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An extension of a recently introduced one-dimensional model, the necklace model, is used to study the
reptation of a chain of N particles in a two-dimensional square lattice. The mobilities of end and middle
particles of a chain are governed by three free parameters. This new model mimics the behavior of a long linear
and flexible polymer in a gel. Noninteracting and self-avoiding chains are considered. For both cases, analyti-
cal approximations for the diffusion coefficient of the center of mass of the chain, for all values of N, are
proposed. The validity of these approximations for different values of the free parameters is verified by means
of Monte Carlo simulations. Extensions to higher dimensions are also discussed.
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I. INTRODUCTION

The study of diffusion and transport properties of poly-
mers using reptation models has attracted a great of interest
in recent years �see, e.g. �1–4��. The reptation mechanism,
originally introduced by de Gennes �5�, describes the dynam-
ics of entangled polymer melts and also the motion of DNA
molecules in gel electrophoresis. In both cases a long linear
and flexible polymer moves in a medium of dense obstacles
that confine its motion to a one-dimensional diffusion along
a tube �1–3�. Thus, a chain can progress by leaving part of
the initial tube and creating a new part as it moves.

The first one-dimensional discretized model to analyze
the chain dynamics under reptation was introduced by Ru-
binstein �the repton model� �6�. This model consists of N
random walkers �the reptons, the basic units of the chain� in
one dimension. The reptons move in such a way as to not
break the connectivity of the cluster. A site in the middle of
the chain cannot be vacated and the original order of the
reptons is preserved.

The repton model was adapted by Duke to study electro-
phoresis of DNA chains in a gel �3,7,8�. The gel was pictured
by Duke as a square lattice of cells and the DNA molecule
was considered to be a flexible repton chain that moves from
cell to cell. Reptons can hop to an adjacent cell without
violating the connectivity and the number of reptons that
each cell can accommodate is unlimited. On the other hand,
self-avoidance is not considered.

Later, a slightly modified repton model in one dimension
was introduced �9�. We will refer this model as the one-
dimensional necklace model. Although at first glance the
rules of this model look different than those of the repton
model, their diffusion dynamics are identical. Recently, the
exact analytical expressions for the diffusion coefficient and
the drift velocity for the one-dimensional necklace model
�and then for the original repton model� were obtained
�10–13�. At odds with the repton model, the necklace model
includes hardcore interactions between the reptons. Also, the
necklace model is more flexible regarding the jumping prob-
abilities of reptons at the ends of the chains relative to those

for the central ones, allowing the study of cases that cannot
be addressed with the original repton model.

In the present work, we study the reptation of a chain in a
square lattice using an extension of the recently introduced
one-dimensional necklace model. As for one-dimension, the
necklace model in two dimensions differs with Duke’s model
in that reptons cannot occupy the same cell. With the neck-
lace model we can introduce two alternatives, namely the
noninteracting and the self-avoiding cases �14�. Also, jump-
ing probabilities of reptons at the end of the chains are al-
lowed to adopt values that can be larger or smaller than those
of the central ones. We propose analytical approximations for
the chain diffusion constant for both cases, which are in
agreement with Monte Carlo results. We also discuss the
extension of these approximations to higher dimensions.

II. MODELS

As it was mentioned, we will consider two different cases
with noninteracting and with self-avoiding chains. We begin
defining the two-dimensional noninteracting necklace model.
The gel fibers �or other molten polymers�, which play the
role of obstacles, are represented by crosses on a square lat-
tice of a lattice constant a �see Fig. 1�a��. The diffusing
chain, represented by a string of beads �or particles� and
holes �or vacancies�, is placed among the obstacles in a sec-
ond square lattice shifted by a distance a /2, in the x and y
directions, from the first lattice. In what follows we will only
consider the second square lattice. The distance between two
consecutive particles can be either a, 21/2a, or 2a �in the last
two cases there is a hole between the particles�.

