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The emission of electromagnetic radiation by localized complex electric charge and current distributions is
studied. A statistical formalism in terms of general dynamical multipole fields is developed. The appearing
coefficients are treated as stochastic variables. Hereby as much as possible a priori physical knowledge is
exploited. First results of simulated statistical electromagnetic fields as a function of position are presented.
Sampling this field at one point approximates its resulting probability density.
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I. INTRODUCTION

Understanding the radiation of electromagnetic sources is
becoming increasingly more important. Exact analytical cal-
culation of the electromagnetic fields is only feasible in a
few cases. Alternatively, one needs to make various approxi-
mations and/or perform extensive numerical calculations.
For complex sources, however, such computations may be-
come extremely cumbersome especially if there are no sim-
plifications due to, for example, frequency band limits and
distances. One may even doubt the usefulness of such a de-
terministic approach in many cases, because small changes
in a complex source may drastically change the electromag-
netic field pattern. These considerations actually stem from
the study of electromagnetic fields in complex cavities—see
�1–10�.

Here we propose a statistical approach to address the elec-
tromagnetic radiation of complex sources. Since the present
physical problem, however, essentially differs from the one
in closed cavities, no methods can be taken over directly. As
always in probability theory and stochastics the choice of
random variables and the “establishment” of their a priori
probability distributions is crucial. These depend on the ac-
tual system; i.e., the underlying physics and cannot be re-
placed by philosophical principles �11�.

Only assuming that the sources are localized enables an
expansion of the radiating fields outside the source region by
means of generalized multipoles �12,13�. In this way one
obtains exact general solutions of Maxwell’s equations in
terms of infinitely many unknown coefficients. These com-
plex numbers are in principle exactly determined by the
sources. In practice, of course, a finite number, essentially
depending on the extension of the source, will yield the de-
sired accuracy. Computation of the multipole coefficients for
complex sources is usually illusory. Therefore we propose to
treat them as stochastic variables, compressing all the intri-
cate but hopefully irrelevant details of the source under con-
sideration. Apart from respecting Maxwell’s theory, it is tried
to put in more available physical knowledge like an exten-
sion of the source, typical values of appearing currents, and
�approximate� symmetries. Beyond that, various assumptions
concerning the statistics need to be made. Only experiments
can eventually justify our approach.

The general concept of random fields in radiation theory
has of course been established for some time and can be
found in textbooks like �11�. An important early contribution
was given by Wolf �14�. An energy conservation law for
randomly fluctuating electromagnetic fields is derived in
�15�. Recent developments are a study of coherence for sto-
chastic scalar electromagnetic sources and fields �16� and the
investigation of stochastic interactions between electromag-
netic fields and systems �17,18�.

The outline of this paper is as follows. First, the general
multipole expansion of radiation fields is reviewed. The main
part introduces the statistics of the multipole coefficients. We
have chosen an approach, which includes physical con-
straints due to, for instance, symmetries. It is discussed
which quantities can be evaluated with the assumptions so
far. Next, the choice of a probability density and the actual
implementation are addressed. The following section pre-
sents field simulations exploiting pseudorandom generators
for Gaussian and uniform probability distributions. Finally,
we summarize the formalism and results and propose further
studies for the near future.

II. MULTIPOLE EXPANSION

Electromagnetic radiation is generated by charge and cur-
rent densities. Assuming that these source distributions are
localized, a general, systematic expansion of the electromag-
netic fields by means of multipoles is developed. It is valid
everywhere outside the source region. For given harmonic
systems, exact expressions for the multipole coefficients in
terms of charge and current densities are derived. These re-
sults are valid for arbitrary source dimension, wavelength,
and distance—with the caveat that the observation point be
outside a spherical surface completely enclosing all sources.
Examples of well-defined current distributions are explicitly
worked out in order to compare several field expressions.
Given the multipole coefficients the formalism enables the
calculation of the radiation field at arbitrary locations �out-
side the above-mentioned sphere containing the electromag-
netic sources�.

We start with the theory of electrodynamics, in particular
Maxwell’s equations, Poynting’s theorem, and the general
multipole fields. Two examples of localized current distribu-
tions are treated next: linear current and circular loop current.
The theoretical work in this section essentially follows the*rik.naus@tno.nl
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elaborate framework of Jackson ��12�, Chap. 9�; we include
it to make this paper self-contained. SI units are used.

A. Maxwell equations and Poynting theorem

Maxwell’s equations, describing the electric field E� , the

magnetic field H� , and their interaction with charge and cur-
rent density � and j�, respectively, can be written for harmoni-
cally varying fields and sources of frequency � as

�0�� · E� = �, �� � E� = ikZ0H� ,

�� · H� = 0, �� � H� = J� − ikZ0
−1E� , �1�

where Z0= ��0 /�0�1/2 is the impedance of free space, wave
number k=� /c, and velocity of light c= ��0�0�−1/2. The cor-
responding wavelength is given by �=2�c /�=2� /k.
Charge and current density are not independent; combining
the source equations gives the continuity equation

i�� = �� · J� . �2�

With the assumed time e−i�t dependence of field and
sources we have as the physical electric field

E� �r�,t� = Re�E� �r��e−i�t� = 1
2 �E� �r��e−i�t + E� *�r��ei�t� . �3�

Other quantities follow analogously. For time averages of
products we take the real part of the product of one complex
quantity with the complex conjugate of the other.

The complex Poynting vector is defined as

S� = 1
2 �E� � H� *� . �4�

The corresponding harmonic energy densities read

we = 1
4�0�E� · E� *�, wm = 1

4�0�H� · H� *� . �5�

The total time-averaged energy density is given by their sum.
Herewith the Poynting theorem for harmonic fields can be
formulated:

1

2
�

V

J�* · E� d3r + 2i��
V

�we − wm�d3r + �
S

S� · n�da = 0,

�6�

where n� is the outward normal to the closed surface S, the
boundary of the volume V.

