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We consider the three-dimensional (3D) Gross-Pitaevskii or nonlinear Schrodinger equation with a quasi-2D
square-lattice potential (which corresponds to the optical lattice trapping a self-attractive Bose-Einstein con-
densate, or, in some approximation, to a photonic-crystal fiber, in terms of nonlinear optics). Stable 3D
solitons, with embedded vorticity S=1 and 2, are found by means of the variational approximation and in a
numerical form. They are built, basically, as sets of four fundamental solitons forming a rhombus, with phase
shifts 75/2 between adjacent sites, and an empty site in the middle. The results demonstrate two species of
stable 3D solitons, which were not studied before, viz., localized vortices (“spinning light bullets,” in terms of
optics) with §> 1, and vortex solitons (with any S # 0) supported by a lattice in the 3D space. Typical scenarios
of instability development (collapse or decay) of unstable localized vortices are identified too.
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I. INTRODUCTION

The nonlinear Schrédinger equation (NLSE), alias the
Gross-Pitaevskii equation (GPE) with self-focusing cubic
nonlinearity, which describe, respectively, the light propaga-
tion in dispersive Kerr-nonlinear media, and evolution of the
mean-field wave function in a Bose-Einstein condensate
(BEC) with attraction between atoms, give rise to the wave
collapse in two- and three-dimensional (2D and 3D) geom-
etry, which makes the respective multidimensional solitons
unstable [1]. It has been established that, nevertheless, mul-
tidimensional solitons can be stabilized by means of a peri-
odic [3-6] or quasiperiodic [7] cellular potential added to the
model. In the GPE, the potential represents an optical lattice
(OL), which can be induced by pairs of counterpropagating
coherent laser beams illuminating the condensate [2]. The
OL may have 1D, 2D, or 3D shape, including the case of a
low-dimensional lattice, which is represented by a cellular
potential that does not depend on one coordinate, i.e., a
quasi-1D (Q1D) or quasi-2D (Q2D) OL in the 2D or 3D
space, respectively [5,6]. Generally, the OL whose dimension
is less than the full spatial dimension by one can stabilize a
soliton, but a 1D lattice cannot stabilize 3D solitons (without
additional ingredients, such as nonlinearity management
[8,9]); in addition, it has been predicted that a Q2D radial
(axisymmetric) lattice, that can be induced by a nondiffract-
ing Bessel light beam illuminating the BEC, supports stable
3D solitons [10]. The stabilization of solitons in these set-
tings was explained by means of the Vakhitov-Kolokolov
(VK) criterion (see below), and corroborated in direct simu-
lations. An advantage of dealing with multidimensional soli-
tons in low-dimensional lattices is that they can freely move
in the unconfined direction, which opens a way to study
their collisions in a common potential channel, or in adjacent
ones [5].

The physical significance of the prediction of stable soli-
tons is that it suggests a way to create persistent matter-wave
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pulses in the 2D and 3D space; thus far, they were only
created in nearly 1D (“cigar-shaped”) traps [11] (although
the actual shape of the soliton may be nearly three dimen-
sional [12]). Another, although less straightforward, physical
realization of the Q2D Iattice in the effectively 3D space is
offered by photonic-crystal fibers (PCFs) fabricated in a
Kerr-nonlinear material. Spatial (i.e., two-dimensional) soli-
tons in this setting, localized in the transverse plane, were
predicted in Refs. [13]. A fully localized spatiotemporal soli-
ton, i.e., a 3D one (alias “light bullet”), may also be expected
in PCFs, taking into regard that the anomalous group-
velocity dispersion (GVD), necessary for the existence of
temporal solitons (those localized along the fiber’s axis), is
possible in PCF [14]. However, the NLSE including a Q2D
lattice potential is less accurate as a PCF model than the
similar GPE as a model of BEC [see Eq. (1) below], because
the PCF structure implies, in addition to the cellular trans-
verse potential, spatial modulation of the local nonlinearity
in the transverse directions, as there is no nonlinearity in
voids running parallel to the fiber’s axis.