Only loops of the string in which at least one obstacle is
surrounded by the chain are allowed. Although consecutive
beads or holes are not allowed to occupy the same site, when
loops form a given lattice site can be occupied by more than
one particle or hole. This takes into account the noninteract-
ing character of the chain. For more details, see Fig. 2.

The number of particles in the chain is denoted by N. The
chain has two end particles and N−2 middle particles �par-
ticles which are not located at the end of the chain�. The

PHYSICAL REVIEW E 76, 031111 �2007�

1539-3755/2007/76�3�/031111�6� ©2007 The American Physical Society031111-1

http://dx.doi.org/10.1103/PhysRevE.76.031111


number of holes can vary from 0 to N−1. Each end particle
has a corresponding pre-end particle, that is, the consecutive
particle of this end particle along the chain.

The jumping rules of the model are as follows.
�i� An end particle with a nearest site occupied by its

corresponding pre-end particle jumps with a probability per
unit time pa /3 to each of the three nearest sites that are not
occupied by the pre-end particle; see Fig. 1�b�. Then, the
total jumping probability per unit time is pa. If the jump
takes place, a hole is created.

�ii� An end particle not having a nearest site occupied by
its corresponding pre-end particle �i.e., there is a hole be-

tween these two particles� jumps towards the hole with a
probability per unit time pb. If the jump takes place, a hole is
annihilated.

�iii� A middle particle with one of its nearest site along the
chain occupied and the other one empty jumps to the hole
with a probability per unit time pc.

�iv� A middle particle with both nearest sites along the
chain occupied, or both nearest sites along the chain empty
�i.e., a middle particle between two holes�, does not jump
and remains at its original position.

Hence, pa, pb, and pc are the free parameters of the model.
In the following we will use that the distance a between
adjacent sites of the square lattice and the unit time are both
equal to 1.

A hole is created or annihilated every time an end particle
jumps moving away from the chain or towards the chain,
respectively. An end particle jumping attempt that creates a

tube

l�

t
escape

cm (t)

cm (t+ t
escape

)

rcm
2 � D2D tescape

(a)

(b)

(c)

FIG. 3. Reptation mechanism. �a� The chain in a melt of other
polymer chains or in a gel. �b� Scheme for the polymer chain within
its tube at one instant, lv is the end-to-end distance of the chain. �c�
Polymer chain at one instant and at a later time when it has diffused
out of its original tube. Crosses represent the position of the center
of mass. �Strictly, the tube is continuously modified when the chain
moves leaving part of the intitial tube and creating a new part as it
diffuses.�
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FIG. 1. Scheme representing the two-dimensional necklace
model. �a� Chain in a melt of other polymers chains or in a gel.
Filled circles represent particles of the chain, open circles represent
holes of the chain, and crosses represent other polymers or gel
fibers. �b� Jumping probabilities per unit time for end and middle
particles. Particles without arrows cannot jump. �c� One-
dimensional projection of the configuration in �b�.
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FIG. 2. Chain configurations. Square represent particles or holes
of the chain. For the noninteracting and self-avoiding cases the
configuration �a� is forbidden. Configurations �b� and �c� are al-
lowed for the noninteracting case and they are forbidden for the
self-avoiding case.
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hole is successful with frequency pa�1− Ph�, where Ph is the
hole probability. Similarly, an end particle jumping attempt
that annihilates a hole succeeds with frequency pbPh. In
equilibrium we expect the same frequency for creation and
annihilation. Thus, Ph can be expressed as

Ph =
pa

pa + pb
. �1�

Then, the average length of noninteracting chains, lni, is
given by

lni = N + Ph�N − 1� . �2�

Note that if pa� pb, then Ph�1/2 and we are dealing with
“long chains.” Conversely, if pa� pb we are dealing with
“short chains.” The validity of Eq. �2� has been verified by
means of Monte Carlo simulations.