With the aid of the time-averaged Poynting vector we get
the time-averaged power per unit solid angle:

dP

d	
=

1

2
Re�r2e�r · �E� � H� *�� , �7�

where e�r is the unit vector in the r� direction. The total power
reads

P =� � dP

d	
�d	 =

1

2
� Re�r2e�r · �E� � H� *��d	 . �8�

B. Multipole expansion

In this section we present the general multipole expansion

of the electromagnetic fields E� and H� in a source-free region
of space. In other words, generic solutions of Maxwell’s

equations �1� with �=0 and J� =0 are given. For details of the
derivation we refer to �12,13�; we restrict ourselves to the
essential results. These read in spherical coordinates �r ,
 ,��

H� �r�� = 	
l=0

�

	
m=−l

l 
aE�l,m�f l�kr�X� lm −
i

k
aM�l,m��� � gl�kr�X� lm� ,

E� �r�� = Z0	
l=0

�

	
m=−l

l 
 i

k
aE�l,m��� � f l�kr�X� lm

+ aM�l,m�gl�kr�X� lm� , �9�

with normalized vector spherical harmonics

X� lm�
,�� =
1

�l�l + 1�
L�Ylm�
,�� �l 
 1� �10�

and X� lm=0 for l=0 �12�. We can therefore restrict ourselves
to l
1. The functions Ylm are the well-known spherical har-
monics, and the differential operator

L� = − i�r� � �� � �11�

is familiar as �−1 times the orbital angular momentum opera-
tor from quantum mechanics. The radial functions f and g
are of the form

f l�kr� = Cl
�1�hl

�1��kr� + Cl
�2�hl

�2��kr� ,

gl�kr� = Al
�1�hl

�1��kr� + Al
�2�hl

�2��kr� , �12�

with the spherical Hankel functions h. The latter are combi-
nations of the spherical Bessel functions:

hl
�1��x� = jl�x� + inl�x� ,

hl
�2��x� = jl�x� − inl�x� . �13�

The coefficients aE�l ,m� and aM�l ,m� specify the amounts of
electric and magnetic multipole fields. They are determined

by the scalars r� ·E� and r� ·H� via

Z0aE�l,m�f l�kr� = −
k

�l�l + 1�
� Ylm

* r� · E� d	 ,

aM�l,m�gl�kr� =
k

�l�l + 1�
� Ylm

* r� · H� d	 . �14�

These expressions also determine the relative proportions in

Eqs. �12�: knowledge of r� ·E� and r� ·H� at two different radii r1
and r2 completely specifies the fields. In the case of only
outgoing waves at infinity one has Al

�2�=Cl
�2�=0 in Eqs. �12�.

Thus we can choose f l�kr�=gl�kr�=hl
�1��kr� in the expansion

of the fields everywhere outside the source region. Another
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consequence of this boundary condition is that the scalars

r� ·E� and r� ·H� at one radius r determine the electromagnetic
field.

C. Sources of radiation

The multipole fields are generated by sources—i.e.,
charge and current distributions. We assume these to be har-
monic and to be localized. Furthermore, the point r� in which
the fields are considered is supposed to be outside a spherical
surface completely enclosing the sources. In this case it is
possible to uniquely relate the multipole coefficients aE�l ,m�
and aM�l ,m� to the charge and current distributions. In
source-free regions the electric field is divergenceless. Since
this is technically advantageous, the field

E� � = E� +
i

��0
J� �15�

is accordingly introduced. Herewith, inhomogeneous wave

equations for the scalars r� ·H� and r� ·E� � are obtained.
Their solutions read in terms of the angular momentum

operator �11�

r� · H� =
i

4�
� eik
r�−x�



r� − x�

L� · J��x��d3x ,

r� · E� = −
Z0

4�k
� eik
r�−x�



r� − x�

L� · ��� � J��x���d3x , �16�

where it has been required that there be only outgoing waves
at infinity. By means of the spherical-wave expansion of the
Green function, one can derive �12� for the electric multipole
coefficient

aE�l,m� =
− ik2

�l�l + 1�
� Ylm

* �c��r�rjl�kr�� + ik�r� · J��jl�kr��d3r .

�17�

Analogously, one eventually obtains as magnetic multipole
coefficient

aM�l,m� =
− ik2

�l�l + 1�
� Ylm

* ��� · �r� � J��jl�kr��d3r . �18�

These expressions can be extended to include intrinsic mag-
netizations �12�. It should be emphasized that these results
are exact, valid for arbitrary frequency and source size. We
end this section by discussing two physically interesting lim-
iting cases.

1. Small sources

If the source dimensions are very small compared to the
wavelength, kd�1, the multipole coefficients simplify con-
siderably and can be related to the familiar multipole mo-
ments

aE�l,m� �
ckl+2

i�2l + 1�!!
� l + 1

l
qlm, �19�

aM�l,m� �
ikl+2

�2l + 1�!!
� l + 1

l
Mlm, �20�

with electrostatic and magnetic multipole moments

qlm =� rlYlm
* �d3r , �21�

Mlm = −
1

l + 1
� rlYlm

* �� · �r� � J��d3r . �22�

In this limit the charge density determines the electric mul-
tipole fields, whereas the magnetic multipole fields are re-
lated to the current density.

2. Radiation zone

The far �radiation� zone is defined as distances r��, im-
plying kr�1. For a general localized source distribution the
radiation fields in the far-zone approach

H� →
exp ikr

kr
	
l=1

�

	
m=−l

l

�− i�l+1�aE�l,m�X� lm + aM�l,m�e�r � X� lm� ,

E� → Z0H� � e�r. �23�

The time averaged power radiated per unit solid angle �cf.
Eq. �7�� is

dP

d	
=

Z0

2k2�	
l=1

�

	
m=−l

l

�− i�l+1�aE�l,m�X� lm � e�r + aM�l,m�X� lm��2

.

