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The rotation of a single spheroid in a planar Couette flow as a model for simple shear flow is numerically
simulated with the distributed Lagrangian multiplier based fictitious domain method. The study is focused on
the effects of inertia on the orbital behavior of prolate and oblate spheroids. The numerical orbits are found to
be well described by a simple empirical model, which states that the rate of the spheroid rotation about the
vorticity axis is a sinusoidal function of the corresponding projection angle in the flow-gradient plane, and that
the exponential growth rate of the orbit function is a constant. The following transitions in the steady state with
increasing Reynolds number are identified: Jeffery orbit, tumbling, quasi-Jeffery orbit, log rolling, and inclined
rolling for a prolate spheroid; and Jeffery orbit, log rolling, inclined rolling, and motionless state for an oblate
spheroid. In addition, it is shown that the orbit behavior is sensitive to the initial orientation in the case of
strong inertia and there exist different steady states for certain shear Reynolds number regimes.
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I. INTRODUCTION

The suspension of nonspherical particles is commonly en-
countered in engineering applications and the particle orien-
tations are important to the macroscopic behavior of the sus-
pensions. Therefore, the particle orientation has been a
subject of extensive investigations. Jeffery �1� analyzed the
motion of an ellipsoid theoretically in a simple shear flow at
zero Reynolds number, and found that the ellipsoid rotated
about the vorticity axis �perpendicular to the flow-gradient
plane� along a closed orbit, dependent solely on the initial
condition. Bretherton �2� extended Jeffery’s solution to en-
compass all axisymmetric particles by simply replacing the
aspect ratio of particles with an effective aspect ratio. Using
asymptotic methods, Harper and Chang �3� showed that the
trajectories of a three-dimensional �3D� spheroid will be a
periodic orbit which corresponds to maximum dissipation.

When the effect of fluid elasticity is present, theories
�4,5�, experiments �6�, and numerical simulations �7� re-
vealed that the axis of a fiber �or a prolate spheroid� spiraled
towards the vorticity axis in a weakly elastic fluid. However,
in a highly elastic fluid, the final fixed orientation was along
the flow direction �8�.

When the effect of weak fluid inertia is present, both the
theory �9� and experiments �10� revealed that the axis of a
prolate spheroid gradually turned into the flow-gradient
plane, whereas an oblate spheroid eventually aligned its axis
of symmetry with the vorticity axis. Feng and Joseph �11�
numerically investigated the rotation of an ellipsoid in a
simple shear flow and discussed the deviation of the particle
motion from the Jeffery orbit due to particle and fluid inertia.
Broday et al. �12� examined the motion of spheroid particles
in a vertical shear flow, with emphasis on the effects of fluid
inertia on the particle migration across streamlines. In these
two numerical works, the Reynolds numbers are relatively
small.

Ding and Aidun �13� investigated numerically the effect
of strong fluid inertia on the dynamics of an elliptical cylin-
der and an ellipsoid suspended in shear flow with the lattice
Boltzmann method. The rotational motion was confined to
the flow-gradient plane and they found that the angular ve-
locity of the particle decreased with increasing Reynolds
number and the rotation stopped when the Reynolds number
exceeded a critical value. They found that the rotation period
scaled as �Rec−Re�−1/2 near the transitional point; here Rec

and Re are the critical Reynolds number and the Reynolds
number. Zettner and Yoda �14� studied experimentally the
effects of fluids inertia, geometry, and flow confinement
upon the dynamics of neutrally buoyant elliptical cylinders
over a wide range of aspect ratios in simple shear flow at
moderate shear Reynolds numbers, and the results confirmed
that an elliptical cylinder of moderate aspect ratio ceases to
rotate, resting at a nearly horizontal equilibrium orientation
above a critical Reynolds number. The experiment also sup-
ported the scaling of �Rec−Re�−1/2.