Besides the fundamental 2D solitons, their counterparts
carrying a topological charge (vorticity, alias spin, S) were
also predicted, both in the GPE with the cellular potential
[3,4], and as spatial solitons in the PCF [15]. It should be
stressed that the model with the cellular potential has no
rotational invariance, hence it does not conserve the angular
momentum; nevertheless, the intrinsic soliton’s vorticity,
while not being related to any dynamical invariant, can be
unambiguously defined as ®/(27), where @ is the total
change of the phase of the wave function along a closed path
surrounding the vortex’s center. Until very recently, stable
2D lattice solitons were only predicted with S=1 [3,4,15]
(experimentally, they were created, also solely with S=1, in
photorefractive crystals with a photonic lattice, which corre-
sponds to saturable nonlinearity [16]). A new result is that
the lattice potential supports stable higher-order vortex soli-
tons (at least, up to §=6), multipoles (topologically orga-
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nized solitary-wave patterns without vorticity), and super-
vortices (ring-shaped chains formed by compact vortices,
each with S=1, carrying a global vorticity imprinted on top
of the entire chain, i.e., 2D patterns characterized by mutu-
ally independent local and global vorticities) [17].

The objective of the present work is to construct three-
dimensional vortex solitons, in the GPE with the Q2D lattice
potential, which will extend both the recently reported results
for the stable 3D solitons of the fundamental type (S=0) in
the same setting [5,6], and the above-mentioned lattice-
supported vortex solitons in two dimensions [3,4]. Note that,
in models without the cellular potential, stabilization of 3D
(and 2D) vortex solitons is only possible by means of com-
peting nonlinearities, such as self-focusing cubic and
defocusing quintic [18], or quadratic (second-harmonic-
generating) and self-defocusing cubic terms [19]. Thus far, a
stability region in these models was not found for 3D soli-
tons with the spin other than §=0 and S=1 (see review [20]).
In this paper, we demonstrate that the Q2D lattice allows the
stabilization of localized vortices with (at least) S=1 and S
=2 (the stability of the corresponding solitons with S=0 was
established before [5,6]), in the usual cubic GPE. In this
connection, it is relevant to mention that stable discrete soli-
tons with embedded vorticity S=1 and 3, as well as stable
quadrupoles and octupoles, have been reported in the 3D
discrete NLS equation [21].

The stability of localized 3D vortices in the Q2D lattice is
a challenge, rather than a straightforward extension of previ-
ously obtained results for the solitons with S=0 in the same
model [5,6], and for vortex solitons in the 2D model with the
2D lattice [3,4,17]. Indeed, it is known in terms of the 2D
model, and will be shown below in the 3D GPE with the
Q2D lattice potential, that the vortex soliton is built, roughly
speaking, as a set of four fundamental solitons (density
peaks), trapped in four potential wells, which form a rhom-
bus, with an empty site in the middle. The vorticity (S) is
manifested by phase shifts between adjacent peaks Ad
=(27S)/4 (see Figs. 9 and 12 below). It is well known too
that the interaction between fundamental multidimensional
solitons is attractive for 0<A®d < 7/2, and repulsive for
7/2<AD =< [for vortex solitons, the interaction sign is
additionally multiplied by (~1)%] [22]. It is also known that
the interplay of the interaction between solitons and their
pinning by the lattice potential may give rise to stable bound
states if the direct interaction is repulsive [23]. The latter
argument explains quite well the stability and instability of
higher-order vortices and supervortices supported by the 2D
lattice in 2D equations, even if the stability of the vortex
with S=1, corresponding to Ad=1/2, seems indefinite, in
this sense. In the 3D equation with the Q2D lattice potential,
the same argument gives rise to a problem, as the repulsion
between fundamental solitons, which constitute the vortex
pattern, while helping to stabilize it in the lattice’s plane,
seem to make it unstable in the orthogonal (free) direction. It
will be demonstrated below that stable 3D vortices with S
=1 and S=2 can be found, nevertheless (that is, these quali-
tative arguments do not apply in all cases).