�24�

The total radiated power �8� becomes an incoherent sum of
different multipole coefficients:

P =
Z0

2k2	
l=1

�

	
m=−l

l

�
aE�l,m�
2 + 
aM�l,m�
2� . �25�

We refer to �12� for further elucidations. Here we recall that
Eq. �25� is derived for the radiation zone, where this power is
supposed to be measured. In the remainder of this paper we
tacitly imply this.

D. Examples

1. Linear antenna

As a first example of the multipole expansion of the ra-
diation from a localized source, we consider a linear, infi-
nitely thin, center-fed antenna �12�. It lies along the z axis
from −d /2�z�d /2, and its current is given by

I�z,t� = I�
z
�e−i�t, �26�

with I�d /2�=0. For r�d /2 the current density reads in
spherical coordinates

J��r�� =
I�r�

2�r3 ���cos 
 − 1� − ��cos 
 + 1��r� . �27�
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The corresponding charge density follows from Eq. �2�:

��r�� =
− i

�
�rI�r�
��cos 
 − 1� − ��cos 
 + 1�

2�r2 � . �28�

The physical, real charge and current densities are propor-
tional to sin �t and cos �t, respectively.

The magnetic multipole coefficients aM�l ,m� vanish be-

cause r��J� =0. The electric multipoles are nonzero for odd l
and m=0:

aE�l,0� =
k

2�
�4��2l + 1�

l�l + 1�

��
0

d/2

�− �r�rjl�kr��rI� + rjl�kr���r
2I + k2I��dr .

�29�

Since we want to compare multipole expansions for given
current distributions, we once more exploit the assumption of
an infinitely thin antenna. Consequently, modifications of the
current due to radiation can be neglected. Here we prescribe
the current as

I�z� = I sin�kd/2 − k
z
� . �30�

The last part of the integrand vanishes in this case, and we
readily obtain

aE�l,0� =
I

�d
�4��2l + 1�

l�l + 1�
��kd/2�2jl�kd/2��, l odd.

�31�

Note that no assumptions concerning the source dimension
relative to the wavelength have been made; actually, these
results are studied for a half-wave �kd=�� and a full-wave
antenna �kd=2�� in �12�.

2. Circular loop

As the next example we consider an infinitely thin circu-
lar loop carrying a constant current I0. The derivation of
these multipole coefficients has, to the best of our knowl-
edge, not been presented in the literature. Therefore we pro-
vide some details of this calculation. No assumptions con-
cerning wavelength, radius, and observation distance are
made—with the exception of the caveat r�a, where a is the
radius of the loop.

The current density is in cylindrical coordinates given by

J��r��e−i�t = I0��z���� − a�e−i�tê� = j���,z�e−i�tê�. �32�

Since �� ·J� =0, Eq. �2� yields a vanishing charge density

� ���0�. Moreover, we see that r� ·J� =0. As a consequence,
the electric multipole coefficients vanish: aE�l ,m�=0. Com-

puting r��J� gives

r� � J� = j���,z��− zê� + �êz� . �33�

At this point, it is convenient to transform to spherical coor-
dinates:

r� � J� = −
I0

r sin 

��r − a���cos 
�ê
. �34�

Then it is easily verified that

�� · �r� � J�� = −
I0

r sin 

��r − a��
��cos 
� . �35�

Inserting this into Eq. �18� and doing the trivial r integration
yields

aM�l,m� = ajl�ka�
iI0k2

�l�l + 1�

��
0

2�

d��
0

�

d
Ylm
* ��
,����
��cos 
� . �36�

We insert the explicit expression for the spherical harmonics
and obtain, after integrating over the angle �, only m=0
contributions:

aM�l,0� = ajl�ka�
2�iI0k2

�l�l + 1�
�2l + 1

4�

��
0

�

d
Pl�cos 
��
��cos 
�

= − ajl�ka�
2�iI0k2

�l�l + 1�
�2l + 1

4�
Pl

1�0� . �37�

Pl and Pl
m are the Legendre polynomials and the associated

Legendre functions, respectively. Only odd multipoles are
nonvanishing because Pl

1�0��sin �l /2.

III. STATISTICS OF COEFFICIENTS

The exact calculation of multipole coefficients is only fea-
sible for relatively simple source distributions like the ex-
amples presented above. For more complex charge and cur-
rent distributions the integrations get cumbersome, even
using a numerical approach. Moreover, the precise form of
the source densities may even be unknown; this will be more
the rule than the exception. Consider, for instance, electronic
subsystems or various electronic components present on a
printed circuit board �PCB�. Lacking detailed source distri-
butions, the challenge is to estimate the high-frequency ra-
diation in the near and intermediate fields. The idea of a
statistical approach for complex systems is to generate the
relevant multipole coefficients by means of a probability
density. Just as in statistical electromagnetics for complex,
enclosed systems we try to put in “as much physics as pos-
sible” �3�; this is disputably known as “objective Bayesian
statistics” �1,19�. In cavities, however, the crucial assumption
is the very large number of modes �2�. Here we stick to
harmonic analysis and the statistics relies on the complexity
of the extended sources.

A. General formalism

In this section we introduce statistical electromagnetics
for complex radiators, including the boundary condition of
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outgoing waves at infinity. Further physical input is dis-
cussed below. A joint probability distribution is assumed for
the multipole coefficients aA�l ,m�, where the index A de-
notes E or M. These are complex quantities, with indepen-
dent real and imaginary parts aA�l ,m�=�lm

A + i�lm
A . Further-

more, we assume independence for different l ,m values,
implying that the joint distribution is a product:

P��all lm
�lm
E ,�lm

E ,�lm
M ,�lm

M ��

= �
l=1

�

�
m=−l

l

Plm
E ��lm

E �P̃lm
E ��lm

E �Plm
M ��lm

M �P̃lm
M ��lm

M � . �38�

Single-variable distributions are normalized:

� d�Plm
A ��� =� d�P̃lm

A ��� = 1 for all lm . �39�

Means, variances, and covariances are defined in the usual
way �11�. We presuppose that all means are zero:

��lm
A � = ��lm

A � = 0 ⇔ �aA�l,m�� = ��lm
A � + i��lm

A � = 0. �40�

Consequently, we get for the covariances

��alm
A al�m�

A�* �� = �alm
A al�m�

A�* � − �alm
A ��al�m�

A�* �

= ���lm
A �l�m�

A� �� + ���lm
A �l�m�

A� ��

= �ll��mm��AA����lm
�A�2 + ��lm

�A�2�

= �ll��mm��AA�
�lm
A 
2, �41�

in terms of standard deviations. Note that we also have used
the statistical independence of the various multipole coeffi-
cients. Instead of describing the complete electromagnetic
field as stochastic with mean zero, one can actually add a
deterministic field. The latter “mean field” may be expressed
by the general multipole expansion as well—i.e., by their
known coefficients.