Qi and Luo �15,16� reported some numerical results about
the three-dimensional rotations of a spheroid in Couette flow
at moderate Reynolds numbers. Their investigations were fo-
cused on the transitions in the steady state with increasing
Re. They identified three Re regimes for a prolate spheroid:
at low Re, the particle tumbled in the flow-gradient plane, as
observed previously by Karnis et al. �10�; at intermediate Re,
the axis of the spheroid deviated from the flow gradient, i.e.,
0���� /2, and at higher Re, the spheroid rolled with its
axis parallel to the vorticity axis, i.e., �=0. Here, � denotes
the angle between the orientation of the prolate spheroid and
the vorticity axis �see Fig. 1�. For an oblate spheroid, “roll-
ing” about the vorticity axis at relatively low Re and “in-
clined rolling” at higher Re were identified. The results of Qi
and Luo �15,16� enhance greatly the understanding of the
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rotational and orientational behavior of a spheroid particle in
linear shear flow at moderate Reynolds numbers. However,
in their simulations, the rotation period of a spheroid did not
increase significantly with increasing Reynolds number and
an oblate spheroid never ceased to rotate, which are incon-
sistent with the observations of Ding and Aidun �13�, and
Zettner and Yoda �14�.

In the present study, we reexamine the rotation behavior
of both prolate and oblate spheroids in Couette flow at mod-
erate Reynolds numbers using the distributed Lagrangian
multiplier based fictitious domain �DLM/FD� method
�17,18�. Our results are consistent with the observations of
Ding and Aidun �13�, and Zettner and Yoda �14�. The reason
for the discrepancies between our results and those of Qi and
Luo �apart from the methodologies� is not known. In addi-
tion, we propose a simple empirical model for the prediction
of the rotation of a spheroid in simple shear flow, which is
described in the next section. In Sec. III, the numerical
method is presented. We then report and discuss the results
for the prolate and oblate cases, respectively. The concluding
remarks will be given in the final section.

II. PRELIMINARIES

A. Jeffery orbit

In a simple shear flow, a prolate spheroid rotates in a
Jeffery orbit, described by

ṗ = �I − pp� · L̃ · p , �1�

where p is a unit vector along the symmetry axis of the

spheroid, L̃ is the effective velocity gradient tensor

L̃ = L − �D , �2�

in which L=�uT is the velocity gradient tensor, u is the
velocity vector, D= �L+LT� /2 is the strain rate tensor, and
�=2/ �ar

2+1�, where ar is the aspect ratio �major diameter/
minor diameter� of the spheroid.

Define � as the angle between p and the vorticity �Z� axis,
and � as the angle between the projection of p on the �X ,Y�
plane and the Y axis �see Fig. 1�, so that

px = sin � sin �, py = sin � cos �, pz = cos � . �3�

The solution to the Jeffery equation is

tan � = ar tan��t + k��, tan � =
Car

�ar
2 cos2 � + sin2 �

,

�4�

where �=2� /T, T=2��ar+ar
−1� / �̇ is the orbit period, here �̇

is the shear rate of the flow. The constants k� and C are
determined from the initial orientation �0 and �0.

B. An empirical model for a general orbit

To account for the effects of inertia, we suppose that the
motion of the spheroid is still approximated by Jeffery’s
equation �1�, but with the “effective” velocity gradient tensor

L̃ = � 0 a��̇ 0

− b��̇ 0 0

0 0 − c��̇
� , �5�

where a�, b�, and c� are some constants to be identified using
numerical data. The solution to �1� is

p = Q/Q ,

Qx = �a�/b�B0 sin��t + k��, Qy = B0 cos��t + k��, Qz

= Qz0e−c��̇t, �6�

where �=�a�b��̇, and B0 and k� are two constants
related to the initial orientation of the spheroid,
B0=�Qy0

2 + �b� /a��Qx0
2 and tan�k��=�b� /a�Qx0 /Qy0

=�b� /a�tan �0.
To characterize the general orbit, we define an orbit func-

tion C�t� by

C�t� = ar
−1 tan ��t��ar

2 cos2 ��t� + sin2 ��t� , �7�

so that C�t� is a constant for the Jeffery orbit. From �7�, it is
clear that tan �=C at �=m� �m being an integer� and tan �
=arC at �=m�+� /2. In light of �3�, Eq. �7� can be rewritten
as

C�t� =
�ar

2py
2 + px

2

ar�pz�
. �8�

To extract the exponential growth rate in C�t�, we define
another orbit function

G�t� = ln C�t� . �9�

With the “effective” velocity gradient tensor, it is possible
for one to establish the constitutive equations of fiber sus-
pensions that account for the effects of fluid inertia or elas-
ticity �19,20�.