The paper is organized as follows. In the next section, we
formulate the model and present analytical predictions for
the vortex solitons and their stability obtained by means of
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the variational approximation (VA) and VK criterion. In Sec.
III, we introduce numerical methods used in this work (a
special two-stage numerical technique was developed, which
makes it possible to find a 3D vortex-soliton solution with
high accuracy), and then report basic numerical results. In
particular, we demonstrate that most 3D vortex solitons are
stable, although the stability region is limited. Generally, the
numerical findings for the solitons with S=1 comply with the
VA (the agreement may be considerably improved by means
of a phenomenological linear adjustment of plots generated
by the VA). Numerical results for S=2 vortices reveal a re-
spective stability region too, but they are quite different from
the predictions obtained by means of the VA in that case.

Numerical findings are presented below as sets of ex-
amples, as collecting results of direct simulations of the 3D
model in a completely systematic form is really difficult.
However, the examples will provide for adequate under-
standing of the generic situation.

A. Model and variational approximation

As said above, we aim to consider the GPE with the self-
attractive cubic nonlinearity in the 3D space (x,y,z). The
equation contains the Q2D square-shaped lattice potential,
with strength —e, whose period is scaled to be 7. In normal-
ized units, the GPE for the single-atom wave function u is
[5.6]

u [1<i > —>—s(cos(2x)+COS(2y))+|”|2”

+ + +
ot 2\ on? (9y2 9z*
=0. (1)

In terms of nonlinear optics, the same equation with time ¢
replaced by propagation distance z, and the third coordinate z
replaced by the local time 7=t—z/V, (V, is the group veloc-
ity of the carrier wave), describes the transmission of a spa-
tiotemporal light signal in the bulk medium with the Kerr
self-focusing nonlinearity, anomalous GVD, and transverse
periodic modulation of the local refractive index.

Stationary solutions to Eq. (1) are looked for as u
=i(x,y,z)e ™™, with chemical potential u (in optics, —u is
the propagation constant). The equation for the stationary
function %, which follows from Eq. (1), is associated with
Lagrangian L=[[[Ldxdydz, whose density is

1
L=+ a0+ 0.08)

+ &(cos(2x) + cos(2y))|¢f* - %| = plyt®. )

The Hamiltonian associated with Eq. (1) (BEC energy) is
H=[[[Hdxdydz, with

1
H= 5(|axw|2 +]0,ud* + |9.4)

+e(cos20) +cosM ~ Sl @)

Along with the energy, the GPE conserves the norm, which
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FIG. 1. (Color online) Dependences u(N) (a) and H(N) for the
family of 3D solitons with S=0, as predicted by the variational
approximation at several different values of strength & of the
quasi-2D lattice.

is proportional to the number of atoms in BEC, or the total
energy in terms of the optical model, N=[[[|(x,y,z)|?
Xdxdydz.

We attempt to approximate 3D soliton solutions of Eq.
(1), with vorticity §=0,1,2,..., by the following ansatz:

2 2

2
x“+y z
-, 4
2p? 2h2) “)

Ys=Ax +iy)S exp(—

with real variational parameters A, p, and & [since (x+iy)S
=r5¢"5% where r and @ are the polar coordinates in the plane
of (x,y), the ansatz complies with the usual definition of the
vorticity]. Following the general scheme of the VA [9,24],
we substitute the ansatz in density (2) and calculate, in an
analytical form, the effective Lagrangian. Then, the varia-
tional equations dL/dp=dL/dh=dL/dA=0 take a form,
which makes it possible to solve them for A, h, and u, treat-
ing p and € as free parameters (i.e., p plays the role of an
intrinsic parameter of the soliton family).

The results of the VA for S=0 and S=1 are presented, in
the form of w(N) and H(N) dependences, in Figs. 1 and 2. In
fact, the VA for the fundamental 3D solitons in the same
model, based on ansatz (4), was elaborated in Ref. [5]. Here
we include the variational results for S=0 for the sake of
comparison with the new results pertaining to S=1.

The w(N) dependence makes it possible to check the nec-
essary stability condition given by the above-mentioned VK
criterion du/dN <0 [1,25]. Figures 1(a) and 2(a) demon-
strate that the soliton families are correctly predicted to be
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FIG. 2. (Color online) The same as in Fig. 1 for vortex solitons
with S=1. In (a), the dashed curve additionally shows the w(N)
dependence as predicted by the modified approximation, based on
ansatz (5), for e=—1.25. Note a “swallow-tail” pattern in the H(N)
dependence, characteristic to models of this type [6,10].

