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Effective kinematic viscosity of turbulent He II
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The temperature dependence of the effective kinematic viscosity of turbulent He II, v,;(T), is deduced from
second sound attenuation data using the late stage of decay of thermally induced counterflow He II turbulence
in two channels of square cross section. It is shown to qualitatively agree with the published data for v, AT)
calculated based on experiments on decaying-grid-generated He II turbulence [Niemela et al., J. Low Temp.
Phys. 138, 537 (2005)]. Corrections to these data due to the “sine squared” law that describes attenuation of
the second sound wave propagating along an arbitrary direction with respect to the direction of the core of a
quantized vortex in turbulent He II are discussed and applied.
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Quantum turbulence in He II has been the subject of nu-
merous experimental and theoretical investigations (see the
reviews [1,2] and references therein) since the experiments
of Vinen [3] half a century ago. The early experiments were
almost entirely devoted to counterflow turbulence, which is
easy to generate by applying heat to the dead end of the flow
channel. Many aspects of steady-state counterflow He II tur-
bulence can be understood in the frame of the phenomeno-
logical theory of Vinen [3], later backed by the numerical
simulations of Schwarz [4].

During the last 15 years, interest shifted toward He II tur-
bulence generated classically, e.g., between counterrotating
disks [5] or by towing a grid of bars through a stationary
sample of He Il [6-9]. These experiments show that classi-
cally generated He II turbulence is very similar in its char-
acteristics to classical turbulence in viscous fluids, despite
the two-fluid behavior of He II and quantization of circula-
tion in its superfluid component. The experiments of Maurer
and Tabeling [5] strongly suggest the existence of the a
three-dimensional (3D) energy spectrum in He II turbulence
containing an inertial range of scales of the classical form
Ce?3k=>3 [10], where k denotes the wave number and
e=—dE/dt is the energy decay rate. Moreover, from mea-
surements of the skewness factor of the velocity increments,
these authors found the value of the 3D Kolmogorov con-
stant C=1.5, which corresponds to the accepted value in
classical turbulence [11]. The experimentally observed decay
of the vortex line density L (the total length of the vortex line
in a unit volume of He II) in grid-generated He II turbulence
has been found essentially classical [6-9] in that it can be
closely described by a purely classical decay model for vor-
ticity w=curl v, if the rms superfluid vorticity is defined as
w=«kL, where x denotes the quantum of circulation [12].
Vinen [13] argued that at large length scales the normal fluid
and the superfluid are coupled and behave as a single-
component conventional fluid, and that the rate of dissipation
of turbulent flow energy is likely to be given by an expres-
sion similar to that in a conventional fluid with a
temperature-dependent effective kinematic viscosity:

e= Veffwz = Vo (T) K12, (1)
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In view of the link between He II turbulence and classical
turbulence, having in mind the possibility of practical use of
He II as a working fluid [14,15], it is important to know the
effective kinematic viscosity and its temperature depen-
dence. One way of determining it is to use the second sound
data on decaying vortex line density in grid-generated He II
turbulence (such as are published in Refs. [16,7]), as was
first done by Stalp and co-workers in [17]. This method is
based on the classical decay model [7,8,12] for vorticity de-
fined as «L, namely, on the third universal regime of its
decay occurring after saturation of the energy-containing
length scale by the size of the channel, D. Experimentally,
typically two to three orders of magnitude of the decaying L
closely obey the power law

D(3C 3/2 D(3C 3/2
=20y, e = PO e )
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where C is the 3D Kolmogorov constant and ¢,, stands for
the virtual origin time, which for most of the decay typically
satisfies the condition #>>1¢,, and can be neglected. By com-
paring the experimental decay data of L measured at various
temperatures with Eq. (2), values of v,;(T) can be easily
extracted. Let us stress that extracting the kinematic viscosity
from the data for classical decaying turbulence is not
possible—kinematic viscosity does not enter the energy de-
cay law and vorticity cannot be measured in experiments
with viscous working fluids.