Figure 1�c� shows the equivalent one-dimensional con-
figuration of the two-dimensional configuration �b�. The
jumping probabilities in the equivalent one-dimensional con-
figuration are exactly the same as the jumping probabilities
of the one-dimensional necklace model introduced in Refs.
�9�. This equivalence holds for all configurations of the two-
dimensional noninteracting necklace model. Therefore, we
conclude that the one-dimensional diffusion coefficient of
the center of mass of the two-dimensional noninteracting
chain in the tube, D1D, is equal to the diffusion constant D of
the one-dimensional necklace model. The exact expression
of D for N�2 was found in Refs. �10,12� �see also �13�
where related results are obtained� and it is given by

D =
papbpc

�pa + pb���N − 2��pa + pb� + 2pc�
. �3�

We now consider the two-dimensional self-avoiding neck-
lace model. The definition of the model is similar to the
noninteracting case, but now loops are forbidden and only

one particle or one hole is allowed at each lattice site �see
Fig. 2�. The above jumping rules �ii�–�iv� are the same, and
the rule �i� is replaced by the following one.

�i�� An end particle with a nearest site occupied by the
corresponding pre-end particle jumps with a probability per
unit time pa /3 to each of the nearest sites which are not
occupied by a particle or a hole of the chain. In other words,
an end particle cannot jump to a site that belongs to the chain
avoiding the formation of loops �i.e., hardcore particle-
particle, particle-hole, and hole-hole interactions are taken
into account�.

Due to the rule �i�� for the self-avoiding case, and depend-
ing on the configuration, the total jumping probability per
unit time of the end particle can be either pa or less than pa.
Therefore, the hole probability must be smaller than the cor-
responding one for the noninteracting case, and the average
chain length, lsa, smaller than lni given by Eq. �2�. However,
for various sets of parameters �pa , pb , pc�, we verified by
means of Monte Carlo simulations that, for large enough
values of N �typically for N�30� the ratio lsa / lni is close to
one and does not depends on N. For example, for �pa=0.2,
pb=0.05, and pc=1�, lsa / lni=0.9930±0.0004, and for
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FIG. 4. Diffusion coefficient of the center of mass for chains
consisting of N beads. The parameters of the model are pa=0.2,
pb=0.05, and pc=1. Crosses correspond to noninteracting chains
and circles to self-avoiding chains. Numerical results were obtained
using Monte Carlo simulations. Lines correspond to the analytical
approximation of Eqs. �8� and �11� with A=1.06 and B=0.30.
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FIG. 5. Testing the validity of the analytical approximation for
the noninteracting case. �a� N2D2D vs. N, where D2D is the diffusion
coefficient in two dimensions and N is the number of particles of
the chain, see Eq. �9�. �b� lniD2D /D vs. N where lni is the average
length of the chain and D is the diffusion coefficient in one dimen-
sion, see Eq. �7�. The Monte Carlo results were obtained using pa

= pb=0.5 and pc=1 �squares�, pa=0.2, pb=0.05 and pc=1 �up tri-
angles�, pa=0.05, pb=0.2, and pc=1 �down triangles�, and pa

=0.95, pb=0.05, and pc=1 �crosses�. The lines between symbols are
drawn as a guide to the eye. For larger values of N the numerical
results lie between the two horizontal straight lines of ordinates ya

and yb, with yb /ya=8.6 in �a� and yb /ya=1.2 in �b�. For N�50 the
error bar for each point is about 7%. Taking into account these
results, and using standard statistical analysis, one obtains A
=1.06±0.02.
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�pa=0.05, pb=0.2, and pc=1�, lsa / lni=0.9886±0.0005
�these values were obtained in the range of N from 50 to 100
particles�.

