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We present a general theory of effective media to set up the relationship between the particle responses and
the macroscopic system behaviors for artificial metamaterials composed of periodic resonant structures. By
treating the unit cell of the periodic structure as a particle, we define the average permittivity and permeability
for different unit structures and derive a general form of discrete Maxwell’s equations on the macroscale, from
which we obtain different wave modes in metamaterials including the propagation mode, pure plasma mode,
and resonant crystal band-gap mode. We explain unfamiliar behaviors of metamaterials from the numerical S
parameter retrieval approach. The excellent agreement between theoretical predictions and retrieval results
indicates that the defined model and method of analysis fit the physical structures very well. Thereafter, we
propose a more advanced form of the fitting formulas for the effective electromagnetic parameters of
metamaterials.
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I. INTRODUCTION

Artificially structured electromagnetic metamaterials have
received considerable attention over the past several years
due to their ability to exhibit a large range of electromagnetic
responses not readily found in naturally occurring materials
and composites �1�. Since the demonstration of an artificial
medium with negative refractive index in 2001 �2�, metama-
terial designs have increased in complexity and sophistica-
tion, to the point that precisely controlled gradients in both
permittivity and permeability can be introduced to form ad-
vanced lenses and optics �3,4�, or even invisibility cloaks
�5,6�.

While not a necessary requirement, periodicity is a feature
typically found in metamaterials, which are usually based on
repeated unit cells containing one or more conducting reso-
nators. Unlike photonic crystals, though, the unit cell size in
metamaterials is much smaller than the free-space wave-
length, so that the otherwise inhomogeneous structure can be
homogenized from an electromagnetic point of view. The
procedure of homogenization enables effective constitutive
parameters—the electric permittivity and the magnetic per-
meability, for example—to be defined and used to character-
ize the composite.

Although the use of effective constitutive parameters has
proved successful in describing and predicting the properties
of waves propagating in metamaterials, the retrieved param-
eters nevertheless display anomalous and often nonintuitive
behavior. For example, it was found from scattering �S� pa-
rameter simulations that when either the retrieved permittiv-
ity or permeability possesses a resonance form, there is an
accompanying antiresonance in the nonresonant parameter
over the same frequency range, with the sign of the imagi-

nary part of the antiresonant parameter opposite to that of the
resonant parameter �7�. Considerable discussion has ensued
over the applicability of retrieval methods and even the va-
lidity of effective constitutive parameters in general for
metamaterial structures �8�.

The unusual form of the constitutive parameters obtained
from retrieval methods has recently been analyzed with in-
creasing rigor by numerous researchers �8–13�. The consen-
sus that has emerged is that the periodicity associated with
most reported metamaterials, usually a factor of ten smaller
than the free-space wavelength, plays a significant role in the
metamaterial properties. As a result, the closed form expres-
sions obtained by researchers in the static and quasistatic
limits for the constitutive parameters �14–17�, which is typi-
cally in the form of a Drude or Drude-Lorentz model, must
be modified to include the effects of spatial dispersion.

To date, there has not been a theoretical approach that
connects well the simple medium dispersion models to the
actual retrieved parameters of metamaterial structures. As a
result, the detailed design of metamaterials has relied entirely
on numerical approaches that one first solves Maxwell’s
equations for a structure and then performs a numerical re-
trieval to obtain the effective constitutive parameters. Well-
known effective medium approaches can be used to form an
initial metamaterial design and develop a working intuition,
but do not predict the ultimate frequency-dependent form
that the actual parameters usually take. Our aim here is to
present a dispersion form linking actual particle response and
periodic system behaviors that provides a simplified, yet ac-
curate, description of metamaterials and is also entirely con-
sistent with and gives very clear physics explanations of pre-
vious numerical extraction approaches.