The radiated power is expressed in multipole coefficients
by Eq. �25� and can be written as

P = 	
l=1

�

Pl�k� , �42�

where the “angular power spectrum” �20� is given by

Pl�k� =
Z0

2k2 	
m=−l

l

�
aE�l,m�
2 + 
aM�l,m�
2� . �43�

Its mean is obtained by replacing coefficients by expectation
values—i.e.,


aE
2 → �aEaE
*� = ��aEaE

*�� ,


aM
2 → �aMaM
* � = ��aMaM

* �� . �44�

Hence it is explicitly given by

Pl�k� =
Z0

2k2 	
m=−l

l

�
�lm
E 
2 + 
�lm

M 
2� . �45�

In this way a connection between the variances of the prob-
ability densities and the average radiated power is estab-
lished. The latter is supposed to be measured in the far field.

B. Physical considerations

In studies of the cosmic background radiation �20�, the
question is whether the sky is statistically isotropic. The lat-
ter implies that the analog multipole coefficients for the tem-
perature are realizations of Gaussian random variables with
zero mean and standard deviations independent of m. In the
problem under consideration, the radiation stems from a
complex source distribution—in principle, yielding the mul-
tipole coefficients. Explicitly, using statistics means we need
to presuppose probability densities Plm

A �X�. The random vari-
able is here denoted by X; it should be noted that its realiza-
tion is frequency dependent. In other words, the densities
may depend on k as well. Recall that pure mathematics is in
general not able to decide which a priori density is valid for
a certain situation �11�. Here we therefore continue by means
of physical and geometrical arguments.

1. Dimensional analysis

It is useful to note that the multipole coefficients have the
dimension of a magnetic field—unit ampere per meter. Let
us assume a typical �average� current I and a typical exten-
sion d; the remaining independent dimensionful parameter in
the problem is the wave number k. The last two combine into
the dimensionless variable u=kd. Using expressions �14�,
�17�, and �18� and dimensional arguments yields for a coef-
ficient aA�l ,m�

�4�aA�l,m� = Cl
I

d
�A�l,m� = Clu

2 I

d
�A�l,m� = Clu

I

d
�A�l,m� ,

�46�

with Cl=� 1
l�l+1� . Here we have introduced dimensionless

functions, depending on u, resulting from the integrations

�A�l,m� �� v2jl�v� ¯ dv, �A�l,m� �� jl�v� ¯ dv ,

�A�l,m� �� vjl�v� ¯ dv . �47�

An infinite number of choices is of course possible. Our
choices correspond to inclusion of the Jacobian in �, its
omission in �—corresponding to the results for linear and
circular current: cf. Eqs. �31� and �38�—and an intermediate
choice �. For the power, now considered as a function of u,
we respectively obtain

4�P�u� =
Z0I2

2u2 	
l=1

�

	
m=−l

l

Cl
2�
�lm

E �u�
2 + 
�lm
M �u�
2�

=
1

2
Z0I2u2	

l=1

�

	
m=−l

l

Cl
2�
�lm

E �u�
2 + 
�lm
M �u�
2�

=
1

2
Z0I2	

l=1

�

	
m=−l

l

Cl
2�
�lm

E �u�
2 + 
�lm
M �u�
2� . �48�
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It is clear that all u dependence is contained in �, whereas
some powers of u are factored out in � and �. In a statistical
treatment this should be reflected in the respective variances
�45�.

2. Power, source extension, and maximal l

Given the relation between the total power and the vari-
ances of the multipole coefficients, two approaches are in
principle possible. If one has some idea about the total radi-
ated power, or has measured it, then it serves as a constraint
on the variances. Their sum, given by Eq. �45�, must be
equal to the known power. Alternatively, one may specify the
probability densities of the multipole coefficients. Then the
power density and its mean, etc., follow. In that case no
information on the total power is put in. Randomly drawing
the coefficients, with a chosen density, gives a sample of the
power distribution in both cases. Recall that we have intro-
duced some typical value of the current I. It appears natural
to consider the dimensionless “power” �12�

P =
4�P

Z0I2 =
1

2	
l=1

�

Cl
2 	

m=−l

l

�
�E�l,m�
2 + 
�M�l,m�2
� , �49�

which trivially follows from Eq. �48�.
The extension of the complex source is important. Of

course, the length scale is governed by the wavelength as is
expressed by the dimensionless variable u=kd. It is the ar-
gument of the appearing Bessel functions jl�u�. Depending
on the choice of dimensionless function �, �, or �, the
Bessel function is multiplied by un, n=0,1 ,2. Other intricate
details of the sources are hidden in the defining integrals �47�
and are supposed to be covered statistically. Note that in an
actual �sub�problem the quantity u is fixed. As a rule of
thumb one may state “the larger u, the more multipoles l are
necessary” in the expansion of the electromagnetic field. Let
us try to refine this somewhat.

