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We test methods for measuring and characterizing rough profiles with emphasis on measurements of the
self-affine roughness exponent, and describe a simple test to separate between roughness exponents originating
from long range correlations in the signs of the profile, and roughness exponents originating from Lévy
distributions of jumps. Based on tests on profiles with known roughness exponents we find that the power
spectrum density analysis and the averaged wavelet coefficients method give the best estimates for roughness
exponents in the range 0.1–0.9. The error bars are found to be less than 0.03 for profile lengths larger than 256,
and there is no systematic bias in the estimates. We present quantitative estimates of the error bars and the
systematic error and their dependence on the value of the roughness exponent and the profile length. We also
quantify how power-law noise can modify the measured roughness exponent for measurement methods differ-
ent from the power spectrum density analysis and the second order correlation function method.
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I. INTRODUCTION

In 1990 Bouchaud et al. �1� proposed that the roughness
exponent for profiles from three-dimensional fracture sur-
faces was universal—independent of material properties and
fracture mode. This has since been the working hypothesis in
the community studying fracture roughness. To claim univer-
sality one needs good measurements and to be aware of the
inherent biases and limitations of the different methods used
for measuring the roughness exponent. The use of several
independent methods are a prerequisite for a good estimate
of the roughness exponents. This is even more true now as
the study of self-affine surfaces goes beyond simple mea-
surements of the roughness exponent and the higher order
statistics and the shape of the height-difference distribution
function p��h , l� are also studied �2,3�. Now a thorough
measurement of the self-affinity of a surface should also in-
clude checks for corrections to scaling and a survey of the
higher order statistics, i.e., multiscaling, and if needed a
check for anomalous scaling.

Research on surfaces morphology with a focus on the
scaling properties of the surfaces has been pursued since the
work of Mandelbrot et al. in 1984 �4�. These studies have not
been restricted to fracture surfaces. Examples of surfaces that
have been studied during the last twenty years are fluid
fronts in disordered media, fire fronts in paper, atomic depo-
sition surfaces, fracture surfaces, DNA base-pair sequences,
and the time signal of the heart rhythm. These surfaces have
been shown to have statistically self-affine scaling proper-
ties. The self-affine scaling is an anisotropic scaling of the
system. This is seen in the scaling of the height-difference
distribution function

p����h,l� � �−�p��h,l� . �1�

An example of self-affine scaling in two dimensions is
shown in Fig. 1. Systems with a common roughness expo-

nent are said to belong to the same universality class, and are
therefore controlled by the same fundamental physical law.
An early summary of different universality classes and the
different surfaces studied can be found in Barabási and Stan-
ley �5�.

The surfaces described above are constructed in different
ways. Restricting the discussion to two-dimensional surfaces
or profiles we can divide the profiles into three groups. The
first group of profiles grow from an initial planar profile or
line into a rough profile. Examples from this group of pro-
files are wetting fronts, deposition fronts, and three-
dimensional fracture surfaces constrained to grow in a plane,
for example, between two sintered blocks of Plexiglas �6�.
The second group of profiles grow at the end points. Ex-
amples from this group of profiles are DNA base-pair se-
quences, any times series, and fractures growing in two-
dimensional systems. The third group is made by
coalescence of microcracks. Examples from this group of
cracks is crack growth by plastic microvoid coalescence. The
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FIG. 1. �Color online� If a surface of a given linear size L1 is
with L2=�L1 in the horizontal direction, the surface must be scaled
with h��x�=�−�h�x� in the vertical direction to be statistically simi-
lar. � is the roughness, or Hurst exponent, measuring the degree of
anisotropy. �=1 gives self-similar scaling. In this figure the part of
the black �upper� profile, which is inside the square, is rescaled with
the scaling relation above as the red �lower� profile.
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initially flat profiles are often characterized by the Family-
Vicsek scaling relation of the profile width w�L , t�
�L�f�t /Lz� �7�, where � is the roughness exponent measured
when the system is saturated and z=� /� is the dynamic
exponent. � is the growth exponent characterizing the
growth of the profile width before saturation w�L , t�� t�. The
values of the three exponents then give the universality class.
Profiles that do not obey Family-Vicsek scaling are said to
have anomalous scaling.