Recently, a rigorous approach to the numerical retrieval of
the constitutive parameters was presented, in which field av-
erages over the metamaterial unit cell were used to determine
the macroscopic fields �8�. A similar approach has also been
applied to the transmission-line formulations of metamateri-
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als �18–20�. This process results in a discrete form of Max-
well’s equations, in which the metamaterial unit cell is re-
placed by an effective medium. The discrete set of equations,
though, implies that the fields are effectively sampled on a
finite grid, so that spatial dispersion is inherent in the formu-
lation. Although ultimately a numerical implementation, the
method presented in �8� forms a useful starting point for the
present discussion.

In this paper, we build up a metamaterial system by di-
viding two different levels, which correspond to a particle
response in terms of average permittivity and permeability
and a system behavior in terms of effective permittivity and
permeability, respectively. The particle response actually has
been well studied by static or quasistatic field analysis
�13–15�. Thus, the key point becomes to set up a link be-
tween the particle response and the system behavior.

II. AVERAGE PERMITTIVITY AND PERMEABILITY

We start our analysis here from the integral form of Max-
well’s equations. Consider an artificial material composed of
arbitrary elements repeated periodically, as shown in Fig. 1,
in which the periodicities in the x, y, and z directions are
equal to p. An incident electromagnetic wave with transverse
electric and magnetic �TEM� fields propagates along the z
direction. The electric field is x polarized, and the magnetic
field is y polarized. Periodic boundary conditions are as-
sumed in the x and y directions. Applying Faraday’s theorem
to the first cell in the x-z plane for the electric field, we
obtain

�
−p/2

p/2

E�x,0,p/2�dx − �
−p/2

p/2

E�x,0,− p/2�dx

= i��
sxz

�aH�x,0,z�ds , �1�

in which �a is the permeability of the background medium.

As in Ref. �8�, we define the averaged electric field Ēx and

the magnetic field H̄y by line integrals,

Ēx�z� =
1

p
�

−p/2

+p/2

E�x,0,z�dx , �2�

H̄y�z� =
1

p
�

−p/2

+p/2

H�0,y,z�dy . �3�

From inspection of Eq. �1�, we see that the averaged mag-

netic field B̄x emerges naturally as a surface integral, so that
the average permeability �̄ has the form �9�

�̄ =
1

p2H̄y�0�
�

−p/2

+p/2 �
−p/2

+p/2

�aH�x,0,z�dx dz . �4�

Equation �1� may thus be written as

Ēx�p/2� − Ēx�− p/2� = i��̄pH̄y�0� . �5�

The above equation can be extended to any cell n along the
z direction:

Ēx��n + 1/2�p� − Ēx��n − 1/2�p� = i��̄pH̄y�np� . �6�

Similarly, the other Maxwell equation in the integral form
can be simplified to

H̄y��n + 1�p� − H̄y�np� = i��̄pĒx��n + 1/2�p� �7�

after introducing the average permittivity

�̄ =
1

p2Ēx�p/2�
�

−p/2

+p/2 �
−p/2

+p/2

�aE�0,y,z�dy dz , �8�

in which �a is the permittivity of the background medium.
Equations �6� and �7� together represent a discrete set of
Maxwell’s equations �DME� that can be solved for TEM
waves.

Based on Eqs. �4� and �8�, the average constitutive param-
eters are defined in terms of field averages, which is consis-
tent with the previous work on the homogenization of
metamaterials �9�. The average parameters represent the lo-
cal field responses by structures with finite dimension, from
which we can group the actual unit structure as a particle.
Hence we can separate the whole model into a particle level
to obtain average parameters and a system level to obtain
effective parameters in terms of average parameters.