VK unstable without the OL, £=0, but contain segments that
may be stable at € <0. The VK criterion may only guarantee
the absence of real unstable eigenvalues in the spectrum of
small perturbations around the soliton, but it does not detect
complex eigenvalues accounting for oscillatory instabilities.
Indeed, in models with the quadratic or saturable nonlinear-
ity, where the 3D fundamental solitons are stable, their spin-
ning counterparts are destroyed by oscillatory azimuthal per-
turbations [20]. However, the square-shaped Q2D lattice,
while breaking the rotational invariance of Eq. (1), may also
remove the azimuthal instability, as shown by the numerical
results presented below.

Eventually, the comparison with numerical results demon-
strates that the VK criterion turns out to be sufficient for all
solitons in the present model. Of course, we here apply the
criterion not to exact families of soliton solutions, but rather
to the respective VA; however, comparison of the VA predic-
tions for the fundamental-soliton family (Fig. 1) with nu-
merical results reported in Refs. [5-7] and their extensions
demonstrates that the VA provides for a very accurate de-
scription of the fundamental-soliton family (as was already
concluded, in a less detailed form, in Ref. [5]). Comparison
with the numerical findings for S=1 (see below) demon-
strates that the agreement with the VA is good in this case
too, although poorer than for S=0.

Plots similar to those in Figs. 1 and 2 were also generated
for S=2. They are not displayed here, as they are not borne
out by numerical results (which are displayed below for
S=2).
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FIG. 3. (Color online) Relations between the norm and ampli-
tude for vortex solitons with S=1, found from the numerical solu-
tion of Eq. (1). Red crosses and blue circles depict, respectively,
stable and unstable vortices, while lines connecting these symbols
are only guides for the eye. The continuous line shows the same
relation as predicted by the variational approximation based on an-
satz (4). The dashed line is a fit to the numerical data, obtained from
the variational curve by linear compression, N— 1.16N.

Besides the simplest ansatz, based on Eq. (4), for vortices
with S=1 we also tried a more sophisticated one, which takes
into regard that some of stable solitons of this type are actu-
ally composed of four distinct density peaks forming a rhom-
bus (in the 2D model on the 2D lattice, this fact was explic-
itly used to compose vortex solitons in Ref. [17]). The
accordingly constructed ansatz is

lp: lpO(x - a’)’?Z) + in(xuy - a,z)
- lﬁo(x+a,y,z)—i¢0(x,y+a,z), (5)

where iy, is the same trial function as in Eq. (4) with $=0,
the phase distribution in Eq. (5) precisely corresponds to the
phase circulation of 27 around the center of the vortex [the
center is set at (x,y)=(0,0)], and size a of vortex rhombus
(5) is a variational parameter too, in addition to A, p, and h
in ¢. The VA based on ansatz (5) can be implemented by
means of computer-assisted analytical calculations. Eventu-
ally, the corresponding variational equations yield results
which are not conspicuously different from those based on
straightforward ansatz (4) [see the dashed curve in Fig. 2(a)],
nor are they essentially closer to numerical findings.

II. NUMERICAL RESULTS

A. Computational methods

Stationary 3D solutions of Eq. (1) in the form of vortex
solitons, with S=1 and S=2 (solutions with S=0 were ob-
tained in Refs. [6,5]) were constructed by means of a two-
step procedure. First, we used the known method of the
imaginary time integration [26], starting from the initial
ansatz,
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FIG. 4. (Color online) Chemical potential u versus the norm of
vortex solitons with S=1. The symbols have the same meaning as in
Fig. 3. The dashed line is deduced from the solid one, which is
generated by the variational approximation, by a phenomenological
linear transformation, N— 1.16N, u——1.164+0.525u.

WD = Alx + i) expl— (Va? + 2 = r)/(2p) - 21(212)],

with values of ry, p, and & chosen to ensure the convergence
of the scheme. As in Ref. [6], the Crank-Nicholson method
was employed for the integration; in doing so, equations of
the implicit scheme were solved using a double Picard itera-
tive procedure. The latter was implemented by resolving the
linear system at each step by dint of the Gauss-Seidel itera-
tions.