The concept of anomalous scaling cannot be applied to
the second group of profiles as they are only 1+1 dimen-
sional, while the profiles in the first group are 2+1 dimen-

sional. The fracture profile in two dimensions is strictly
speaking not 1+1 dimensional since there are two space di-
mensions and no time dimension. Each single part of the
fracture is frozen once it is placed in the system. It is there-
fore no time evolution of the fracture in 2+1 dimensions.

The aim of this paper is to give a survey of the different
methods used for measuring the roughness exponent and
give an estimate of the expected errors and biases. This paper
will use some of the methods used by Schmittbuhl et al. in
�8�, excluding the fractal measurements and the return meth-
ods since these methods have already been tested there. We
repeat the test done with the local window methods and the
power spectrum density analysis. Other methods such as the
detrended fluctuation analysis �9�, the averaged wavelet co-
efficient method �10�, and the height-difference distribution
are also included. To accurately assess the results from the
different methods, the methods must be applied to profiles
with a known roughness exponent. Both the Voss method
�11� and the wavelet method �12� for generating profiles have
been used and analyzed. We will also study the systematic
error introduced by adding a power-law noise to the signal,
and discuss that both long range correlations in the sign
change and a power-law noise can give surfaces with rough-
ness exponents. This is motivated by recent results for the
central force and fuse model of fracture �13,14�. Our interest
in the phenomena of self-affine surfaces comes from the
studies of fracture surfaces both experimental and numerical,
and the difficulties we have encountered while measuring the
roughness exponent.

FIG. 2. �Color online� Sample profiles from the Voss algorithm
�a� and the wavelet algorithm �b�. The profiles are from top to
bottom for roughnesses 0.2, 0.5, and 0.8. To make the scale of the
fluctuations the same for samples with different � the samples are
rescaled with W��L� /W0.5�L�.

FIG. 3. �Color online� Measurements of the roughness exponent
using intrinsic window methods. From the top: The local max-min
method �Eq. �4��, the variable bandwidth method �Eq. �2��, and the
detrended fluctuation analysis �Eq. �3��. The straight lines show �
=0.6.

FIG. 4. �Color online� Measurements of the roughness exponent
using the power spectrum density analysis �Eq. �6��. The straight
line shows �=0.6.

FIG. 5. �Color online� Measurements of the roughness exponent
using the averaged wavelet coefficients method �Eq. �7��. The
straight line shows �=0.6.
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The structure of this paper is as follows: In Sec. II the
different measurement methods are presented. In Sec. III we
present the results from the measurements done on the gen-
erated profiles. Samples of the power-law scaling for each
method is presented and compared with the other methods.
The results for both the generation methods described in the
last paragraph are shown. We find that the power spectrum
density analysis and the averaged wavelet coefficient method
give the most accurate for roughness exponents in the range
0.1–0.9. In Sec. IV we study the size dependence on the
systematic errors for the different methods. We observe as
expected that the errors decrease for larger system sizes, but
several of the measuring methods have relatively large sys-
tematic error and the size of this error depends on the mea-
sured roughness exponent. In Sec. V we show that power-
law noise might be disguised as self-affinity when profiles
are analyzed with some methods. We then describe how one
can separate the contribution from the power-law noise and
the sign change correlation to the roughness exponent. And
finally, in Sec. VI we give a summary and come with some
recommendations to researchers studying surface roughness.

II. MEASUREMENTS OF THE ROUGHNESS
EXPONENT

Until recently one used different methods for measuring
the roughness exponent on experimental and numerically
made fracture surfaces. On surfaces from experiments one
applied local �or intrinsic� methods, which use scaling with a
�intrinsic� length scale l much smaller than the system size L
or spectral methods like the power spectrum density. On the

other hand, for surfaces from numerical simulations one ap-
plied global �or extrinsic� methods which use scaling with
the system size. This was done by necessity as in experi-
ments it is not easy to make samples of the same material
with sizes ranging over several orders of magnitude, or ex-
perimental setups that can do measurements over the same
orders of magnitude. While for numerical simulations the
restriction in computing power made it difficult to create
large enough samples to use the local methods. But during
the last few years and due to the growth in computing power
numerical simulations of fracture have produced large
enough samples in such numbers that both the real space and
spectral local methods are used in numerical studies of frac-
ture surfaces.