III. AVERAGE DISPERSION EQUATION AND AVERAGE
PARTICLE-WAVE IMPEDANCE

In order that DME represent an infinite periodic structure,

we apply the Bloch boundary conditions: Ēx��n+1/2�p�
= Ēx�p /2�ei�n�+�/2� and H̄y��np��= H̄y�0�ein�, in which � is the
phase advance across one cell. Substituting the boundary
conditions into the DME, we obtain the dispersion equation

sin��/2� = Sd�p��̄�̄/2, �9�

where Sd=1 if the wave is propagating in a material where �̄
and �̄ are both positive, and Sd=−1 if the wave is propagat-
ing in a material where �̄ and �̄ are both negative. Equation
�9� can be solved, yielding

� = 2 arg�A� − 2i ln��A�� , �10�

in which A= iSd�p��� /2+�1−�2p2�̄�̄ /4. We remark that
the second term of A is real when �2p2�̄�̄�4 but imaginary
when �2p2�̄�̄�4. In the latter case, the square root is de-

FIG. 1. Metamaterial composed of periodic particles, where a
TEM wave is incident along the z direction.
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fined as −iSd
��2p2�̄�̄ /4−1 to make �A � �1 the requirement

for passive media.
Equation �9� shows that the phase advance is related not

only to the average constitutive parameters, but also to the
periodicity p. In the other words, the metamaterial exhibits
both frequency and spatial dispersions. The latter cannot be
eliminated unless the periodicity p goes to zero, which cor-
responds to the case of a homogeneous medium. To obtain a
complete description of wave propagation in a medium, it is
necessary also to determine the wave impedance of the me-
dium. Unless the periodicity is zero, however, the wave im-
pedance varies across the unit cell according to its definition:

��z�= Ēx�z� / H̄y�z�. The general expression for the impedance
will be complicated in form, depending on the nature and the
geometry of the specific metamaterial elements within the
unit cell. However, under certain conditions that occur com-
monly in metamaterial structures, a relatively simple form of
the impedance can be obtained. A rough justification can be
obtained by assuming the field by applying the Bloch bound-
ary conditions to Eqs. �6� and �7� as was done to find the
phase advance.

Part of the difficulty in obtaining a wave-impedance ex-
pression is that the average electric and magnetic fields for
the effective finite-difference Maxwell’s equations are de-
fined on the edges of lattices that are offset from each other,
whereas the definition of impedance requires a ratio of elec-
tric and magnetic fields at the same point. Since metamate-
rials are usually composed of strong magnetic or electric
resonant subwavelength structures, the electric or magnetic
field can be approximately modeled to be phase uniform in
the unit cell of electric or magnetic resonators. Thus, the field
at the edge of unit cell can be estimated approximately using
an interpolation of fields in two nearest adjacent lattices. In
this way, we arrive at two possible definitions of the imped-
ance; one is obtained by averaging the magnetic field:

��np + p/2� = Ēx�np + p/2�/H̄y�np + p/2�

=
2Ēx�np + p/2�

H̄y�np� + H̄y�np + p�
=��̄

�̄

1

cos��/2�
,

�11�

while the other is obtained by averaging the electric field:

��np� = Ēx�np�/H̄y�np� =
Ēx�np − p/2� + Ēx�np + p/2�

2H̄y�np�

=��̄

�̄
cos��/2� . �12�

The impedance as found in Eqs. �11� and �12� periodically
varies along the propagation direction. Whether Eq. �11� and
�12� should be used depends on the relative position of the
boundary for periodic structures, where the phase matching
is conducted in calculation. For magnetic resonators, Eq. �11�
will be approximately correct, in which the magnetic field is
nearly uniform within one unit cell. Likewise, for electric
resonators, Eq. �12� will be approximately correct since the
electric field is nearly uniform within one unit cell. The two

equations can be combined together to yield a general form

� =��̄

�̄
�cos �/2�Sb �13�

for the wave impedance. Here, Sb=1 is for electric resonators
while Sb=−1 for magnetic resonators.