Let r be the mean value of the end-to-end distance of a
chain of N particles. For large enough value of N one expects
that

r2 � l2v, �4�

where v is the end-to-end distance exponent, and l is the
average chain length �l is lni or lsa for the noninteracting and
the self-avoiding chains, respectively�. From the Monte
Carlo results we found for large enough values of N that v
=1/2 for the noninteracting case and v=3/4 for the self-
avoiding case. These results are in agreement with the well-
known values of the v exponent for the end-to-end distance
of the trajectories in random and self-avoiding random
walks.

III. ANALYTICAL APPROXIMATIONS

Using scaling arguments �8� we will obtain analytical ap-
proximations for the diffusion constant, D2D, of the center of
mass of the chains in two dimensions for the noninteracting
and self-avoiding cases. Let us consider the general case of a
chain that moves in a medium with obstacles �see Fig. 3�.
These obstacles restrict the lateral motion of the chain. As it
was mentioned above, this situation can be approached with
a chain confined in a tube �1–3,5�. Consider then that ini-
tially the chain is confined in a tube. After a time, tescape, the
chain escapes from its original tube and adopts a new con-
figuration that is not correlated with the initial one. In other
words, at the scale of time tescape the center of mass of the
chain performs and ordinary �uncorrelated� random walk.
Then, one can write that rc.m.

2�D2Dt, where rc.m.
2 is the

mean square displacement of the center of mass and D2D is
the diffusion coefficient in two dimensions.

Considering now the one-dimensional motion of the chain
along the tube, one has l2�D1D tescape, where l is the average

length of the chains and D1D is the diffusion constant in its
tube �i.e., D1D is the one-dimensional diffusion coefficient�.
The mean square displacement, rc.m.

2, behaves as the square
of the mean value of the end-to-end distance of a chain, r2

�see Eq. �4��. Finally, by combining all these expressions,
one obtains that, in the asymptotic limit �N→��, the diffu-
sion constant of the center of mass of the chains behaves as

D2D � l2v−2D1D. �5�

Although Eq. �5� holds only in the asymptotic limit
�N→��, we propose the following approximation for all val-
ues of N�2:

D2D = const l2v−2D1D. �6�

For noninteracting chains, D1D=D �see Eq. �3��, l= lni, and
v=1/2, then

D2D = Alni
−1D , �7�

where A is a constant. From Eqs. �1�–�3�, one finally obtains

D2D = A
papbpc

��N − 2��pa + pb� + 2pc��N�pa + pb� + �N − 1�pa�
.

�8�

and for N�1,

D2D = A
papbpc

N2�pa + pb��2pa + pb�
�

1

N2 . �9�

In order to obtain an analytical expression for D2D in the
self-avoiding case, we approximate D1D with the exact dif-
fusion coefficient D �which correspond to the noninteracting
case�, and l by lni �see Eq. �2��. Then, from Eq. �6� one
obtains �using v=3/4�

D2D = Blni
−1/2D , �10�

where B is a new constant. Now from Eqs. �1�–�3� one has

D2D = B
papbpc

��N − 2��pa + pb� + 2pc��N�pa + pb�2 + �N − 1�pa�pa + pb��1/2 , �11�

and for N�1

D2D = B
papbpc

N3/2�pa + pb�3/2�2pa + pb�1/2 �
1

N3/2 . �12�

IV. RESULTS

Using Monte Carlo simulations the diffusion constant D2D
was obtained through D2D= ��Rc.m.�t�−Rc.m.�0��2� /4t, where
Rc.m.�t� is the position of the center of mass of a chain at time
t, and the brackets denote the ensemble average. We per-

formed simulations for chains lengths from N=2 to 100. The
simulations starts with an arbitrary chain configuration and,
following the rules of the model, many jumps were per-
formed to reach an equilibrium configuration. At this point
the origin of the timescale, t=0, is defined. Simulations were
performed up to t=2.107 and average values were obtained
using more than 103 samples.