Below we will describe some local and global methods
which are used today for measuring the roughness exponent.
All the methods we consider in this paper work on profiles;
that is, profiles in two-dimensional planes cut from a surface
embedded in three dimensions or a one-dimensional trace or
path embedded in two dimensions.

The local window methods all measure the scaling of a
characteristic width as a function of the window size. The
width is a measure of how large the fluctuations of the pro-
files in a window of length l are. We will look at three dif-
ferent methods, which use different definitions of the char-
acteristic width: �1� The variable bandwidth method �VB�

FIG. 6. �Color online� Measurements of the roughness exponent
using second order correlation function �Eq. �5��. The straight line
shows �=0.6.

FIG. 7. �Color online� Measurements of the roughness exponent
using the scaling of ��l� for the distribution p��H , l� The straight
line shows �=0.6.

FIG. 8. �Color online� �measured−�true for profiles generated by
the Voss algorithm. �a� The detrended fluctuation analysis ���, the
variable bandwidth �+�, the max-min ���, and the standard devia-
tion of �h�l� ���. �b� Second order correlation function ���, power
spectrum density analysis ���, and averaged wavelet coefficients
���. Error bars are only shown where they are larger than the sym-
bol size.
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wVB�l� = ���h�x� − h̄�2�L�1/2 � l�, �2�

where h̄= �h�x��. �2� The detrended fluctuation analysis
�DFA�, where the local linear trend in each window is sub-
tracted.

wDFA�l� = ���h��x� − h�̄�2�L�1/2 � l�. �3�

�3� The maximum-minimum method �MM�

wMM�l� = �max„h�x�,x � �xo,xo + l�…

− min„h�x�,x � �xo,xo + l�…�L � l�. �4�

�¯�L means averaging over the system size L. Averaging
over different samples is implied. The roughness exponent �
is then found as the power-law scaling with l of the charac-
teristic width.

An alternative measuring method is to look at the second
order correlation function

C2�r� = �„h�x − r� − h�x�…2�L
1/2 � r�. �5�

The roughness exponent can also be found from the two
spectral methods as the scaling of the power spectrum P�k�
�15�, which is the Fourier transform of the correlation func-

FIG. 9. �Color online� �measured−�true for profiles generated by
the wavelet algorithm. �a� The detrended fluctuation analysis ���,
the variable bandwidth �+�, the max-min ���, and the standard
deviation of �h�l� ���. �b� Second order correlation function ���,
power spectrum density analysis ���, and averaged wavelet coeffi-
cients ���. Error bars are only shown where they are larger than the
symbol size.

FIG. 10. �Color online� Rk /Rk
G for profiles of length 512 made

by �a� the Voss algorithm and �b� the wavelet method for �=0.7.

FIG. 11. �Color online� p��h , l� for profiles of length 512 made
by �a� the Voss algorithm and �b� the wavelet method for �=0.7.
Three different length scales are presented here: l=64���, l=128
�+�, and l=256 ��� The solid lines are Gaussian fits of the l=128
data.
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tion Eq. �5�, with the wave number for the power spectrum
analysis

P�k� � k−2��+1�, �6�

and as the scaling of the averaged wavelets coefficients
W�h��a� as a function of the scale variable a.

W�h��a� � a+�+1/2. �7�

The global average width method is similar to the intrin-
sic one, but with the window size l substituted with the sys-
tem size L.

W�L� = �h�x� − h̄� � L�. �8�

Similarly we have the global maximum-minimum method

WMM�L� = �max„h�x�,x � �0,L�… − min„h�x�,x � �0,L�…�

� L�. �9�

The roughness exponent measured by the global methods
give the same results as the local methods only if the scaling
of W�L� is the same as the scaling of w�l�, l	L. One ex-
ample of when this is not the case is when the profile shows
anomalous scaling �16�. In this paper we will not consider
the global methods.

In two recent papers the question of whether the fracture
surfaces measured in experiments are self-affine or multi-
affine has been discussed �2,3�. In Santucci et al. �3� two
slightly different methods for measuring the fracture rough-
ness have been discussed. The basis for these methods is to
assume that the distribution function p��h , l�, �h�l�=h�x
+ l�−h�x� is “Gaussian-like.” The first method was intro-
duced in the studies of directed polymers in random media
�17�. The kth moment of h�x� is defined below.