As for the thermally generated counterflow turbulence in
He 1II, it was commonly assumed that it had nothing in com-
mon with classical turbulence. While there might indeed be
little in common between developed classical turbulence and
steady-state counterflow turbulence, which is well described
by the phenomenological Vinen equation [2,3], the temporal
decay of counterflow turbulence certainly does not obey the
simple consequence of this equation: at late time L(¢) is pre-
dicted to decay inversely proportionally to time. On the con-
trary, experimental data on decaying counterflow turbulence
display a very complex decay process. For a full picture of
the underlying physics we direct the reader to a recent review
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FIG. 1. (Color online) Examples of the second sound experi-
mental data. The top and middle figures show logarithmic plots of
the quantity a(0)/a(f)—1 versus time, measured in the 1 X1 cm?
channel. Under the assumption that the tangle is homogeneous and
isotropic, this quantity would be proportional to L, via Eq. (3). The
decay curves measured at 7=2 K originate from the steady-state
counterflow generated by applying 0.52 (V), 0.41 (<, blue online),
and 0.32 W (O, red online); the decay curves at T=1.6 K from 0.5
(©), 0.23 (squares, green online), 0.18 (O, red online), and 0.14 W
(various triangles, blue online; three individual decay curves are
shown to show the level of reproducibility for the lowest applied
power). The bottom figure shows the decaying L calculated using
formula (3) from the second sound data measured in both channels
assuming that the decaying turbulence is homogeneous and isotro-
pic. The third universal decay regime (the power law decay with the
exponent of —3/2 represented by dashed lines) is reached irrespec-
tively of the initial conditions, as once more demonstrated by the
two decay curves measured in the 1X 1 cm? channel (open sym-
bols, red online). The decay data measured in the 0.6X0.6 cm’
channel (filled symbols, blue online) also follow the third universal
decay regime but with the prefactor lowered by 0.6, the ratio of the
channels widths, in accord with Eq. (2).

[18], where current understanding of decaying counterflow
He II turbulence is described in detail.

Examples of the measured decay curves are shown in Fig.
1. We show the quantity a(0)/a(t)—1, where a(z) is the re-
covering amplitude of the transverse second sound standing
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mode and a(0) is the unperturbed amplitude with no applied
heat in the channel. Note that the relative amplitude requires
no calibration. The second sound standing wave across the
channel is generated and detected by the gold-plated Nucle-
pore transmitter and receiver mounted in the opposing walls
of the channel in the middle of its length [16,18,19]. The
absorption and dispersion signal is detected by the two-phase
lock-in amplifier. Scanning the driving frequency across one
of the resonant peaks (typically the second one, occurring
around 2 kHz) with no heat applied to the channel and fitting
to a Lorentzian gives the linewidth A,. The system is then
tuned to resonance. The heater in the channel is switched on
for typically 10 s (resulting in the generation of steady-state
counterflow turbulence) and off again, while a(¢) is recorded
during the decay.

It is known that the vortex tangle generated by steady-
state counterflow is polarized. Without knowing the degree
of polarization, the second sound amplitude alone does not
provide enough information to calculate the total vortex line
density. This is why we plot the quantity a(0)/a(f)—1 in the
upper part of Fig. 1, rather than the total vortex line density,
which we do not know. On the other hand, it has been shown
that the degree of polarization decreases during the decay
[18,20] and causes the almost flat middle part of the decay.
Here we are concerned with the late stage of the decay—
precisely with the third universal decay regime, over which
the vortex tangle could be assumed homogeneous and isotro-
pic. Our previously published data [18,21,22] as well as ex-
amples given in Fig. 1 clearly display up to two orders of
magnitude of the classical > power law decay. This form
of the decay is independent of temperature over the range
that we investigated. Thus for late times the decay of coun-
terflow turbulence and the decay of grid-generated turbu-
lence are essentially similar. As demonstrated in the bottom
picture of Fig. 1, this similarity is further strengthened by the
fact that the late decay follows the pattern predicted by the
phenomenological spectral decay model for decaying vortic-
ity in the form of Eq. (2) in that the observed decaying vor-
tex line density (or mean superfluid vorticity defined as ()
=kL) is proportional to the channel size [18,21].

