=0.0158.

the interaction radius R (see Fig. 4). We observe that in the
continuum limit (d,,<R) we recover pg(N)=p. For small R,
such that d,,>R, pr(N) seems to reach a constant value,
which is around 30% smaller than the one of the reaction
equation.

Few words have to be spent about the difference between
the large N limit (Fig. 3) and the large R limit (Fig. 4). For
the problem under discussion one has the same behavior of
the continuum limit if d,, <R irrespective of the value of the
Kuramoto length. For example, in Fig. 4 one has [x=0.045
which is much smaller than the values of R for which the
continuum limit holds. On the other hand, in the study of
front properties we will see that the scenario is different and
lg can play a relevant role.

Now we want to discuss the dependence of the previous
results on the chosen initial condition. We have already seen
that the growth rate depends on the initial condition [see Eq.
(9)]. In Fig. 5 we compare g(®) in the premixed case and
when particles are initially separated in space. In this last

0.2 r |
000000,
e g
o o)
(o) (o)
o)
%
%
0.15 o, B
%
o
"o <
@ o]
(3]0 0
> 01 Eicecacii T, %
i
0.05
0 1

02 03 04 05 06 07 08 09 1
Op

0 0.1

FIG. 5. g(®p) vs Op [see Egs. (9) and (11)] for different initial
conditions: (O) premixed and ((J) B particles on the left of the
system and A particles on the right. The parameters are D=0.001,
R=0.05, p=1, and N=1000.
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case it is rather evident that the approximations of Egs. (11)
and (12) cannot work very well.

Also in nonhomogeneous cases one may deduce an effec-
tive equation starting from Eq. (7) and using specific ap-
proximations (now considering, of course, the system geom-
etry and the diffusion coefficient), however, this is beyond
the aim of the present paper.

IV. POSSIBILITIES OF QUENCHING

Studies on the quenching phenomenon [16] show that in a
continuous reaction-diffusion system advected by a velocity
field front propagation may be suppressed, that is the reac-
tion quenches, provided the initial size of the “hot” region is
small enough. These results hold when the reaction kinetics
is given by an ignition-type term such that g(®)=0 for ®
smaller than a threshold value ®.. On the contrary, in a con-
tinuous FKPP system (1) quenching phenomena do not ap-
pear [17]. Here we show that in a particle description of an
autocatalytic reactive system quenching can occur even if the
continuous system does not quench.

Still considering premixed particles in a closed vessel, let
us introduce the possibility that a stable particle (B) can turn
into an unstable one (A). That is, beyond the autocatalytic
reaction [3], we introduce a new reaction

q
B—A, (14)

where ¢ is its rate. Therefore we have the following reaction
rules:

(1) if C,(r)=0 then C,(t+Af)=1 with probability P,g
=W, pAt, and

(2) if C,(t)=1 then C,(r+Ar)=0 with probability Qg4
=WpAt.

W,p 1s the same as the previous section, while Wy, =¢q
does not depend on the interaction radius R, since it is a
single particle property.

The renormalized description of this model is given by

d®g(1)
d—i=pR(N)®B(l - 0p) —q0Op, (15)
whose solution is
(0)eM
Op(1) =0 o (16)

O 45+ O50) (M= 1)’

with A=pg(N)—g and ® ,4=1-¢q/pg(N). Two different sce-
narios now appear. If pR(N) <g, for a given N, the reaction
finishes. On the other side, when p(N) >¢g we have a similar
behavior as in the case with ¢g=0. In Fig. 6 we show Op vs ¢
for different values of R. It is apparent that for large R the
system behaves similarly to the case ¢=0 (including the con-
tinuum limit for the long time value of the concentration 1
—q/p). However, for R small enough the concentration as-
ymptotically vanishes, that is we have a quenching phenom-
enon. In Fig. 7 we plot A vs R, obtained by fitting the ana-
lytical solution to the numerical results, as in the case of Fig.
4. For large R we approach the continuum limit and A —p
—q, while for small R we have quenching corresponding to
negative values of A.
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0.2

og(t)

0.1

0.05

FIG. 6. Time evolution of @5(z) for R=0.5, 0.1, 0.05, 0.03, 0.02,
and 0.005 (from top to bottom), N=1000, and D=0.001; the straight
line is the continuum limit asymptotic value 1—-¢g/p, with p=1,q
=0.8. For R<<0.02 the reaction quenches.

This is a relevant result, entirely due to the role of the
interaction radius, R, which reflects the discrete character of
the model in the quenching mechanism. Let us note that, at
variance with the results in the previous section (which are
just quantitative changes with respect to the continuous
equation), now the discrete nature of the system is able to
produce a feature (the quenching) which is absent in the
continuum limit [17].