Ck�l� = �	h�x + l� − h�x�	k�1/k. �10�

To check whether or not the surface has self-affine or multi-
affine scaling one calculates the ratio of the kth to the second
moment

Rk�l� =
�	h�x + l� − h�x�	k�1/k

�„h�x + l� − h�x�…2�1/2 , �11�

which for a true Gaussian distribution should reduce to

RK
G�l� = RK

G = 
2�
� k + 1

2



�
�

1/k

. �12�

By plotting Rk /Rk
G one should then get straight lines if the

surface is self-affine since �k=k� when the surface is self-

FIG. 12. �Color online� �measured−�true for h0�x� for profiles gen-
erated with the Voss algorithm L=512. �a� The detrended fluctua-
tion analysis ���, the variable bandwidth �+�, the max-min ���,
and the standard deviation of �h�l� ���. �b� Second order correla-
tion function ���, power spectrum density analysis ���, and aver-
aged wavelet coefficients ���. Error bars are only shown where
they are larger than the symbol size.

FIG. 13. �Color online� Systematic errors in roughness exponent
measurements versus system size for �true=0.1. �a� The detrended
fluctuation analysis ���, the variable bandwidth �+�, the max-min
���, and the standard deviation of �h�l� ���. �b� Second order
correlation function ���, power spectrum density analysis ���, and
averaged wavelet coefficients ���. Error bars are only shown where
they are larger than the symbol size.

ACCURACY OF ROUGHNESS EXPONENT MEASUREMENT… PHYSICAL REVIEW E 76, 031136 �2007�

031136-5



affine. If these lines should fall on top of each other, the
underlying distribution is also Gaussian. The roughness ex-
ponent can be found by finding the slope of Ck /Ck

G, where
CK

G is the kth moment for a true Gaussian distribution, in a
double logarithmic plot, which will return the same rough-
ness exponent as C2�r�.

The other method is to construct the distributions p��h , l�
of the height difference over distance l and plotting
p��h , l�
2��2 versus ��h� /
2�2, where �2 is the fluctua-
tions of �h over l. For Gaussian distributions the plot should
be a parabola pointing downward in a semilogarithmic plot.
The roughness exponent can then be found from the power-
law scaling of slope of the fluctuations in �h, ��l�� l�.

Many of the methods described above involve the scaling
of a characteristic width with a window length. At least two
mechanisms can lead to the increase in the characteristic
width �15�. The first one is that there are spatial correlations
in the sign change of the steps in the profile, and the second
one is a Lévy-like jump distribution. To check how these two
mechanisms contribute to the measured effective roughness
exponent one can do two different modifications to the mea-
sured profiles. If one sets the size of each jump equal to unity
using

h0�x� = lim
q→0
�

0

L

sgn„h�x�…	h�x�	qdx , �13�

one will only measure the characteristic width that is caused
by the correlations in the sign changes as any information
carried by the amplitude will be removed. It has been shown
�19� that for h0�x� the roughness exponent is

� = max�1

2
,�h , �14�

where �h is the roughness exponent of h�x�. Thus for a
roughness exponent less 1 /2 some information in the rough-
ness exponent will be in the jump distribution.

To remove any correlation that might be in the sign
changes, but keep the information in the jump distribution
one can randomly rearrange the position for each jump. The
characteristic width measured on this randomly rearranged
profile hr�x� will now only depend on the jump distribution,
and therefore the measured roughness exponent is due to the
jumps. This method is similarly making modified profiles by
Fourier transforming the profiles, randomizing the phase, and
inverse Fourier transforming to make the modified profiles
�18�.

FIG. 14. �Color online� Systematic errors in roughness exponent
measurements versus system size for �true=0.2. �a� The detrended
fluctuation analysis ���, the variable bandwidth �+�, the max-min
���, and the standard deviation of �h�l� ���. �b� Second order
correlation function ���, power spectrum density analysis ���, and
averaged wavelet coefficients ���. Error bars are only shown where
they are larger than the symbol size.