1. Behavior of the orbit predicted by the model about �

From Eq. �6� and tan �=Qx /Qy, one obtains

FIG. 1. Schematic diagram of a spheroid rotating in Couette
flow. The computational domain is a box with the size of L1	L2

	L3. Periodic boundary conditions are introduced in the stream-
wise �X� and spanwise �Z� directions. Note that the definition of �
in this paper may differ from the definition in some of the literature.
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tan � = �a�/b� tan��t + k�� . �10�

Taking the time derivative of �10� yields

�̇ = �a� cos2 � + b� sin2 ���̇ = 	a� + b�

2
+

a� − b�

2
cos 2�
�̇ ,

�11�

which means that �̇ is a cosine function of � with period �,
average value a�+b�

2 �̇, and amplitude a�−b�
2 �̇. For a prolate

�oblate� spheroid, �̇ reaches its maximum �minimum� a��̇ at
�=m� and its minimum �maximum� b��̇ at �=m�+� /2.

2. Behavior of the orbit predicted by the model: about G

From Eq. �6�, we have

Qx	t +
T

4

 =�a�

b�
Qy�t�, Qy	t +

T

4

 = −�b�

a�
Qx�t�,

Qz	t +
T

4

 = Qz�t�e−c��̇�T/4�. �12�

Then, recalling the definition of C given in �8�, one obtains

C	t +
T

4



C�t�
=

�ar
2�b�/a��Qx

2�t� + �a�/b��Qy
2�t�

�ar
2Qy

2�t� + Qx
2�t�

ec��̇�T/4�.

�13�

For t= t1 when �=m� �m being an integer�, i.e., Qx=0,

C	t1 +
T

4



C�t1�
=

1

ar

�a�

b�
ec��̇�T/4�, �14�

G	t1 +
T

4

 = G�t1� + c�

�̇T

4
+ ln�a�

b�
− ln ar. �15�

For t= t2 when �=m�+� /2, i.e., Qy =0,

C	t2 +
T

4



C�t2�
= ar�b�

a�
ec��̇�T/4�, �16�

G	t2 +
T

4

 = G�t2� + c�

�̇T

4
− 	ln�a�

b�
− ln ar
 . �17�

Equations �15� and �17� imply

�G��=�m+1�� − �G��=m� = �G��=m�+�/2 − �G��=m�−�/2 = c�
�̇T

2
.

Define

A = ln�a�

b�
− ln ar. �18�

A denotes the average amplitude of G�t�. G�t� can be re-
garded as a combination of a periodic function with period
T /2, amplitude A and a linear function of slope c��̇. Given A
and T, a� and b� can be solved,

a� =
2�ar

T�̇
eA, b� =

2�

T�̇ar

e−A. �19�

The Jeffery orbit is recovered at a�=ar
2 / �1+ar

2�, b�=1/ �1
+ar

2�, and c�=0.

C. Numerical method

The DLM/FD method developed by Glowinski et al. �17�
is employed here to numerically simulate the motion of the
spheroid. Consider a particle with density 
d moving in a
Newtonian fluid with density 
l and solvent viscosity �. By
introducing the scales Lc for length, Uc for velocity, Lc /Uc
for time, 
lUc

2 for pressure, 
lUc
2 /Lc for the distributed

Lagrange multiplier, 
dLc
3 for mass, and 
dLc

5 for moment of
inertia, the dimensionless weak formulation of the governing
equations in the case of Dirichlet �or periodic� boundary con-
dition is stated as follows.