Hence our experimental decay data obtained for two
channels allow deducing the temperature dependence of the
effective kinematic viscosity from the late decay of counter-
flow He II turbulence, essentially in the same way as has
been done for the grid-generated turbulence decay data
[9,17]. For these calculations, we have used C=1.5 [5,11]
and tabulated values of He II properties [23]. We assume that
over the relevant time range the decaying vortex tangle is
homogeneous and isotropic [18]. The results of our analysis
for both channels of square cross section are displayed in
Fig. 2.

While evaluating v,,(7), we have avoided a small sys-
tematic error that is present in published calculations of this
quantity from the grid-generated turbulence decay data
[9,15,17]. The reason for it is as follows. What is detected by
the second sound sensors is neither the total length of the
quantized vortex line in the resonator, nor the individual pro-
jected lengths. It can be shown [20] that the attenuation of a
second sound wave of angular frequency  in the presence
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FIG. 2. (Color online) Temperature dependence of the effective
kinematic viscosity of turbulent He II. The small open circles (blue
online) are the data deduced from the late stage of decaying
counterflow turbulence in the square channel of cross section
1 X1 cm?; the small filled circles (blue online) from the smaller
channel 0.6 X 0.6 cm?. The crosses with error bars (navy-blue on-
line) represent the mean value over our data from both channels at
each temperature. Big circles (red online) are corrected data (see
text) from Fig. 2 of [9], deduced from the decaying vortex line
density in the experiments of Donnelly and co-workers with uncon-
ventional (open big circles) and conventional (filled big circles)
grids. The crosses connected by the solid line (green online) repre-
sent a model calculation for v,/(T) [2]. The dashed line is a plot of
kinematic viscosity of He II based on the total fluid density [23].

of a straight vortex line is sin*(6)wB/(2()), where @ is the
angle between the direction of the quantized vorticity and the
direction of second sound propagation. This “sine squared”
law has been confirmed by measuring second sound signals
in a container of helium held at tilted angles with respect to
the axis of rotation of the cryostat [24]. If the tangle is as-
sumed isotropic, since (sin’*(y))=2/3, where () denotes the
average over the unit sphere, the second sound sensors detect
L.;=2L/3, where L is the actual vortex line density. Apply-
ing this to the case of a homogeneous vortex tangle [18,20]
and taking into account that vortices oriented parallel to the
second sound propagation do not contribute to the excess
attenuation, we have

67A
L=ﬂ<@—l> (3)
Bk \a
as opposed to
16A
L:—°<@—1>, )
Bk \a

where the prefactor 77/4 was applied, based on the geometri-
cal projection of a random vortex tangle to the plane
perpendicular to the second sound wave. Let p=ay/a and
P=1-cos(2mdAy/u,), then, for dAy/u, < 1, it can be shown
that a more precise formula is [20]
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L=%m<1+pzp+\rm) )
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as opposed to
I 8u, ln< 1+ p>P+\2p°P +p4P2) ©)
mBrd 1+P+\2P+P?

first derived in Ref. [16], where the sine squared law was not
taken into account. All values of L reported in the experi-
ments of Donnelly and co-workers [6-8,16,17] and of
Skrbek and co-workers [21,22] experiments must thus be
multiplied by a factor of 37/8~1.2. This is only a minor
correction as far as decaying turbulence is concerned, but
affects the effective kinematic viscosity as published in Refs.
[9,17] derived from the grid turbulence decay data, which is
(37/8)%>=1.4 too low.