FIG. 15. �Color online� Systematic errors in roughness exponent
measurements versus system size for �true=0.3. �a� The detrended
fluctuation analysis ���, the variable bandwidth �+�, the max-min
���, and the standard deviation of �h�l� ���. �b� Second order
correlation function ���, power spectrum density analysis ���, and
averaged wavelet coefficients ���. Error bars are only shown where
they are larger than the symbol size.
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III. ACCURACY OF THE MEASUREMENT METHODS

In Schmittbuhl et al. �8� the reliability of self-affine mea-
surements is addressed for some of the methods above. We
will repeat the measurements for the power spectrum density
analysis and local window methods, and compare them with
the additional methods from Sec. II to check the validity of
the roughness exponents we measure from the generated
self-affine fracture surfaces.

We base our choice of good measurement methods on two
criteria: �1� The fitting of the power law should be good, i.e.,
good linearity in the double logarithmic plots. �2� The sys-
tematic error for the method should be small and stable over
a range of different roughnesses.

We generate artificial surfaces using two methods. The
first method is the Voss method �11�, and the second is the
wavelet method �12�. The profiles are generated by first cre-
ating long profiles of a length much larger than the profile
sizes we want to study. We then cut out a piece of desired
length at a random position from the long profiles. In this
study the long profiles had a length of 65 536. Before we
measure the roughness exponent we remove any linear trend
in profiles. The tests are done for �� �0.1,0.9� and system
sizes L�16 384. For each roughness exponent and each sys-
tem size 100 samples were generated. Samples of these pro-
files are shown in Fig. 2. Before one starts to measure the

roughness exponent it is from our experience always a good
idea to visually inspect the profiles and compare them to
self-affine profiles with known roughness exponents.

In Figs. 3–7 we present the different measurements for
L=512. This system size is now numerically accessible for
many different numerical models of fracture and large
enough to give good estimates for the roughness exponent
using the local methods. The profiles were made with �
=0.6 and all straight lines in the figures represent this �
value. These plots are from the Voss profiles. From Fig. 3
one sees that for the local window methods in Eqs. �2�–�4�
the detrended fluctuation analysis gives the best estimate of
the roughness exponent. The detrended fluctuation analysis
gives a straight line in the double logarithmic plot from l
=16 to l=512 while the variable bandwidth and the max-min
data are more curved compared to the �=0.6 lines.

The power spectrum density method in Fig. 4 as well as
the averaged wavelet coefficients method in Fig. 5 both give
good estimates of the roughness exponent. For Ck /Ck

G we
can see in Fig. 6 that the second order correlation function
gives an estimate of the roughness exponent comparable to
that which is below the correct value. In addition we see that
the collapse of the different moments is showing that the
profiles are self-affine, not multiaffine. Figure 7 shows the
scaling of ��l�, which gives results similar to the second
order correlation function.

FIG. 16. �Color online� Systematic errors in roughness exponent
measurements versus system size for �true=0.4. �a� The detrended
fluctuation analysis ���, the variable bandwidth �+�, the max-min
���, and the standard deviation of �h�l� ���. �b� Second order
correlation function ���, power spectrum density analysis ���, and
averaged wavelet coefficients ���. Error bars are only shown where
they are larger than the symbol size.

FIG. 17. �Color online� Systematic errors in roughness exponent
measurements versus system size for �true=0.5. �a� The detrended
fluctuation analysis ���, the variable bandwidth �+�, the max-min
���, and the standard deviation of �h�l� ���. �b� Second order
correlation function ���, power spectrum density analysis ���, and
averaged wavelet coefficients ���. Error bars are only shown where
they are larger than the symbol size.
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When we compared the result for the profiles made with
the Voss algorithm in Fig. 8 and the profiles made with the
wavelet method in Fig. 9 we notice some differences. Using
the power spectrum density analysis and the averaged wave-
let coefficients methods, the profiles made by both methods,
we obtain good measurements of the roughness exponent.
The results for when using the averaged wavelet coefficient
method on the wavelet generated profiles were no surprise as
this should a priori give correct results. When one uses the
detrended fluctuation analysis and the variable bandwidth,
the max-min and C2 methods we see a more pronounced
deviation from the true roughness exponent used to create
the profiles for the highest � for the wavelet generated pro-
files.