The accuracy of the stationary solutions produced by the
imaginary-time integration was assessed by means of a con-
vergence measure,

[ul
10

107

FIG. 5. (Color online) The local amplitude of the wave field in
the vortex soliton with S=1, in the transverse plane, is shown on the
logarithmic scale. A three-dimensional image of this soliton is dis-
played below in Fig. 8(a).
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FIG. 6. (Color online) Transverse width w, of the vortex soli-
tons with S=1 versus its maximum amplitude. The symbols have
the same meaning as in Fig. 3. The upper and lower sets of the
points represent, respectively, the average width, computed as per
Eq. (7), and the asymptotic width, as given by Egs. (10) and (9).
The continuous curve is the prediction of the variational approxi-
mation, given by Eq. (11).

max|‘/’n+1(x,)’,2) - '//n(x,y,Z)|
max|¢//n+1(x,y,z)| + maX|¢n(x9y’Z)| '

(6)

where n is the iteration number, and the maximum is taken
over the entire 3D space. For the solutions generated by the
first step of the numerical procedure, measure (6) could not
be usually made essentially better than 1072 (further continu-
ation of the iterations would lead to a divergence).

At the second step, more accurate stationary solutions
were obtained as follows. The Picard iterations lead to the
linear system

0.5 1 15 2 2.5
max| Y1

FIG. 7. (Color online) Axial length w, of the solitons with
S=1. The symbols and continuous curve represent, respectively,
numerical results as given by Eq. (7), and the prediction of the
variational approximation as per Eq. (11).
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FIG. 8. (Color online) The shape of a stable vortex soliton with
S=1 belonging to the middle point of the upper branch in Fig. 3
(max| | =0.53, u=-0.69, N=22.6): (a) the three-dimensional dis-
tribution of the local amplitude |¢(x,y,z)|; (b) the phase distribu-
tion, on top of contour plots of the amplitude, in the midplane
z=0.

(1/2)5¢n+l + wlv[/n+l + l/’n+l|l//n|2
m— o —g[cos(2x) + cos(2y)]

el =~

(n is iteration’s number), which was solved by means of a
fixed-point algorithm, adjusting the value of parameter w to
improve the convergence. Laplacian A,,; was computed
using the five-point finite-differences formula along each
axis. At this step of the numerical solution, the convergence
measure given by Eq. (6) was used again. The computations
were performed, typically, in the integration domain of size
—-l4=<x,y,z<+14, with up to 210X210X210 discretiza-
tion points. This rather complicated procedure was necessary
due to peculiarities of the numerical problem, for which
straightforward schemes failed to converge.

After having found the stationary solutions, their stability
has been tested by simulating the evolution in real time, us-
ing the same Crank-Nicholson method as for the imaginary-
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FIG. 9. (Color online) The same as in Fig. 8, but for a stable
vortex with a higher amplitude (max || =1.45, u=-0.98, N=22.3).

time integration. The initial configuration was a perturbed
stationary state, which was either the above-mentioned low-
accuracy one produced by the first step of the numerical
procedure, or a higher-accuracy state to which a random
noise of relative amplitude 0.01 was explicitly added. The
real-time integration has confirmed that the accuracy of the
stationary states achieved with the two-step procedure was
sufficient to find stable vortex solitons.

B. Vortices with S=1

The numerical analysis demonstrates that most of the 3D
vortex solitons with S=1 are stable. Characteristics of this
numerically found solution family, in the form of a relation
between the norm and amplitude (maximum value of
|(x,y,z)|) are collected in Fig. 3, which also shows the
prediction provided by the VA [for ansatz (4) with S=1,
max|i,|=Ap/e]. Qualitative agreement between the varia-
tional and numerical results is observed, which may be im-
proved by a phenomenological linear adjustment of the VA-
generated plot (see the dashed curve in Fig. 3). The VA
predicts that parts of the solution family corresponding to the
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r=0

FIG. 10. (Color online) Development of a spiral phase pattern as
a result of the decay of a strongly perturbed stable vortex soliton
with S=1, max||=0.53, u=-0.69, and N=22.6.

rising branches of curve N=N(max|¢|), in the interval of
12.53 <N <21.29 for the lower branch, and up to N=132.6
for the upper one (only a small part of the latter branch is
displayed in Fig. 3), are stable in the sense of the VK crite-
rion. Relations between chemical potential px and the ampli-
tude are displayed in Fig. 4. It is seen that good agreement
between the numerical and variational results can be
achieved if the variational plot is linearly adjusted, as stated
in the caption to Fig. 4.