IV. GENERAL SOLUTIONS OF EFFECTIVE MEDIA

With the spatial dispersion relation �10� and the spatial
wave impedance �13�, we can now obtain a compact analytic
solution for the constitutive parameters of a metamaterial.
Denoting the effective permittivity and permeability as �eff
and �eff, then the phase shift � and wave impedance � can be
expressed in terms of �eff and �eff as �=�p��eff�eff and �
=��eff /�eff. Considering Eqs. �10� and �13�, we obtain the
general solution for the effective permittivity and permeabil-
ity as

�eff = �̄
��/2�

sin��/2�
�cos��/2��−Sb, �14�

�eff = �̄
��/2�

sin��/2�
�cos��/2��Sb. �15�

Equations �14� and �15� provide a useful approximate so-
lution for electrically or magnetically resonant metamateri-
als, setting up the relationship between the particle response
and the system behavior, as will become clear from compari-
sons with numerical simulations. Furthermore, in the limit
that the metamaterial approaches a homogenized medium
�i.e., the wavelength within the medium becomes large in
terms of the unit cell size�, the solutions are seen to be trivi-
ally valid, with the effective constitutive parameters reducing
to the background constitutive parameters ��eff=�a and �eff
=�a�.

Next we discuss the general solution in three cases.

A. Propagation modes

In the absence of losses, when 0��̄�̄�4/ ��p�2, we see
from Eq. �9� that � is real and thus the corresponding modes
are propagating. The effective constitutive parameters pre-
dicted by Eqs. �14� and �15� provide useful insight as to the
character of the propagating modes. We point out two inter-
esting aspects that have led to anomalous frequency-
dependent behavior observed in prior numerical work �12�.
First, the wave impedance approaches zero for an electric
resonator or infinity for a magnetic resonator when �=� or
−�. This behavior implies that when either 	̄ or �̄ take large
values, then �̄ or 	̄ will take accordingly small values. The
medium as a whole in these cases can be viewed as a spatial
resonator.

Another interesting phenomenon is that, for lossy media,
cos�� /2� becomes a complex number. From Eqs. �14� and
�15�, we see that one of the constitutive parameters will ac-
quire a negative imaginary part �i.e., negative loss assuming
an exp�−i�t� time dependence�. For low-loss media, this
“negative loss” is relatively weak, but exists nonetheless be-
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cause of the nature of spatial wave impedance. We see that
this seemingly unphysical behavior vanishes when p is ex-
tremely small or the resonance is weak; in this case, the
solution reduces to the usual case of a lossy homogeneous
medium.

B. Pure plasma modes

When the average permittivity and permeability satisfy
�̄�̄�0, only evanescent waves exist in the metamaterial
based on Eq. �9�. We see that

�eff = �̄
��I/2�

sinh��I/2�
�cosh��I/2��−Sb, �16�

�eff = �̄
��I/2�

sinh��I/2�
�cosh��I/2��Sb, �17�

in which �I=2 ln�u+�1+u2� with u=�p���� � /2. Here, Sd

=1 has been chosen in this case to make the effective me-
dium passive.

C. Resonant crystal band-gap modes

When the average permittivity and permeability satisfy
�̄�̄�4/ ��p�2, then Eq. �9� shows that � will be a complex
number, which corresponds to a resonant crystal band-gap
mode. The resonant crystal band gap results from the peri-
odicity inherent in the metamaterial combined with the large
effective constitutive parameters associated with the resonant
metamaterial elements. The resonant crystal band-gap phe-
nomenon is a unique feature of resonant metamaterials,
which lie conceptually between photonic crystals and ho-
mogenized materials. The phase advance in this regime is
given by

� = Sd� + i�I, �18�

in which Sd is the dispersion sign defined earlier, correspond-
ing to the left- or right-handed average parameters, and �I

=2 ln�u+�1+u2�. Thus the effective permittivity and perme-
ability are expressed as

�eff = − Sb�̄
�I − i�

cosh��I/2�
�sinh��I/2��−Sb, �19�

�eff = Sb�̄
�I − i�

cosh��I/2�
�sinh��I/2��Sb. �20�

From Eqs. �19� and �20�, we observe three important fea-
tures. First, only evanescent waves are supported in the crys-
tal band-gap regime. Second, the phase shifts by ±180° from
one cell to adjacent cells, while the sign of the phase depends
on whether the average parameters are both positive or both
negative. Finally, the imaginary parts in the effective permit-
tivity and permeability appear in conjugate forms. In other
words, the negative loss always exists in one of the consti-
tutive parameters, which compensates the positive loss in the
other parameter to generate an overall lossless behavior.