This result suggests that the profiles made by the wavelet
method is not as good as the Voss methods for generating
self-affine profiles. A test of the self-affinity of the profiles
confirms this. In Fig. 10 we clearly see that the wavelet gen-
erated profiles have corrections to scaling at small scales.
This correction to scaling can also be seen for p��h , l� in
Fig. 11. For the high � values, the wavelet generated profiles,
the tail is broader than a Gaussian distribution. This effect
becomes larger for the largest �s. The profiles generated by
the Voss algorithm is more narrow than the Gaussian distri-
bution, and also for these profiles is the effect greatest for the
largest � values. In the rest of this paper we will only con-
sider the profiles made by the Voss method.

From Figs. 8 and 9 one can see that the power spectrum
density analysis and the averaged wavelet coefficients
method give the best estimates for the roughness exponent in
the range 0.1–0.9. For these two methods the test measure-
ments done here gave error bars from the power-law fits
equal to or less than 0.03. The detrended fluctuation analysis
gave good estimates above �=0.5, and systematically to high
estimates for �0.5. The other local methods did only give
good estimates around �=0.5, and showed a systematic drift
towards lower � values for ��0.5, and towards higher �
values for �0.5. Of the global W�L� gave the most accurate
estimates, but gave systematically to high estimates for �
0.5.

The results for the roughness exponent were done with
the following limits on for the regions where we did a least
square fit. For the variable bandwidth method, the max-min
method and detrended fluctuation analysis the regression was
done in the range l� �16,L /2�. For the second order corre-
lation function the regression was done for l� �2,L /8�. For
the power spectrum analysis the regression was done for k
� �0,0.2�. For the averaged wavelet coefficients method the
regression was done for a� �8,L /4�. For the standard devia-
tion of the height difference the regression was done for l
� �1,L /16�.

We conclude this section by checking that the roughness
exponent we measure from the profiles generated by the Voss

FIG. 18. �Color online� Systematic errors in roughness exponent
measurements versus system size for �true=0.6. �a� The detrended
fluctuation analysis ���, the variable bandwidth �+�, the max-min
���, and the standard deviation of �h�l� ���. �b� Second order
correlation function ���, power spectrum density analysis ���, and
averaged wavelet coefficients ���. Error bars are only shown where
they are larger than the symbol size.

FIG. 19. �Color online� Systematic errors in roughness exponent
measurements versus system size for �true=0.7. �a� The detrended
fluctuation analysis ���, the variable bandwidth �+�, the max-min
���, and the standard deviation of �h�l� ���. �b� Second order
correlation function ���, power spectrum density analysis ���, and
averaged wavelet coefficients ���. Error bars are only shown where
they are larger than the symbol size.
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algorithm, that the self-affine scaling originates from the
long range correlations, in the sign changes. From the origi-
nal profiles h�x� we construct the profile h0�x� where all
jumps are on equal size. When ��0.5 one sees from Fig. 12
the same general results as presented above for h�x�. The
power spectrum analysis, the averaged wavelet coefficients
method, and the detrended fluctuation analysis give the best
estimates. However, all estimates from these three methods
are now systematically 0.05 to low compared to the true
value. Also the global methods give good estimates, but
these are also to low. The other local methods show the same
large errors as they did for h�x�.

When �0.5 the picture is not that clear. The results for
all the different methods show that they measure values
above �h, but below 1/2 they show that not all the self-affine
information for �0.5 is in the sign change correlations for
the self-affine profiles generated with the Voss algorithm.

IV. SIZE DEPENDENCE

In the last section we described how the different mea-
surement methods behaved for profiles with L=512. In this
section we will expand our study by considering how the
roughness exponent estimates change with the system size.
The accuracy with which one can measure the roughness

exponent is dependent on the length of the profiles. In �8�
Schmittbuhl et al. reported on the size dependence of the
error bars for the variable bandwidth method, the max-min
method, and the power spectrum analysis. We have per-
formed the measurements of the roughness exponent with
the methods described above on samples generated by the
Voss algorithm for different system sizes. The results are
presented in Figs. 13–21.

As the system size increases the error decreases for all the
measurement methods. But even for large system sizes the
different methods measure the � with systematic errors,
which are dependent on the value of the �. These systematic
errors are similar to the ones shown in Fig. 8.