The average transverse width and axial length of the axi-
symmetric 3D soliton, centered at the origin, can be com-
puted numerically as

026604-6



THREE-DIMENSIONAL VORTEX SOLITONS IN QUASI-...

3.5
max/yl

0 10 20 30 40 p 50 60

FIG. 11. (Color online) Slow transition to collapse in a quasis-
table vortex with S=1, max|¢|=1.61, u=-1.30, and N=22.89. In
this case, the soliton period may be estimated as (max|y|)~2~ 0.4
(in the normalized units), hence the quasisoliton survives over
~125 periods. The shape of this soliton is four peaked (cf. Fig. 9),
with all peaks developing the collapse simultaneously.

f x*| i dxdydz f 2|’ dxdydz

2
X

2 _
| f |yPdxdydz
(7)

Another definition of the soliton’s size is based on its
asymptotic form far from the center, by drawing |#{ on the
logarithmic scale (see Fig. 5) [Gaussian ansatz (5) does not
apply to the description of the asymptotic form]. The expo-
nential decay can be fitted to the following expression:

w =W%EW3/2= , W

f |yfPdxdydz

In(|g(x,y,2)]) = = Nx? + y* + az? + Blcos(2x) + cos(2y)].
(®)

Comparison of Eq. (8) to numerical data demonstrates that 8
slightly varies along the set of data. Decay rate A can be
evaluated numerically as

f In(|¢h(x,y,2)|)dxdy
S

f Vx? + y2dxdy
s

A , 9

where S is the domain of the numerical integration in plane
z=0. The transverse width related to the asymptotic form of
the soliton is expressed in terms of \ as

w,=V3/(2\). (10)

Numerical results for the soliton’s transverse width and
axial length are collected in Figs. 6 and 7, respectively. The
figures also include the VA prediction for these characteris-
tics of the soliton, which are obtained by the substitution of
ansatz (5) in Egs. (7),
wlVA) = P, WEVA) =h/ \5. (11)

X
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FIG. 12. (Color online) A typical example of the stable vortex
soliton with S=2, cf. Fig. 9 for S=1. In this case, e=-1.25,
max| | =141, u=-1.11, and N=22.64.

The figures demonstrate good agreement between the nu-
merical and variational results for w,. The prediction of the
VA for the transverse width is less accurate, but it makes
sense too.

The numerical data reveal a gradual transition between
two different shapes of the vortex shape, four-peak and
eight-peak ones, typical examples of which are displayed in
Figs. 8 and 9. The phase around each peak is nearly constant,
while the phase difference between the peaks is 7/2 and
/4, in the former and latter cases, respectively. Additional
peaks with lower intensities also exist, as seen from Fig. 5.

Unstable vortices of the same type, with S=1, frequently
assume the four-peak shape, similar to that in Fig. 9. In most
cases, the instability is radial, rather than azimuthal: each
peak develops intrinsic collapse, without tangible breakup of
the symmetry between them; nevertheless, in some cases the
symmetry between the peaks may be broken in the course of
the collapse, with a particular peak reaching the singularity
first.

The stability margin of the stable vortices is not very
large, and a strong enough perturbation may lead to their
destruction. A typical example of decay (spreading out due to
the diffraction) of a strongly disturbed multipeaked vortex
state, belonging to the upper branch in Fig. 3, is displayed in
Fig. 10. The phase pattern changes in the course of the decay,
developing a spiral form. In this case, the strongly pertubed
state has the same global shape and peak amplitude as the
unperturbed vortex, but a lower norm.
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FIG. 13. (Color online) An example of the decay of an unstable vortex soliton with S=2, shown by means of intensity plots for |(x, )|
(top), and phase patterns (bottom) in the midplane, z=0. In this case, e=—1.25, and parameters of the unstable soliton are max||=0.25,

u=-0.60, and N=5.51.