The spherical Bessel functions jl�x� are oscillating func-
tions which have their first maximum somewhere around
xM � l+1. This is good enough in the range of our interest
and for our purposes; for large l values this number needs to

be corrected. For l=50, the maximum is around xM =53.
Starting from the first maximum the envelope of the jl�x� is
approximately given by 1/x. This means that for x
xM,
xjl�x�=O�1�. Next, it is observed that contributions can be
neglected for x�xM. These features are illustrated in Fig. 1.
Alternatively, one considers xjl�x� for given x and increasing
l; see Figs. 2 and 3. As a consequence, for a given u it is
sufficient to take max(int�u� ,1) l values into account; note
that we are on the safe side since there is an additional
l-dependent geometrical suppression factor in Eq. �48�, even
taking into account that there are 2l+1 terms for a given l. In
practice, it may turn out that even fewer multipoles might be
sufficient.

The functions �lm are obtained by integrating vjl�v�. . .,
which is oscillating and order 1. The integral, therefore, is
also order 1. Just as integrating, say, exp iv, no additional
length factor appears. This is confirmed by the examples we
have explicitly calculated, i.e.—the linear antenna and the
circular loop. Therefore we choose the �lm�u� as independent
random variables with mean 0 and variance 1—i.e., ���=0
and ��
�
2��= ����*��= ���� �=1. Recall their relation to the
original multipole coefficients �cf. Eq. �47��,

2

-0.5

0

0.5

1

1.5

-1

-1.5
4 6 8 10 12 14 16 18 20

j1
j2
j3
j4
j5
j6
j7
j8
j9

fl(x)

x
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�4�aE�l,m� = ClkI�E�l,m� ,

�4�aM�l,m� = ClkI�M�l,m� . �50�

As stochastic variables, the ��l ,m� become independent of u.
For different u, of course, different variates generally will
appear. Note that the linearly related random multipole coef-
ficients a�l ,m� depend on u, or eventually on the wave num-
ber k. Obviously, the variances increase for increasing fre-
quency and current. The typical extension of the source does
not show up explicitly in the ��l ,m� and, consequently, in the
electromagnetic fields and power. It implicitly, however, de-
termines the number of multipoles. In other words, the vari-
ances of ��l ,m� are set to zero beyond the maximal l.

Alternatively, one still may include some additional de-
pendence on u in the variances of �A�l ,m�. This requires,
however, more a priori knowledge of the complex source. If
this is not available, we propose to stick to the framework
outline above. This is also in line with the principle of a
“minimum description length” �21�.

3. Symmetries

Invariance under transformations of equations describing
physical phenomena or systems are called symmetries. In-
variance up to a factor of −1 appears as well; sometimes
such an equation or system is called antisymmetric. Max-
well’s equations, governing electromagnetics, are invariant
under rotations, spatial reflections, and time reversal �12�.
Symmetry in a particular problem—i.e., a symmetric electro-
magnetic source distribution—reduces the number of inde-
pendent, nonzero multipoles. It may become clear that some
multipoles are necessarily zero or it can yield relations be-
tween coefficients. This reduction in of the number of de-
grees of freedom is a well-known property in classical phys-
ics as well as in quantum mechanics. Symmetries are also
related to conservation laws—for example, in classical me-
chanics translation invariance implies momentum conserva-
tion.

The transformation properties of electromagnetic fields
and sources are studied in �12�. The active view is adopted;
i.e., the physical system transforms—for example, rotates—
whereas the coordinate axes are fixed. A table in �12� con-
tains the transformation properties of mechanical and elec-
tromagnetic physical quantities. With respect to space
inversion it is important to realize that the magnetic field is a
pseudovector. The electric field, current density, and Poyn-
ting vector are polar vectors. The charge density is a scalar.
Relations �14� are useful to investigate the consequences of
symmetry for the multipole coefficients in a particular prob-

lem. Note that r� ·E� is a scalar while r� ·H� is a pseudoscalar.
Alternatively, one may use the relations �17� and �18� to
study symmetries.

From these equations it immediately follows that �a� ra-
dial current, aM�l ,m�=0; �b� longitudinal �curl-free� current,
aE�l ,m�=0; and �c� angular current �zero radial component�
and vanishing charge density, aE�l ,m�=0. In the case of azi-
muthal symmetry—i.e., the system is invariant under rota-
tion around the z axis—all multipole coefficients with m

�0 vanish; aE�l ,0� and aM�l ,0� are possibly nonzero.
Spatial reflections are relevant for the applications we are

interested in. Invariance under such a reflection corresponds
to a symmetry. Of course, a particular system may reflect
more symmetries. In the case of an antisymmetry an addi-
tional factor �−1� needs to be inserted. It can be shown that
�a� z→−z symmetry, aE�l ,m�=0 for l+m odd and aM�l ,m�
=0 for l+m even; �b� x→−x symmetry, aE�l ,m�=aE�l ,−m�
and aM�l ,m�=−aM�l ,−m�; and �c� y→−y symmetry,
aE�l ,m�= �−1�maE�l ,−m� and aM�l ,m�= �−1�m+1aM�l ,−m�. A
planar configuration of sources is approximately invariant
under such a reflection.

It may be elucidating to review the presented examples of
a linear antenna and circular loop. The linear antenna has a
z→−z antisymmetry, x→−x and y→−y symmetries, and
azimuthal symmetry. Combining the consequences yields
vanishing multipoles except for aE�l ,0� with odd l. The spa-
tial symmetries of the circular loop are reversed and it also
reflects azimuthal symmetry. As a consequence, only aM�l ,0�
with odd l are nonzero. These a priori implications of invari-
ances are consistent with the results of the explicit calcula-
tions.

Complex electromagnetic current sources still may reflect
a symmetry, perhaps in an approximate way. In our physics-
based statistical approach, we aim at taking into account
such an invariance. This means that either a subset of multi-
pole coefficients is set to zero from the onset or particular
coefficients are related to each other. The number of inde-
pendent random multipole variables is reduced in this way. It
renders the model simpler, again in accordance with the phi-
losophy of a minimum description length �21�, and puts in
“as much physics as possible” once more �3�. The explicit
consequences for the statistical approach are presented be-
low.