For t�0, find u�Wu, p�L0
2���, ����t�, U�R3, and

��R3 satisfying the following:
�1� combined momentum equation,

�
�

	 �u

�t
+ u · �u
 · vdx − �

�

p � · vdx

+
1

Re
�

�

��u�T:�vdx + �
r − 1��M	dU

dt
− Fr

g

g

 · V

+
d�J · ��

dt
· � = ��,v − �V + � 	 r��P�t�

for all v � W0�t�, V � R3, � � R3; �20�

�2� incompressibility constraint,

�
�

q � · udx = 0 for all q � L2���; �21�

�3� rigid-body motion constraint inside (and on) the par-
ticle boundary,

��,u − �U + � 	 r��P�t� = 0 for all � � ��t� , �22�

�4� and kinematic equations of the particle,

dX

dt
= U , �23�

�
q̇1

q̇2

q̇3

q̇4

� =
1

2�
q4 − q3 q2 q1

q3 q4 − q1 q2

− q2 q1 q4 q3

− q1 − q2 − q3 q4

��
�x

�y

�z

0
� . �24�

Here, u, p, U, �, and � are the fluid velocity, pressure,
particle translational and angular velocities, and the distrib-
uted Lagrange multiplier, respectively, and v, q, V, �, and �
are their corresponding variations. M and J are the mass and
the moment of inertia of the particle, respectively. r is the
position vector with respect to the center of the particle X,
and g is the acceleration of gravity. In the above equations,
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the following dimensionless parameters are introduced:
Physical parameters,

density ratio 
r = 
d/
l. �25�

Dynamic parameters,

Reynolds number Re =

lUcLc

�
, �26�

Froude number Fr =
gLc

Uc
. �27�

Here the Froude number represents the relative importance
of gravity to inertia. The following variation spaces are used:

Wu = �v � H1���3�v = u�t� on � ,

W0 = �v � H1���3�v = 0 on � ,

L0
2 = �q � L2�����

�

qdx = 0�� , �28�

and ��t� is an appropriate space by which the constraint of
rigid-body motion in P�t� is enforced. The angle brackets
denote an inner product defined in ��t�. P�t� signifies the
region inside and including the particle boundary, � is the
entire computational domain including both the particle’s in-
terior and exterior, and  is the boundary of �.

In �24�, q1 ,q2 ,q3 ,q4 are the components of a quaternion,
which can be defined in terms of the Euler angles �21�,

q1 = sin��/2�cos��� − ��/2�, q2 = sin��/2�sin��� − ��/2� ,

q3 = cos��/2�sin��� + ��/2�, q4 = cos��/2�cos��� + ��/2� .

�29�

The components are normalized, �mqm
2 =1 ,�x ,�y, and �z in

�24� represent the components of the angular velocity mea-
sured in a body-fixed frame. Both the quaternion and the
Euler angles can describe the relationship between the body-
fixed frame and the space-fixed frame. However, the Euler
angles themselves cannot be determined unambiguously at
sin �=0, and consequently are not employed here. With the
quaternion, the coordinate transformation matrix from the
space-fixed frame to the body-fixed frame is

A = 2� q1
2 + q4

2 − 1
2 q1q2 + q3q4 q1q3 − q2q4

q1q2 − q3q4 q2
2 + q4

2 − 1
2 q2q3 + q1q4

q1q3 + q2q4 q2q3 − q1q4 q3
2 + q4

2 − 1
2

� . �30�

Note that A is an orthogonal matrix. For an axisymmetric
body such as a spheroid, z axis of a body-fixed frame alone is
able to determine the orientation of the body, and that is
�sin � sin � ,−cos � sin � , cos ��, or 2�q1q3+q2q4 ,q2q3

−q1q4 ,q3
2+q4

2− 1
2

� in the space-fixed frame.