Besides the stable vortex solitons with S=1 and their defi-
nitely unstable counterparts, simulations reveal the existence
of objects that may be called quasistable pulsating vortices.
Generally speaking, they are unstable, but with a slowly de-
veloping instability, the onset of which is preceded by sev-
eral cycles of long-period oscillations, as shown in Fig. 11.
These quasistable solitons eventually undergo collapse, as is
also seen in Fig. 11, but with a survival time =100 soliton
periods (the period is a characteristic time of the intrinsic
evolution of a stable perturbed soliton). In terms of BEC, it
translates into many seconds, hence the quasistable vortex
has a good chance to be created in the experiment.

C. Vortices with S=2

Numerical analysis produces stable solitons with the
double vorticity too. Although their parameters are poorly
predicted by the VA, unlike the solitons with S=1, Fig. 12
shows that their general structure is again based on four den-
sity peaks surrounding an empty site of the OL, the phase

shift between the peaks being 7. A noticeable difference
from their S=1 counterparts is that the solitons are stronger
localized (“shorter”) in the free direction z.

Unstable vortices with S=2 are more prone to decay in
the lattice’s plane (rather than to intrinsic collapse of each
individual peak, which may be plausibly explained by stron-
ger repulsion between the peaks with the phase difference of
7), in comparison with the unstable vortices that have S=1.
A typical example of the decay is displayed in Fig. 13, which
also features formation of a spiral phase pattern (cf. Fig. 10).

In addition to the intrinsic collapse and decay, a third
instability mode was found for the S=2 vortices, namely,
their decay (self-stretching) in the free direction z. An ex-
ample of this mode is shown in Fig. 14.

III. CONCLUSION

We have constructed stable three-dimensional solitons
with embedded vorticity, S=1 and 2, in the three-
dimensional Gross-Pitaevskii or nonlinear Schrodinger equa-
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FIG. 14. (Color online) Decay of an unstable vortex with S=2 through its indefinite self-stretching in direction z. Parameters are

e=-1.25, max|¥|=0.25, u=-0.21, and N=2.25.

tion with the quasi-2D square-lattice potential. The model
directly applies to BEC with self-attraction trapped in a
quasi-2D optical lattice, and, less accurately, to optical spa-
tiotemporal solitons in photonic-crystal fibers. The results
provide examples of soliton species that were not reported in
previously studied models, viz., stable 3D vortex solitons
with §> 1, and vortex solitons (with any S # 0) supported by
a lattice in the 3D space. The solitons with S=1 were pre-
dicted by means of the VA (variational approximation), and
then found in the numerical form. A special two-stage nu-
merical procedure was developed, which makes it possible to
construct the 3D vortices with high accuracy. For the solitons
with §=2, the VA does not produce relevant results, but
stable solitons of this type have been found too, by means of
numerical methods. Basically, the localized vortices are built
as sets of four fundamental solitons forming a rhombus,
with phase shifts mS/2 between its adjacent sites, and an
empty site in the middle. The very possibility of the stability
of such patterns in the quasi-2D lattice potential is counter-
intuitive (as explained in the Introduction), but they exist,
nevertheless.

Typical scenarios of the instability development of un-
stable localized vortices have been identified too. These in-
clude simultaneous intrinsic collapse of the four density
peaks that constitute the vortex, or, on the contrary, decay of
the pattern in the lattice’s plane (z=0). In the case of S=2, an
additional instability scenario occurs, namely, self-stretching
of the vortex in the orthogonal (unconfined) direction.

With presently available techniques, it is possible to
implement predictions of this work in experiments with self-
attractive BEC. Experimental creation of “light bullets” with
intrinsic vorticity in a photonic-crystal fiber may be possible
too. To that end, one may couple into the fiber a femtosecond
pulse with the vortical structure created in it by passing
through a specially designed mask (cf. Ref. [27]).
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