4. Quest for the probability distribution

By means of the framework developed so far, various
averaged quantities can already be expressed in the wave
number k, typical current I, and extension d. The statistics of
the coefficients has been presented in Eqs. �39�–�44�. The
random variables aA�l ,m� and �A�l ,m� are related via Eqs.
�50�. For the latter zero mean and unit variance have been
assumed. All averages of quantities that are linear and/or
quadratic in the multipole coefficients follow. In other words,
means depending on first- and second-order moments can be
determined without further specification of the probability
distribution of the stochastic variables ��l ,m�.

In order to calculate higher-order moments—and quanti-
ties involving these—or to determine statistical fields one
explicitly needs probability distributions in order to generate
samples of the random variables ��l ,m�. The principal diffi-
culties are outlined in �11�. Even if we are convinced that we
have selected the appropriate random variables for our prob-
lem, we can at best make a definite probability distribution
plausible. In the end only experiments can decide.

At this point we propose the Gaussian probability density
for the coefficients ��l ,m�—that is, for their real and imagi-
nary parts, also assumed to be independent. It can be merely
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seen as a hypothesis. Alternatively, one may argue that such
a coefficient receives many contributions from various cur-
rent elements present in the extended complex source. As-
suming independence, or at least a sufficient weak depen-
dence, and implicitly some other mathematical conditions
�11� in order to validate the use of the central limit theorem,
would indeed, in the limit of “many →�,” guarantee a
Gaussian probability density. Alternatively, one can apply the
principle of maximum entropy �22,23� to the stochastic vari-
ables ��l ,m�. Given the constraints of prescribed mean and
variance, this principle also yields the Gaussian density. Al-
though maximum entropy is an appealing concept, it only
can be applied with the necessary prudence �11�. Noting
these caveats, we will select the Gaussian distribution for
further research, in particular for doing simulations. For
comparison, a uniform probability density will be used as
well.

IV. IMPLEMENTATION

In order to do simulations of stochastic electromagnetic
fields, we first introduce the maximum l value—that is, L
=max(int�u� ,1), 1� l�L. Next, the actual real random vari-
ables for which variates will be generated are defined. Impli-
cations of possible symmetries are derived. Finally, results of
the simulations are presented.

A. Real random variables

The complex random variables are written as

�E�l,m� = �lm
E + i�lm

E , �M�l,m� = �lm
M + i�lm

M , �51�

where the various � and � are real independent random vari-
ables. Because ���=0 and �
�2
�=1, they have mean zero and
variance �2= ��2�= ��2�= 1

2 . As mentioned above, we choose
their probability distribution to be Gaussian. For the dimen-
sionless power we now get

P =
1

2	
l=1

L

Cl
2 	

m=−l

l

���lm
E �2 + ��lm

E �2 + ��lm
M �2 + ��lm

M �2� . �52�

The stochastic fields are given by

H� �r�� =
I

�4�
	
l=1

L

	
m=−l

l

Cl���lm
E + i�lm

E �kfl�kr�X� lm

− i��lm
M + i�lm

M ��� � gl�kr�X� lm� ,

E� �r�� =
Z0I
�4�

	
l=1

L

	
m=−l

l

Cl�i��lm
E + i�lm

E ��� � f l�kr�X� lm

+ ��lm
M + i�lm

M �kgl�kr�X� lm� . �53�

The probability densities for the dimensionless power and
electromagnetic field in principle follow by transformation of
variables and is given by an integral �11�. Because of the
different factors Cl

2 in Eq. �52�, we cannot further simplify
the integral expression for the power �for constant Cl

2=C the
result would be a � distribution �11��. Since the real and
imaginary parts of the field components are weighted sums
of Gaussians, their density is also Gaussian with mean zero
and a variance given by the sum of the weight factors. This is
an extension of a corollary in �11�. It can be proven as fol-
lows. Let the xn, n=1, N, be independent Gaussian random
variables with mean zero and variance �2 and let y
=	n=1

N fnxn. Its probability distribution is given by

P�y� =� ¯� ��y − 	
n=1

N

fnxn�PG�x1� ¯ PG�xN�dx1 ¯ dxN,

�54�

where PG�z�= �2��2�−1/2 exp�−z2 /2�2�. For the characteris-
tic function one obtains

��k� =� eikyP�y�dy =� ¯� exp�ik	
n=1

N

fnxn�PG�x1�PG�x2� ¯ PG�xN�dx1 ¯ dxN

=� exp�ikf1x1�PG�x1�dx1� exp�ikf2x2�PG�x2�dx2 ¯� exp�ikfNxN�PG�xN�dxN = �G�kf1��G�kf2� ¯ �G�kfN� ,

�55�

where �G�k�=exp�− 1
2�2k2� is the Gaussian characteristic

function �mean zero, variance �2�. Therefore, we get

��k� = exp�− 1
2�2Fk2�, with F = f1

2 + f2
2 + ¯ + fN

2 .

�56�

Transforming back finally yields a density

P�y� =
1

2�
� ��k�e−ikydk =

1
�2�F�2

exp�−
y2

2F�2� ,

�57�

which completes the proof.
For the average dimensionless power and the power den-

sity one easily gets

H. W. L. NAUS PHYSICAL REVIEW E 76, 026602 �2007�

026602-8



�P� = 	
l=1

L

�2l + 1�Cl
2 =

4�

Z0I2 �P� . �58�

For a fixed frequency, �P� is determined by L and thus by the
typical extension d. Consequently, power and current are not
independent but related by Eq. �58�. On the other hand, hav-
ing values or estimates of power and current at fixed fre-
quency determines L and therefore the typical source exten-
sion d.

B. Consequences of symmetry

It is useful to distinguish two cases. Coefficients may
identically vanish, or some coefficients are related to other
ones. That respectively means that some random variables
are not present or that random variables are dependent of
others—in fact, they are identical up to a phase factor. In
general, combinations are possible as well.