D. Computational scheme

The operator-splitting technique proposed by Glowinski
et al. �17� is used to decompose the system �20�–�22� into

some subsystems. The essential step is to divide the original
fluid-solid system into a fluid-flow part and a particle-motion
part in the following forms:

�1� Fluid-flow part, find u#�Wu, p�L0
2���, satisfying

�
�

	u# − un

�t
+ un · �un
 · vdx − �

�

p � · vdx

+
1

Re
�

�

��un+1�T:�vn+1dx = 0 for all v � W0�t� ,

�31�

�
�

q � · u#dx = 0 for all q � L2. �32�

�2� Particle-motion part, find un+1�Wu, ����t�, Un+1

�R3, and �n+1�R3 satisfying

�
�

	un+1 − u#

�t

 · vdx + �
r − 1��M	Un+1 − Un

�t
− Fr

g

g

 · V

+ �
r − 1�	J · ��n+1 − �n�
�t

+ �n 	 �J · �n�
 · �

= ��,v − �V + � 	 r��Pn,

for all v � W0, V � R3, � � R3, �33�

��,un+1 − �Un+1 + �n+1 	 r��Pn = 0 for all � � ��t� ,

�34�

and then determine Xn+1 and qi
n+1 by integrating �23� and

�24�.
It was found that the finite difference method can be used

to solve the above subproblems as a substitute of the finite
element method �18�. Here, the projection method and the
alternating direction implicit �ADI� technique �18� are used
to solve the fluid-flow subproblem. The second part above
�33� and �34� is a saddle-point problem and can be solved
with the conjugate gradient method �17�. The collocation
point method is employed to discretize the distributed
Lagrange multiplier for a spheroid. The control points are
located in a sequence of evenly distributed parallel planes
that are perpendicular to the axis of symmetry of the spher-
oid and their distribution in each plane has the same pattern
as devised by Yu et al. �22�. The distance between neighbor-
ing control points are slightly coarser than the velocity mesh
size. In our implementation, the fluid velocity u, the particle
translational velocity U, and the Lagrange multiplier � are
measured in the space-fixed frame, while the particle angular
velocity � and the position vector r are measured in the
body-fixed frame. Therefore, three coordinate transforma-
tions are required for solving �33� and �34�: one is for deter-
mining P :x=X+A−1·r; one is to transform � from the space-
fixed frame to the body-fixed frame when dealing with the
angular velocity component equation in �33�; and the last one
is to transform �	r from the body-fixed frame to the space-
fixed frame in �34�. The reader is referred to �23� for a more
detailed description of the algorithm.
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The schematic diagram of the flow is given in Fig. 1. The
computational domain is a box of sizes L1	L2	L3. Periodic
boundary conditions are introduced in the streamwise �X�
and spanwise �Z� directions. The top and bottom plates move
with velocity U and −U, respectively. We consider a spheroid
of the symmetry axis length 2a and the equatorial diameter
2b. U and L2 /2 are taken as the characteristic velocity and
the characteristic length, respectively. Thus, a time scale is
1 / �̇ and the Reynolds number is defined by Re
=
lUL2 / �2��.

We set 
r=1.001 and Fr=0, as an approximation to the
neutrally buoyant case. Such an approximation has been
demonstrated to be excellent �18�. Actually, it is impossible
to encounter a perfectly neutrally buoyant case in practice.
The dimensionless control parameters are as follows:

spheroid aspect ratio, ar =
a

b
; �35�

confinement ratio,

�a =
2a

L2
for a prolate spheroid,

�b =
2b

L2
for an oblate spheroid;

�36�

shear Reynolds number,

Res =

l4a2�̇

�
= 4�a

2 Re for a prolate spheroid,

Res =

l4b2�̇

�
= 4�b

2 Re for an oblate spheroid.

�37�

In addition, because we adopt periodic boundary conditions,
the flow fields are also affected by L1 and L3. For conve-
nience, we will use L1 and L3 to represent the corresponding
dimensionless quantities. Throughout this study, we set L1
=L2=2 �i.e., a cubic domain�, ar=2 and �a=0.4 for a prolate
spheroid, and ar=0.5 and �b=0.4 for an oblate spheroid. We
note that the results are not sensitive to the increase in the
size of box at a relatively low Reynolds number. We focus on
the effects of inertia in the present study, and postpone the
effects of other factors such as the interactions between
neighboring spheroids and the fluid viscoelasticity to future
works. The spheroid is released at the center of the compu-
tation domain with zero velocities. Although we did not im-
pose any constraints for the translational motion of the spher-
oid, the departure of the spheroid center away from the initial
position was found negligible for all cases studied. The spa-
tial resolution is 64	64	64, and the time step is 0.005 or
0.01.