The detrended fluctuation analysis, the power spectrum
density analysis, and the averaged wavelet coefficient
method all have systematic errors smaller than 0.05 for L
�256 for all values of �. The local window methods and the
second order correlation function method overestimate � for
�0.5, and underestimate � for ��0.5 as reported in Sec.
III.

V. POWER-LAW DISTRIBUTED STEP SIZES

We will in this section compare two different sets of pro-
files, which have the same roughness exponent when mea-

FIG. 20. �Color online� Systematic errors in roughness exponent
measurements versus system size for �true=0.8. �a� The detrended
fluctuation analysis ���, the variable bandwidth �+�, the max-min
���, and the standard deviation of �h�l� ���. �b� Second order
correlation function ���, power spectrum density analysis ���, and
averaged wavelet coefficients ���. Error bars are only shown where
they are larger than the symbol size.

FIG. 21. �Color online� Systematic errors in roughness exponent
measurements versus system size for �true=0.9. �a� The detrended
fluctuation analysis ���, the variable bandwidth �+�, the max-min
���, and the standard deviation of �h�l� ���. �b� Second order
correlation function ���, power spectrum density analysis ���, and
averaged wavelet coefficients ���. Error bars are only shown where
they are larger than the symbol size.
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sured with the detrended fluctuation analysis, but different
when measured with the power spectrum density analysis. In
Fig. 22 one sample profile from each set of profiles is shown.
One profile made with the Voss algorithm with �true=0.7, and
one profile which is a random walk with Lévy-distributed
jumps with �=1.5 are shown. As seen in Fig. 22 the main
difference between these two profiles is the existence of the
large jumps in the second profile. When one uses the de-
trended fluctuation analysis to measure the roughness expo-
nent for these different sets of profiles it gives the same
roughness exponent for both sets as shown in Fig. 23. The
only difference is that the amplitude of wDFA�l� is larger for
the Lévy-flight profiles than for the Voss profiles. If one uses
the power spectrum analysis, one will measure two different
roughness exponents: �=0.7 for the profiles made with the
Voss algorithm, and �=0.5 for the Lévy profiles �Fig. 24�. By
using the two modified profiles h0�x� and hr�x� described in
Sec. II and measuring the roughness exponent on these one
can distinguish between the two different sets of profiles.
From Table I one sees that the power spectrum density analy-
sis does not measure ��0.5 for the random walk with Lévy-
distributed jumps. Detrended fluctuation analysis will mea-
sure �=0.7 except when the jumps are all set to the same
size. For the profiles generated with the Voss algorithm both
the detrended fluctuation analysis and the power spectrum
density analysis give �=0.7 except for when the long range
correlations are destroyed in hr�x�. This again shows that the

roughness exponent for ��0.5 for the Voss generated pro-
files comes from the correlations in the sign change. It also
shows that the effective roughness exponent measured with
the detrended fluctuation analysis on the Lévy profiles are
caused by the power-law noise and not the sign change cor-
relation. In addition one notes that different measurement
methods give completely different roughness exponents in
this case.

The power-law noise gives different corrections to the dif-
ferent measuring methods described in Sec. II as was shown
earlier in this section. To quantify these corrections we have
done roughness exponent measurements on random walks on
which we impose a power-law jump distribution with differ-
ent exponents. The length of the samples was 1024 and the
number of samples were 1000. For power laws with expo-
nents in the range �� �0.5,3.0� we observe corrections for
the local window methods and the averaged wavelet coeffi-
cients method. As seen in Fig. 25 the corrections are less
than 0.05 for ��2.0 and increasing for smaller values of �.
A Lévy flight is defined as

h�l� = �
i=1

l

�hi, �15�

where �hi are independent increments following the power-
law distribution described above.

TABLE I. Table of roughness exponent measured with the de-
trended fluctuation analysis and the power spectrum analysis on the
original profiles ���, the modified profiles with equal jump size ��0�,
and the randomly rearranged profiles ��r�.

Method DFA PSD

Profile set � �0 �r � �0 �r

Voss 0.7 0.7 0.5 0.7 0.7 0.5

Lévy 0.7 0.5 0.7 0.5 0.5 0.5

FIG. 22. �Color online� Two sample profiles of length 1024, the
one with solid lines is made with the Voss algorithm with �true

=0.7, and the dashed one is a random walk with Lévy-distributed
jumps with �=1.5.