V. FRONT PROPERTIES

In the previous sections we have studied the dynamics of
interacting particle systems in a closed container. We now
focus on a different configuration, corresponding to well-
separated chemicals in an open domain, and investigate evo-

0.25

0.2

0.15 | =] b

0.1 f ° 1

0.05 | b

0.01 0.1
R

FIG. 7. Inverse characteristic time of the reacting process A
=pr(N)—q as a function of the interaction radius R (with p=1, ¢
=0.8); N=1000 and D=0.001. For large values of R, A tends to the
continuum limit value p—g; for R<<0.02A becomes negative, high-
lighting the emergence of the quenching phenomenon.
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3.5

3

2.5

X¢(t)

FIG. 8. x; vs t. The system parameters are L,=5, L,=1, D
=0.001, p=1, N=5000, and the initial number of B particles is 200.
The slopes of the straight lines represent the front speed.

lution properties, such as front speed and thickness [18,19],
in terms of the interaction radius.

In this section we take L= 1, L,=5, with periodic bound-
ary conditions in the y direction, and rigid walls in the x
direction. The burnt (type B) particles are initially concen-
trated in the leftmost part of the domain, so that a front
propagating from left to right develops. The reaction term we
use is just the autocatalytic one (3), i.e., g=0. We separately
study the front speed and the front thickness.

A. Front speed
We can define the instant front position as

Np(t)
N

xf(t) = Lx > (17)

and compute the front speed by means of the simple relation
x(1) = v, (18)

once the asymptotic behavior is reached. In Fig. 8 we show
x¢ versus time for different values of R. The speed vy is
obtained as the slope of the best fit to the curves in the region
of linear growth of the front position.

We expect that, via the renormalized description of the
FKPP equation, that is Eq. (1) with p replaced by pg(N), the
front speed of the particle model at varying R should be

vp= 2\Dpx(N). (19)

As shown in Fig. 5, different initial conditions for particles’
distributions select different pg(N)’s. Therefore, for an illus-
trative purpose, just to give a qualitative functional descrip-
tion of the simulation results, we use the pg(N) found in the
case of mixed particles. The numerical results, reported in
Fig. 9, show that at least for small R the front speed has a
qualitative behavior similar to the FKPP case [Eq. (19)].
However, the significant discrepancy observed for large
values of R cannot be explained by a simple difference in the
initial particle distribution. This difference arises because the
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FIG. 9. (OJ) Front speed vy versus R and (O) the prediction of
formula (19), with pgr(N) computed in closed domains with pre-
mixed particles. The parameters are the same as Fig. 8. The hori-
zontal line is the value in the FKPP continuum limit (=0.063),
while the dashed line is the behavior vy=R. The Kuramoto length
is 1,=0.045.

interaction radius becomes larger than the Kuramoto length

=22, (20)
)4

and therefore the continuum FKPP limit does not hold. In-
deed, in particle systems, when R=Iy the interaction term
establishes a connection between regions containing A par-
ticles and regions containing B particles that in the classical
FKPP equation could not be connected. Therefore when R
= [y, it is not possible to obtain the continuum FKPP limit
(1) even with an arbitrarily large number of particles. In Fig.
10 it is shown the front speed at varying R for various N.
One can observe that at increasing N for small R the front
speed approaches the FKPP value, while for large R the front
speed does not depend on N and the value is definitely dif-
ferent from the FKPP value.

A simple argument explains the behavior of v, for large R.
The front speed is proportional to the front width times the
reaction rate, e.g., in the FKPP equation v0=2v’Fp
% p\D/p=plg. When the interaction radius is greater than
the Kuramoto length it is reasonable to expect that the front
width becomes proportional to R and so the front speed

v pr(N)R=aR when R > I, (21)

in agreement with the results shown in Figs. 9—11 for various
p. In particular, in the inset of Fig. 11 one can see the behav-
ior of « as a function of p:

alp) =ap, (22)

where a is a constant. This is not surprising because p is the
continuum limit for the reaction rate which is reached as-
ymptotically by the particle system, i.e., pg(N)— p for large
R.
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FIG. 10. The measured front speed vy versus R for (V) N
=5000, (O) N=10000, (CJ) N=20000, and (A) N=40000. The
horizontal line is the value in the FKPP continuum limit, while the
dashed line is the behavior v;=R. In order to show a clear linear
behavior for the asymptotic front speed here we use p=2, the Kura-
moto length is /x=0.032. The diffusion coefficient is D=0.001.