Figure 4 shows the Monte Carlo results of the two dimen-
sional diffusion constant D2D as a function of N for the non-
interacting and self-avoiding cases using the same values of
parameters pa, pb, and pc, and the analytical approximations
�8� and �11� �where A=1.06 and B=0.30; see below�. Note
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that for small values of N the self-avoiding effect is null or
negligible �the chain cannot cross itself or the probability of
loops formation is very small�. Therefore, the numerical re-
sults for both cases coincide for N�6. One can clearly see
that for large values of N the analytical approximations are in
agreement with the corresponding Monte Carlo results.

In order to verify the asymptotic behavior 1 /N2 given by
Eq. �9�, in Fig. 5�a� we plotted the Monte Carlo results of
N2D2D against N for the noninteracting case and for different
sets of pa, pb, and pc. For large values of N, Eq. �9� holds but
N2D2D strongly depends on the values of the free parameters
of the model. All these results are in a strip of a relative
width of yb /ya=8.6, where yb refers to the maximum and ya
to the minimum values of the strip ordinates. In Fig. 5�b� we
plot lniD2D/D as a function of N for the same sets of the free
parameters than those used in �a�. Note that now yb /ya=1.2
and if we take into account the fluctuations of the numerical
results �i.e., the error bars� one can conclude that the data are
in agreement with Eqs. �7� and �8� with A=1.06±0.02. Let
us stress that, even from relatively small values of N�N
�10�, the analytical approximation of Eq. �8� works reason-
ably well.

In Fig. 6 we show the Monte Carlo data of N3/2D2D and
lni

1/2D2D/D versus N for the self-avoiding case with different
sets of pa, pb, and pc �see Eqs. �10�–�12��. In this case one
can conclude that Eq. �11�, with B=0.30±0.02, is a reason-
ably good approximation of the two-dimensional diffusion
coefficient for N�50. We cannot prove that A and B are
exactly the same for all sets of the free parameters. However,
we can state that the dependence of A and B on pa, pb, and
pc, if it exists, is very weak.

The necklace model was defined on a square lattice, but
other types of two-dimensional lattices can be used �e.g.,
triangular, hexagonal, etc.�. We expect that the same analyti-
cal approximations �8� and �11� hold, with the constants A
and B depending on the specific type of the lattice used.

V. SUMMARY AND FINAL REMARKS

In this work, we have introduced and analyzed a dis-
cretized model of reptation of a chain consisting of N par-
ticles in a square lattice �the two-dimensional necklace
model�. Two cases were considered. In the first one, the hard-
core interaction is not taken into account and the chain can
cross itself �the noninteracting case�. In the second one, the
formation of chain loops is forbidden �the self-avoiding
case�. For both cases, and using scaling argument in the
asymptotic limit �N→��, analytical approximation for the
diffusion constant of the center of mass, for all values of N,
were proposed �see Eqs. �8� and �11��. Even for small values
of N the Monte Carlo results are in good agreement with
these approximations.

The necklace model and the analytical approximations for
the diffusion coefficient can be easily extended to higher
d-dimensions. We expect that Eq. �6� holds for all d �i.e.,
DnD=const l2v−2D1D, where n=2,3 ,4 , . . .� with the corre-
sponding value of the v exponent. That is, the well-known
values of the v exponent for random and self-avoiding ran-
dom walks should be used. It is known that �see e.g., �15��

v=1/2 for d�2 for the noninteracting case; and v=3/4 for
d=2, v=0.588±0.001 for d=3, and v=1/2 for d�4 for the
self-avoiding case. For the noninteracting case D1D=D, and
l= lni �see Eqs. �2� and �3��. For the self-avoiding case we
approximate D1D by D, and l by lni. Note that for d�4 it is
expected that the self-avoiding character does not play a rel-
evant role, and then the diffusion coefficient in both cases
would be exactly the same. In the noninteracting case v
=1/2 for d�2, then the same analytical approximation �8�
holds for d�2, where the constant A depends on the dimen-
sionality and type of the lattice used. Then, for large values
of N , l�N and thus diffusion constants behave as N−2 for
d�2. This result seems to be universal, i.e., it is not sensi-
tive to the details of the model. Indeed, a variety of models
presents the same scaling exponent such as Duke’s model �7�
or de Gennes’ model as numerically simulated by Barkema
and Krenzlin �16�. Moreover, Willmann and Schütz show
that the scaling of the diffusion constant in the limit of long
chains is unaffected by a kinematic disorder �17�.