We see also from Eqs. �19� and �20� that there are two
distinct types of crystal band-gap metamaterials: electric, in

which the real part of the permittivity is negative, and mag-
netic, in which the real part of the permeability is negative.
The two types are related to whether the metamaterial is
composed of electric or magnetic resonators, which is mani-
fest in the sign of Sb in the wave impedance and the sign of
the average parameters. The two types of photonic band-gap
modes have been confirmed in numerical and experimental
studies of evanescent wave amplification by cascaded peri-
odic circuit structures �18�. The modes associated with crys-
tal band-gap metamaterials have a distinct character as com-
pared with conventional photonic crystal structures. In
photonic crystals, the periodicity of the index generates the
band-gap region due to Bragg reflection. In metamaterials,
however, each unit possesses a strong resonance in addition
to the periodicity that combine together to introduce spatial
dispersions in both the index �phase advance� and the wave
impedance.

V. APPLICATIONS AND DISCUSSIONS

In order to validate the analytic theory, we consider three
typical metamaterial structures for analysis: the split-ring
resonator �SRR�, which possesses a strong magnetic reso-
nance �15�; the electric-LC �ELC� resonator which has strong
electric resonance �16�; and the SRR and wire structure,
which is also known as a negative index material. This latter
structure possesses both electric and magnetic resonances,
but the electric resonance occurs at zero frequency and thus
the composite structure appears as a magnetic resonator
when Eq. �13� is applied �7�. Since the SRR and SRR-wire
media are magnetic-response structures, Sb=−1 must be cho-
sen. Similarly, since the ELC is an electric-response struc-
ture, we must choose Sb=1.

The average and effective constitutive parameters have
often been used as an approximate description of metamate-
rials in previous research, where Drude-Lorentz and similar
models have been applied. Yet it is well known that there are
significant deviations from these ideal forms when numerical
retrievals are performed on simulated or measured data. In
fact, the Drude-Lorentz models are accurate, causal descrip-
tions of metamaterials in the limit that spatial dispersion is
not a factor �i.e., electro- or magnetostatic limits�. In the
presence of periodicity, though, the ideal forms are modified
in the manner described above. For example, the SRR struc-
ture shown in Fig. 2�a� possesses an average permeability in
the absence of spatial dispersion of the form

�̄SRR = �a�1 − Ff2/�f2 − f0
2 + i
f�� , �21�

in which f0 is the magnetic resonant frequency, and 
 is the
loss factor. The SRR usually does not exhibit a strongly dis-
persive permittivity, so we take for the average permittivity
	̄SRR=	a sin�v� /v as homogeneous model for background
medium based on Eq. �8�, in which v=�p��a�a /2. For the
ELC resonator shown in Fig. 2�b�, the average permittivity is
of the form
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�̄ELC = �a�1 − Ff2/�f2 − f0
2 + i
f�� , �22�

and �̄ELC=�a sin�v� /v. Here, f0 is the electric resonant fre-
quency. For the SRR with wire structure illustrated in Fig.
2�c�, we have

�̄SRR-wire = �a�1 − f0
2/f2� , �23�

�̄SRR-wire = �a�1 − Ff2/�f2 − f0
2 + i
f�� . �24�

Based on the ideal forms, we can now calculate the effec-
tive permittivity and permeability using Eqs. �19� and �20�.
Figure 3 compares the predicted parameters for the unit cell
shown in Fig. 2�a� with those from direct simulation of a unit
cell and a numerical S parameter retrieval. The S parameters
are simulated using HFSS, a full-wave electromagnetic soft-
ware whose accuracy has been verified earlier �10,14,17�.
For the HFSS simulations, a single unit cell is simulated along
the z direction, with periodic boundaries applied along the x
and y directions. As can be seen from Fig. 3, there is remark-
ably good overall agreements between the analytic theory
and the simulations, indicating that the approximation used
for the wave impedance in Eq. �13� is appropriate.