Let us compare our data deduced from the decaying He II
counterflow turbulence with the corrected effective kine-
matic viscosity data obtained from the towed grid experi-
ment [9,17] also shown in Fig. 2. Such a comparison is jus-
tified and useful, as in the experiments we have used the
same square 1X 1 cm? channel (plus a smaller one 0.6
X 0.6 cm?) and essentially the same second sound technique
[18,19,21,22].

The original second sound data on decaying He II turbu-
lence [6-8,16,17] were obtained using a grid of a rather un-
conventional design in that the 65% open grid consisted of
only four parallel rectangular tines crossed by a single tine at
45°, to which a centered pull rod was attached. This might
have caused a difference in the nature of turbulence gener-
ated by such a grid with respect to turbulence generated by a
grid of conventionally accepted geometry. Therefore Ni-
emela and co-workers [9] later repeated measurements of
decaying vortex line density in the same 1X 1 cm? channel
using a newly designed grid consisting of 28 rectangular
tines of width 0.012 cm forming 13 X 13 full meshes across a
channel of approximate dimension M=0.064 cm. That the
decay data indeed follow the —3/2 power law very closely is
further strengthened by an additional analysis (see Fig. 9 in
Ref. [15]). Values of v,,(7) deduced from the decay data
originating from relatively high-mesh Reynolds number tur-
bulence Rey=v,Mp/u of order 10°, where v, is the grid
velocity, M is the mesh size, p is the total density of He II,
and w its dynamic viscosity, do not differ dramatically from
the data obtained with the original unconventional grid, al-
though they systematically lie about 10% lower (see Fig. 2).

The towed-grid- and counterflow-generated data series are
consistent with each other, the counterflow data displaying
larger scatter. The displayed error bars reflect only the statis-
tical scatter of the data, which is mostly caused by the fact
that for generating counterflow turbulence a large heat input
up to 1 W has to be applied to the dead end of the channel
and then abruptly switched off. Although in the experiment
the total heat input to the cryostat is kept constant (the power
is not switched off but to another matching heater placed
outside the channel in the helium bath), it is very difficult to
stabilize the bath temperature, even with an additional bath
heater and a temperature controller in use. Minimizing the
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temperature fluctuations that necessarily follow switching off
the channel heater is an experimental challenge. Fine tuning
of the electronics at any particular temperature is needed
before reproducible decay curves closely following the —3/2
power law (such as shown in Fig. 1 and in [18,21,22]) can be
measured. This becomes increasingly difficult at both the
lowest and highest displayed temperatures and hardly pos-
sible above 2 K, where the second sound velocity steeply
depends on temperature, and therefore temperature fluctua-
tions affect the propagation of second sound in the channel
more strongly. Another source of a systematic error might be
coupling between transverse and longitudinal second sound
modes in the channel, which could lead to slightly distorted
values of the linewidth A, entering Eq. (3).

Within experimental error, the calculated values of v, (T)
for two square channels do not depend on the channel size,
in accord with Eq. (2). It is clear that the effective kinematic
viscosity of turbulent He 11 v,;(T) distinctly differs from the
tabulated values of kinematic viscosity of He II [23] defined
as the dynamic viscosity over the total density, v=u/p (see
the dotted line in Fig. 2). A model calculation [2] based on
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the assumption that the effective kinematic viscosity is en-
tirely due to mutual friction is also included in Fig. 2.

In conclusion, we present experimental values of the ef-
fective kinematic viscosity of turbulent He II, over the tem-
perature range where the temporal decays of thermal coun-
terflow and towed-grid turbulence have been investigated
using the second sound attenuation technique. It is remark-
able that, although the steady states of the grid-generated
turbulence in He II and the thermally induced counterflow
He 1II turbulence are very different in character [2], their late
decays display a universal classical power law of the form of
Eq. (2); moreover, the deduced values of effective kinematic
viscosity are consistent with each other as well as with the
model calculation [2].
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