The scaling behavior of Eq. �5� as a function of N can be
extended to other reptation models. In general l�N, and it is
expected that D1D�1/N, for N�1. Therefore, one obtains
D2D�N2v−3. This asymptotic behavior holds for d�2 �i.e.,
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FIG. 6. Testing the validity of the analytical approximation for
the self-avoiding case. �a� N3/2D2D vs. N where D2D is the diffusion
coefficient in two dimensions and N is the number of particles of
the chain, see Eq. �12�. �b� lni

0.5D2D /D vs. N where lni is the average
length of the chain for the noninteracting case and D is the diffusion
coefficient in one dimension, see Eq. �10�. The Monte Carlo results
were obtained using pa= pb=0.5 and pc=1 �squares�, pa=0.2, pb

=0.05, and pc=1 �up triangles�, pa=0.05, pb=0.2, and pc=1 �down
triangles�, and pa=0.95, pb=0.05, and pc=1 �crosses�. For large
values of N the numerical results lie between the two horizontal
straight lines of ordinates ya and yb, with yb /ya=8.75 in �a� and
with yb /ya=1.28 in �b�. For N�50 the error bar for each point is
about 7%. Taking into account these results, and using standard
statistical analysis, one obtains B=0.30±0.02.
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DnD�N2v−3, where n=2,3 ,4 , . . .� with the corresponding
value of the v exponent. For d=2,3 this is in agreement with
the power-law scaling obtained for the self-avoiding fast ex-
tron model introduced in Ref. �14�.

The Duke model �7� is one of the most well-known dis-
cretized model for reptation. It is hard to obtain its exact
diffusion constant for all values of N, which up to now it is
not known. Exact solutions are only known for small values
of N and the asymptotic scaling behavior was obtained �see,
e.g., �8,18,19��. Conversely, the analytical approximations
for the necklace model, we have presented here, work rea-
sonably well even for relatively small values of N, and they
improve as N increases.

Since the Duke model does not take into account hardcore
interactions, one is prone to compare this model with the
noninteracting necklace model. For the Duke model and
large N it was found N2DDuke=C1�1+C2 N−��. The exact
value of � is an unresolved issue. Barkema et al. �19�, from
numerical simulations, determined that �=2/3; Prahofer and
Spohn �20� found analytically that 1 /2���2/3 and also
argue for 1 /2; and Carlon et al. �21� also proposed �=1/2.
From Eq. �8� one can obtain the first two leading terms for
N2D2D to be

N2D2D = C�1 + f� , �13�

where the constant C and the function f are given by

C = A
papbpc

�pa + pb��2pa + pb�
, �14�

f�N,pa,pb,pc� =
1

N
	2

pa + pb − pc

pa + pb
+

pa

2pa + pb

 . �15�

Equation �8� is based on several assumptions and then we
cannot be sure of the exact dependence on N of the sublead-
ing term. Due to the precision of our calculations, we cannot
either determine the exact dependence from our Monte Carlo
results. However, Eq. �15� predicts that f can be positive,
null, or negative and this is something that we can check.
Indeed, Monte Carlo simulations clearly show that the sub-
leading term can be positive or negative. In particular, the
results of Fig. 5�a� obtained using pa=0.2, pb=0.05, pc=1,
and pa=0.05, pb=0.2, pc=1 clearly show negative values of
f . This is consistent with the expected negative values that
can be obtained with Eq. �15�. Since the Duke model pre-
sents a positive second leading term, we conclude that, in
this respect, the necklace model can behave differently.
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