1. Vanishing coefficients, fewer random variables

In the case of vanishing multipole coefficients due to
symmetry, there are no concomitant random variables and
their number therefore decreases. Since the angular power
spectrum �43� gets contributions of fewer terms—say, nl in-

stead of 2l+1�1�nl�2l+1�—we define C̃l=�2l+1
nl

Cl for the

electric contribution and analogously C̄l for the magnetic
one. This yields for the dimensionless power

P =
1

2�	
l=1

L

� 	
m=−l

l

�C̃l
2
�E�l,m�
2 + 	

l=1

L

� 	
m=−l

l

�C̄l
2
�M�l,m�2
�

=
1

2�	
l=1

L

�C̃l
2 	

m=−l

l

���lm
E �2 + ��lm

E �2

+ 	
l=1

L

�C̄l
2 	

m=−l

l

���lm
M �2 + ��lm

M �2� , �59�

where the prime and double prime denote that certain lm are
to be excluded from the summation. For the remaining ran-
dom variables we adopt the same statistics as above: � and �
are Gaussian with mean zero and �2= 1 � 2. The average of
P then becomes

�P� =
1

2�	
l=1

L

��2l + 1�Cl
2 + 	

l=1

L

��2l + 1�Cl
2� . �60�

The expression for the stochastic multipole fields follows
analogously as

H� �r�� =
I

�4�
�	

l=1

L

� 	
m=−l

l

�C̃l���lm
E + i�lm

E �kfl�kr�X� lm�

− i	
l=1

L

� 	
m=−l

l

�C̄l���lm
M + i�lm

M ��� � gl�kr�X� lm�� ,

E� �r�� =
Z0I
�4�

�	
l=1

L

� 	
m=−l

l

�C̃l�i��lm
E + i�lm

E ��� � f l�kr�X� lm�

+ 	
l=1

L

� 	
m=−l

l

�C̄l���lm
M + i�lm

M �kgl�kr�X� lm�� . �61�

Their mean is obviously zero. The covariance matrices
��Hj

*En�� ��Hj
*Hn�� and �Ej

*En� do not vanish. We omit the
explicit, rather complicated expressions since they are not of
immediate use.

2. Related coefficients, dependent random variables

Apart from vanishing, coefficients can be related to each
other. We restrict ourselves to the following relations:

�E�l,− m� = ei�E�m��E�l,m�, �M�l,− m� = ei�M�m��M�l,m� ,

�62�

a slight generalization from those discussed in Sec. III B 3.
Herewith we obtain for the dimensionless power

P =
1

2�	
l=1

L

�C̃l
2

�E�l,0�
2 + 2	

m=1

l

�
�E�l,m�
2�
+ 	

l=1

L

�C̄l
2

�M�l,0�
2 + 2	

m=1

l

�
�M�l,m�2
��
=

1

2�	
l=1

L

�C̃l
2
��l0

E �2 + ��l0
E �2 + 2	

m=1

l

���lm
E �2 + ��lm

E �2��
+

1

2�	
l=1

L

�C̄l
2
��l0

M�2 + ��l0
M�2 + 2	

m=1

l

���lm
M �2 + ��lm

M �2�� .

�63�

It can readily be checked that its average is once again given
by Eq. �60�. Note that we still allow for vanishing coeffi-
cients.

Finally, we get for the random electromagnetic fields

H� �r�� =
I

�4�
�	

l=1

L

�	
m=1

l

�C̃l���lm
E + i�lm

E �kfl�kr�X� lm�

− i	
l=1

L

�	
m=1

l

�C̄l���lm
M + i�lm

M ��� � gl�kr�X� lm�

+ 	
l=1

L

� 	
m=−l

−1

�C̃l���l�
E + i�l�

E �ei�E���kfl�kr�X� lm�

− i	
l=1

L

� 	
m=−l

−1

�C̄l���l�
M + i�l�

M�ei�M����� � gl�kr�X� lm�

+ 	
l=1

L

�C̃l���l0
E + i�l0

E �kfl�kr�X� l0�

− i	
l=1

L

�C̄l���l0
M + i�l0

M��� � gl�kr�X� l0��
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E� �r�� =
Z0I
�4�

�	
l=1

L

�	
m=1

l

�C̃l�i��lm
E + i�lm

E ��� � f l�kr�X� lm�

+ 	
l=1

L

�	
m=1

l

�C̄l���lm
M + i�lm

M �kgl�kr�X� lm�

+ 	
l=1

L

� 	
m=−l

−1

�C̃l�i��l�
E + i�l�

E �ei�E����� � f l�kr�X� lm�

+ 	
l=1

L

� 	
m=−l

−1

�C̄l���l�
M + i�l�

M�ei�M���kgl�kr�X� lm�

+ 	
l=1

L

�C̃l�i��l0
E + i�l0

E ��� � f l�kr�X� l0�

+ 	
l=1

L

�C̄l���l0
M + i�l0

M�kgl�kr�X� l0�� , �64�

with �=−m. Obviously, to explicitly derive the covariances
is straightforward but rather tedious.

V. SIMULATIONS

With the formalism developed we can simulate statistical
radiation fields of complex electromagnetic sources. As ex-
plained above, several starting points can be chosen, all for a
fixed frequency. First, one uses information on typical source
extension and currents; this determines the average radiated
power. Second, using a priori given extension and power
fixes the typical current. Third, one obtains the typical source
dimension by specifying the current and power. In all cases
one can implement consequences of �approximate� symme-
tries. Initially we restrict ourselves to considering the first
case; that is, we assume certain typical values of source ex-
tension and current in our simulations. Implementation of the
other cases is straightforward. If there are no symmetries, all
multipole coefficients aE�l ,m� ,aM�l ,m� contribute for 1� l
�L. They are determined by the complex Gaussian random
variables �E�l ,m� and �M�l ,m�, the latter having real and

imaginary parts with mean 0 and variance 1/2. The simula-
tions are done with two random generators for Gaussian vari-
ates, the first one stemming from �24�, the second one having
been developed by us. Since no differences are found, we
only show results obtained with the first random generator.
In all simulations the frequency was fixed to 960 MHz. We
have chosen to depict the real part of the third component of
the electric field Ez.