B. Front thickness

As a further confirmation of the previous results, we in-
vestigate the behavior of the front thickness at varying R.
Note that in the continuum limit there are many ways to
compute the front thickness of a propagating front [20]. In
the particle case, however, it is not obvious how to define a
front profile. We proceed by defining an averaged field that
resembles the front shape. Essentially this is a histogram
over particle positions. Fixing our attention on A particles,
we define

Ny(x,Ax;1)

@A(x,Ax;t) = NAr

(23)

where N4(x,Ax;t) counts the number of A particles whose x
coordinate lays between x and x+Ax. When the number of
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FIG. 11. Large R behavior of v in the cases p=0.5 (O), p
=1.0 (O), and p=2.0 (A). In the inset the slope of the linear fit, a
[see Eq. (22)], is shown as a function of p.
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FIG. 12. The shape of the front 6} 4(x) (+) and the exponential
fit of Eq. (24) (dashed line).

particles is large the value of Ax could be taken arbitrarily
small whereas, in general, Ax has to be small, but at the same
time large enough in order to avoid large fluctuations in
N4(x,Ax;t). We use a relatively small Ax (few d,,) and we
average N,(x,Ax;t) over many different realizations. The
front shape of an FKPP system behaves as

0 4 (x,Ax;1) ~ exp{[x — xg() VI4}, (24)

where 4 is the front thickness, and x(r) the front position at
time ¢. In Fig. 12 it is shown the exponential behavior of the
front profile and the fit obtained from Eq. (24). In particular
Eq. (24) works well in the central region of the front, i.e.,
where corrections due to the particle nature of the system are
less important. Other measurements of the front profile pro-
vide similar results.

In Fig. 13 we plot the front thickness, /,, computed for

0.5
04 I d

03 r ]

0.2 b

0.1 b

0.07 i

0-05 L L L L L L L
0.005 0.01 0.02 0.05 0.1 0.2 0.5

R

FIG. 13. Front thickness I, versus R measured in the particle
model (O). The dashed line corresponds to a constant value of the
front speed (see Fig. 10), while the full line is the behavior I, =R.
The value of the Kuramoto length is /x=0.045.
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different values of R. Again, for R smaller than the Kuramoto
length the front thickness is constant, while for values of R
greater than [ the front thickness behaves as /, < R. This
result confirms the assumption of Eq. (21). The constant
value reported in Fig. 13 (the dashed line) is only an indica-
tive value to show that for R <[y the front thickness is con-
stant, and it is not the FKPP value of the front width.

VI. SUMMARY AND CONCLUSIONS

In this work we studied the effects of the discrete-particle
character in an autocatalytic reacting system. This was de-
scribed in terms of chemical rules where two types of
Brownian particles interact when they are at a distance
smaller than a given radius R. We have shown that in a
suitable continuum limit, and under well-defined conditions,
the system is equivalent to a continuous reaction-diffusion
model. The continuum limit holds, in general, when the av-
erage distance between particles is smaller than the interac-
tion radius and the latter is smaller than the Kuramoto length.
Moreover, we have focused on the differences that arise
when the conditions for this limit are not fulfilled.

First we have studied the dynamics of the system for well-
premixed initial conditions. In this case we have shown that
only two length scales are relevant and the continuum limit
arises when the mean distance among particles is much
smaller than the interaction radius. Much of our analysis
rests upon defining a renormalized reaction rate, pg(N), that
depends on R and N and captures all the relevance of the
discrete character of the model. We have analyzed the behav-
ior of pg(N) with N and R. In particular, for large R the
continuous description is valid (pg— p). On the contrary, for
small R, py attains values smaller than p.

Then, still considering premixed initial conditions, we

P
have studied the modified chemical dynamics A+Bp—2B,

q
and Bg—A. Even when p is larger than ¢, at variance with

PHYSICAL REVIEW E 76, 031139 (2007)

the continuous model, in the particle model one can have the
possibility of quenching, which is obtained for small values
of R. This is due to the particle nature of the model, since
one can have that pgr(N)<gq. This result for the particle
model is a clear qualitative difference with respect to the
continuous description.

Finally, in the context of front propagation, that is when
particles are no longer initially well-premixed, a relevant re-
sult is that all three length scales are important for the system
dynamics. We have shown that under particular conditions,
increasing the particle density the system reaches a con-
tinuum limit which is definitely different from the continuum
FKPP limit. For small R and a large number of particles the
system has a qualitatively similar behavior of the FKPP
model, i.e., the front velocity is proportional to v,
=2Dpg(N). Nevertheless, for large R, v;%pgr(N)R. The
transition between these two regimes is given by the com-
parison between R and Iy (the Kuramoto length). When R
> [x the FKPP behavior cannot be reached even for a very
large number of particles. Similar results are obtained for the
front thickness.

We conclude noting that many biological systems are
characterized by the two main ingredients of our work: a
finite distance for the interaction, and the exiguity of the
number of organisms [2,21]. We hope that our work helps to
clarify some shortcomings arising when a macroscopic de-
scription is attempted.
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