FIG. 23. �Color online� Roughness exponent measured with de-
trended fluctuation analysis for a profile made with the Voss algo-
rithm with �true=0.7 �top� and from a random walk with Lévy-
distributed jumps with �=1.5 �bottom�. Both the straight dashed
lines in the figure show �=0.7. 100 samples of length for each type
of profile were used in the calculations of the roughness exponent.

FIG. 24. �Color online� Roughness exponent measured with
PSD for a profile made with the Voss algorithm with �true=0.7
�bottom� and from a random walk with Lévy-distributed jumps with
�=1.5 �top�. The corresponding straight lines are for �=0.5 �top�
and �=0.7 �bottom�. 100 samples of length for each type of profile
were used in the calculations of the roughness exponent.
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From Bouchaud and Gorges �20� one has that

w�l� = �	h�l� − h̄�l�	2� � l1/�, �16�

which gives a roughness exponent �LF=�−1. When ��1.2, �
measured with the local window methods and the averaged
wavelet coefficient method follow �LF within 0.05. For �
1.2, � cannot keep up with the increasing �LF, which also
increases beyond 1. This is as expected for the variable band-
width and the max-min methods as they are restricted to
measure roughness exponents in the range �= �0,1�. The
power spectrum analysis and the second order correlation
function, however, measure the correlations in the sign
change and will only measure �=1/2 for any � value as the
jumps are uncorrelated.

As seen above, two completely different profiles can, with
some methods, give the same roughness exponent when
there is power-law distributed noise in the profiles. In addi-
tion, this power-law noise can give multiaffine corrections to
the self-affine scaling.

Unfortunately, fracture profiles from experiments and
simulations often have noise which partly or completely dis-
turbs the self-affine property of the profile. This noise can
come from the discretization of the data during recording of
the profile, the grain, or fiber size of the material or from
overhangs in the fracture front. For numerical fracture mod-
els recent results show that the overhangs in the fracture
front have a power-law-size distribution �13,14�. In Barabási
and Stanley �5�, roughening of a surface with an uncorrelated
power-law noise is shown to give multiaffinity below a cor-
relation length lX, which depends on the strength of the
power-law noise given by the exponent �, i.e., p��h�
��h−�, and in �21� Mitchell shows that discontinuities in a
self-affine surface give multiaffinity. The random walks with
a power-law jump distribution have a multiaffine behavior on
small scales. The region with corrections to scaling due to
multiaffinity changes with � as seen in Fig. 26. Here one
sees that the profiles are multiaffine for scales smaller than
20 for �=3.0 and not self-affine at all for �=1.5.

VI. SUMMARY

For the system size we have studied here the power spec-
trum analysis and the averaged wavelet coefficient methods
gave the best estimates for the roughness exponent over the
range of roughness exponents studied here. While the aver-
aged wavelet coefficient method is reported to give more
accurate results for a smaller number of samples �10�, this
method is prone to systematic errors from power-law noise.
This also applies to the local window methods. We have also
seen that using the different methods might give roughness
exponents that differ with as much as 0.1 with additional
errors. In addition, several of the methods have systematic
errors that vary with the value of the roughness exponent.

As previously stated by Schmittbuhl et al. �8� one should
use several different methods for measuring the roughness
exponent. Researchers measuring the roughness exponent
should also take great care in uncovering the noise present in
the surfaces that are to be studied. This is to make sure that
the measuring methods chosen are capable of measuring the
roughness exponent properly.

Note added in proof. Recently, the authors were made
aware of a paper by Castelnovo et al. �22�, which studied the
influence of sampling on numerical fractal analysis.
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FIG. 25. �Color online� Roughness measurements on random
walks with power-law distributed jumps. The detrended fluctuation
analysis ���, the variable bandwidth method �+�, and the power
spectrum density analysis ���. The solid line is the roughness ex-
ponent for a Lévy flight �LF=1/�.

FIG. 26. �Color online� Rk /Rk
G for random walks of length 1024

with a power-law step size distribution with exponent �a� 1.5 and
�b� 3.0.
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