The frequency regimes of various propagation modes can
easily be identified from the phase advance shown in Fig.
3�c�. Below the frequency of 9.6 GHz, the wave is propagat-
ing. From 9.6 to 10 GHz, the phase advance reaches 180°
and hence the wave is in the resonant crystal band-gap re-
gime. From 10 to 11.5 GHz, modes are evanescent. The
resonant frequency of SRR occurs at 10 GHz. Above
11.5 GHz, all modes once again correspond to propagating
modes. The numerical curve and theoretical curve have ex-
cellent agreement both qualitatively and quantitatively.

Based on the above analysis, it is easy to understand the
behavior of theoretical prediction results for SRR. There is a
huge jump in permeability and a dip for permittivity at
9.6 GHz, as shown in Figs. 3�a� and 3�b�, because �=180° at

FIG. 2. �Color online� Three typical metamaterial structures. �a�
The SRR structure. The substrate is Flame Resistant 4 �FR4�, a type
of material used for making a printed circuit board, whose relative
permittivity is �=4.4+0.001i and thickness 0.25 mm. The dimen-
sions in the figure are a=2.5 mm, c=2.2 mm, g=1.1 mm, b=e
=0.2 mm, and d= f =0.22 mm. �b� The ELC structure. The substrate
is still FR4 ��=4.4+0.001i� with thickness 0.2026 mm. The dimen-
sions are a=3.333 mm, b=3 mm, c=d=g= f =0.2 mm, and e
=1.4 mm. �c� The SRR-wire structure. The substrate is FR4 ��
=4.4+0.001i� with thickness 0.25 mm. The SRR and wire are on
different sides of the substrate. The dimensions are a=2.5 mm, f
=2.2 mm, b=e=0.2 mm, c=0.14 mm, d=1.1 mm, and g=0.3 mm.

FIG. 3. �Color online� Comparison of theoretical prediction re-
sults and retrieval results from the parameters S for the SRR struc-
ture. The parameters using in the theoretical calculation are f0

=9.975 GHz, �a=4.4�0, �a=�0, 
=5�107 Hz, p=2.5 mm, and
F=0.23.
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9.6 GHz acts as the interface of propagation modes and reso-
nant crystal modes where the wave impedance becomes very
large based on the general theory. Such a critical frequency
for a resonant crystal band gap is sometimes inappropriately
taken as the resonant frequency while the true value should
be 10 GHz as in the previous analysis.

Next we consider the ELC structure shown in Fig. 2�b�. In
Ref. �16�, experimental data for the S parameters were used
to retrieve the effective permittivity and permeability. The
retrieval results are illustrated in Fig. 3 in Ref. �16�.

We can analyze the propagation modes of the ELC struc-
ture shown in Fig. 4�c� and the SRR-wire structure shown in
Fig. 5�c�. Clearly, all three propagation cases, propagation
modes, pure plasma modes, and resonant crystal band-gap
modes are obtained.

In the following discussions, we will emphasize three
points: the resonant crystal band gap and its critical fre-
quency adjacent to the propagation mode, the conjugate
imaginary parts for the effective parameters or the negative-
loss phenomenon, and the antiresonance for effective param-
eters.

First we study the resonant crystal band gap in a SRR,
which is due to the strong resonance of a SRR and coupling
among different SRRs. From the general theory, it is a mag-
netic resonant crystal band gap with right-handed dispersion
�RHD� and a magnetic boundary. The average permittivity
and permeability in such a band gap are both positive and the
frequency is lower than the resonant frequency. Meanwhile,
we also observe a similar resonant crystal band gap in the
ELC structure shown in Fig. 2�b� from 10.8 to 12.3 GHz. It
also has RHD but with an electric boundary. Unlike the reso-
nant crystal band gap in a SRR, it results in a negative real
part of the permittivity.