First, we show Re Ez as a function of z, 1.0 m�z
�2.1 m, for fixed x=1.0 m and y=1.0 m in Fig. 4. The re-
sults of ten simulations are shown for L=2. Recall that L is
directly related to the extension of the source. Analogous
results for L=5,9 are presented in Figs. 5 and 6. Note that
the power increases for increasing L.

Second, we have fixed the point of observation to r�
= �1.0,1.0,1.49� m. In repeated simulations we computed
105 samples of the electric field value, thereby approximat-
ing its probability distribution. We repeated this for the val-
ues 1�L�8. The obtained results are given in Fig. 7.

Indeed, the densities resemble Gaussian ones with
L-dependent standard deviations. This has been predicted in
Sec. IV A. In order to further establish this apparent agree-
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FIG. 4. �Color online� Ten simulations, I=0.5 A: L=2, P
=17.5 W.
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ment, Kolmogorov-Smirnov tests �24� have been performed.
In all cases it has been confirmed that the obtained field
variates are consistent with the Gaussian probability density.

Simulations starting with a uniform distribution for the
multipole coefficients have been performed as well. As can
be seen in Fig. 8 the obtained densities actually also re-
semble the Gaussian. For small L�3, however, this is not
confirmed by the Kolmogorov-Smirnov test. For L
7 this
test indicates that the distribution becomes Gaussian. For the
intermediate L the test does not yield conclusive results. We
interpret these results as the onset of the region where the
central limit theorem is valid: the number of independent
random variables becomes sufficiently large. For complete-
ness we also show the results for the field component Re Ez
obtained with the uniform probability density in Fig. 9. Next,
we have fixed the total power and have performed simula-
tions for increasing extension and, consequently, L. The typi-
cal current I decreases in this case. The field component
Re Ez is shown in Figs. 10 and 11 for L=3 and L=8, respec-
tively. Finally, we have once more approximated the result-
ing probability density for Re Ez at a fixed location by re-

peated sampling. Since the current I decreases for increasing
L, the widths are much less varying than in the previous
example with fixed current. If one starts with Gaussian dis-
tributions for the coefficients, it is confirmed that the result-
ing distribution is also Gaussian. For the uniform density,
Gaussianity is achieved for larger extension, L�3.

VI. SUMMARY AND OUTLOOK

In order to describe the electromagnetic radiation by com-
plex localized sources, a statistical formalism has been de-
veloped. It is based on the general multipole expansion of
electromagnetic fields. In this way exact solutions of the
Maxwell equations valid outside the source region are con-
structed. No further restriction on distances, source exten-
sion, and/or frequencies need to be imposed. Electric and
magnetic fields are expressed in the so-called multipole co-
efficients. These are in principle determined by the electro-
magnetic charge and current distributions. In practice, the
latter may be unknown for complex sources or, even if they
are known, the coefficients possibly cannot be calculated in a

0

-30

-20

-10

10

20

30

0.8 1 1.2 1.4 1.6 1.8 2 2.2

R
e
E

z
[V

/m
]

z [m]

FIG. 10. �Color online� Ten simulations, P=42.7 W: L=3, I
=0.70 A.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Re Ez [V/m]
-25 -20 -15 -10 -5 0 5 10 15 20 25

d
en

si
ty
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reliable and useful way. Therefore, it is proposed to consider
the multipole coefficients as random variables.

In formulating this stochastic problem, we try to incorpo-
rate physics and geometry as much as possible. Symmetries
imply that certain coefficients vanish or that the number of
independent coefficients diminishes. Using dimensional ar-
guments, the multipole coefficients are linearly related to di-
mensionless stochastic variables for which mean zero and
unit variance are plausible assumptions. The total radiated
power can be expressed in the latter by only assuming a
typical value of the current. The harmonic electromagnetic
fields follow immediately as a function of their wave num-
ber. The typical extension of the localized source is related to
the number of necessary multipole coefficients. Herewith,
various averages of fields and related quantities only depend-
ing on the first and second moments of the random coeffi-
cients can be calculated. It should be noted that field corre-
lations are automatically included in this framework.

In order to proceed, a definite probability distribution has
to be chosen. We have presented some arguments favoring
the Gaussian density—for instance, the principle of maxi-
mum entropy. Strictly speaking, however, it is a hypothesis

to be eventually tested with experimental data. Exploiting
this density, the necessary variates can be generated in order
to simulate statistical radiation fields of complex sources.

Simulations using this formalism have been performed.
For a given frequency and extension of the source, results for
the fields are obtained for fixed typical current and for fixed
radiated power. The variates of the multipole coefficients are
obtained by pseudorandom generators for the Gaussian prob-
ability density; for comparison, the uniform distribution has
also been used. The field variables at a fixed point in space
become stochastic as well. For Gaussian coefficients, it is
derived and confirmed that the resulting field probability dis-
tribution is once more Gaussian. In the case of uniformly
distributed coefficients, simulations only yield a Gaussian
field density for a sufficiently large number of contributing
multipoles.

In the near future, it is planned to extend such simula-
tions. The implications of symmetries are interesting to in-
clude. We eventually aim at a comparison with experiments
in order to judge the validity of this statistical formalism.
The framework developed may be applied to various com-
plex radiating sources. In particular, we aim at applications
in the field of complex antennas and integrated circuits. Elec-
tromagnetic band-gap structure antennas, for example, show
considerable variations in their measured performance which
appear to be impossible to grasp by means of deterministic
computations �25�. Other examples are dual-band antennas
to be integrated in airplanes and the aforementioned inte-
grated circuits. Statistical theory is also planned to be used in
analyzing the electromagnetic radiation of larger sources,
usually a structure enclosing internal sources, like electronic
apparatus, ships, buildings, etc. Finally, we note that it may
be valuable in assigning manufacturing tolerances, allowing
variations in electromagnetic performance of electronic com-
ponents and electric equipment.
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