For the SRR-wire structure, we observe that the resonant
crystal band gap occurs from 8.7 to 9.3 GHz, as shown in
Fig. 5�c�. Although we apply the magnetic boundary in such
a structure, it is actually an electric resonant crystal band
gap, whose real part of permittivity is negative. This is due to
the left-handed dispersion �LHD� which gives a −180° phase
shift from each unit. The resonant frequency for a SRR in
this structure is 8.8 GHz, lower than the crystal band-gap
frequency. Comparing Figs. 3–5, the critical frequency for
the resonant crystal band gap adjacent to the propagation
mode is clearly observed. They are 9.6 GHz for the SRR,
10.9 GHz for the ELC, and 9.3 GHz for the SRR-wire struc-
ture. The spatial wave impedance becomes very large for
SRR and SRR-wire structures but extremely small for the
ELC structure, which corresponds to a dramatic jump and
dip for the effective parameters.

Second, we emphasize the negative imaginary part for the
effective parameters, which is referred as a negative-loss
phenomenon. Based on the solution of the general theory, for
lossless effective media, the effective permittivity and per-
meability may have conjugate imaginary parts �conjugate
loss� within the resonant crystal regime due to the significant
spatial wave impedance. For the propagation mode, the
negative-loss phenomenon may occur in lossy media while it
is relatively slight for low-loss media. We look back to Figs.
3–5. Within the resonant crystal band-gap regime for each
structure, the conjugate imaginary parts of effective param-

FIG. 4. �Color online� Comparison of theoretical prediction re-
sults and retrieval results from the scattering parameters S for the
ELC structure. The parameters using in the theoretical calculation
are f0=12.2 GHz, �a=4.2�0, �a=�0, 
=4�107 Hz, p=3.333 mm,
and F=0.19.
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eters are well predicted in the theoretical result using Eqs.
�19� and �20�. For pure plasma modes, there is no conjugate-
loss phenomenon predicted in the theory under the lossless
situation. All these conclusions from the general theory can
be supported by previous experimental observations �14,17�.

The last issue is the antiresonant phenomenon in metama-
terial structures. From Figs. 3–5, it is very clear that, when
one of the effective parameters is resonant, the other one will
have antiresonance spontaneously, no matter whether in the
retrieval or the theoretical result. This phenomenon can be
clearly explained by the general theory of effective media
given in Eqs. �14� and �15�. If p is not tending to 0, both
effective parameters are determined not only by the average
parameters but also by the phase advance �. Therefore if one
of the average parameters reaches a resonance, both the ef-
fective permittivity and permeability will be resonant; these
are regarded as resonant and antiresonant phenomena �12�.

VI. CONCLUSIONS

This paper provides a descriptive approach to and expla-
nation of the electromagnetic behavior of metamaterials
based on a general theory of effective media, from which the
effective parameters are derived in terms of average permit-
tivity and permeability. According to the derivations, we jus-
tify the validity of the effective medium theory for both ho-
mogeneous media and metamaterials. Meanwhile, three
wave modes are categorized: the propagation mode, the pure
plasma mode, and the crystal band-gap mode. We have com-
pared and analyzed the behavior of SRR, ELC, and SRR-
wire structures by theoretical predictions, using the general
theory and numerical retrieval simulations. The analysis pro-
vides profound understanding of the resonant crystal band
gap, the conjugate-loss phenomenon, and the antiresonant
observation. Also the theoretical results match the retrieval
results very well, giving a fitting formula for practical struc-
tures. This framework will significantly support the further
analysis of more complicated periodic structures or even in-
homogeneous particle structures. Also, the clear explanation
and the accurate analytical formulations will give great guid-
ance for synthesis and design of metamaterial structures.
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FIG. 5. �Color online� Comparison of theoretical prediction re-
sults and retrieval results from the scattering parameters S for the
SRR-wire structure. The parameters using in the theoretical calcu-
lation are f0=8.8 GHz, �a=5�0, �a=2�0, 
=107 Hz, p=2.5 mm,
and F=0.35.
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