III. RESULTS AND DISCUSSION

A. Validation of the numerical method

To validate our numerical method, we compare the calcu-
lated orientational orbits for a prolate spheroid and the ana-
lytical Jeffery orbits in Fig. 2 at a low Reynolds number for
ar=2 and 3, respectively. For our computations, Res=0.5, h

=b /6.4, �t=0.001, �0=� /2, and �0=� /4. The two results
are in remarkably good agreement with each other.

There are no data available for the comparison in the case
of 3D and high Reynolds numbers. Therefore, we perform a
convergence test for the case of Res=128, �0= �

6 , and �0

= �
2 , and the results are presented in Fig. 3. The computations

at high Reynolds numbers are more difficult than at low
Reynolds numbers, and therefore the accuracy of the compu-
tational results at high Re appears less accurate compared to
the case of low Re. Nevertheless, the results obtained with
the mesh of �64	64	64� and the time step of 0.01 con-
verge reasonably well.

We will analyze the orbit behavior of a spheroid through
the projected rotation angle in the flow-gradient plane ��t�
and the orbit function G�t�. ��t� reflects the behavior of px

and py, and G�t� contains the information about pz. Given �
and G, px, py, and pz are uniquely determined.

FIG. 2. Comparison between the calculated orientational orbit
and the analytical Jeffery orbit for a prolate spheroid in simple shear
flow at a low Reynolds number. Solid lines, our results; dotted lines,
analytical results, the two being in excellent agreement.

FIG. 3. Convergence test at Res=128, �0= �

6 , and �0= �

2 .
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B. Prolate case

1. Orbit behavior at different Re

We examine the orbit behavior at a fixed initial orientation
of �0= �

4 and �0= �
2 . For Res=0–256, our numerical results

indicate that there exist two critical shear Reynolds numbers
and thereby three Reynolds regimes:

�i� Res=0. The spheroid rotates according to the Jeffery
orbit �4�. G�t� is a constant and �̇ is a cosine function of �
with the maximum of 0.8 and the minimum of 0.2 for ar
=2.

�ii� Regime one �0�Res�Resc1�160�. Figure 4 reveals
that c�, the exponential growth rate of the orbit constant C�t�,
is positive, i.e., the prolate spheroid will eventually turn its
axis of symmetry into the flow-gradient plane. More pre-
cisely, our results show that c� is an increasing function of
time or G�t�, and this is more obvious at higher Res �Fig. 5�.
Thus, we compute c� only from G�t� at �= 3�

2 − 5�
2 for an

overview of the relationship between c� and Res �Fig. 4�,

from which we can see that c� reaches its maximum at Res
�40. These results are in qualitative agreement with the ex-
periments of Karnis et al. �10� in which they investigated the
behavior of G�t� at low Res, and observed that c� was ap-
proximately a constant with time; its slope �with respect to
Res� was a decreasing function of Res. Figure 6 shows that �̇
is a cosinelike function of �. A further analysis of the behav-
ior of ��t� will be presented later.

�iii� Res=Resc1�160. G�t� is a periodic function with
zero growth rate, i.e., c�=0.

�iv� Regime two �Resc1�Res�Resc2�. In this regime, the
spheroid will turn its axis parallel to the vorticity axis, i.e.,
c��0. From Fig. 5, the second critical shear Reynolds num-
ber Resc2 is between 224 and 256. At the end of the simula-
tion, the spheroid at Res=192 is still rotating periodically
about the vorticity axis �Figs. 5 and 6�, whereas, the spheroid
at Res=224 almost ceases the rotation, staying in the vicinity
of the flow-vorticity plane �Figs. 6 and 7�, but continues its
approach to the vorticity axis. In this case, the calculations of
� and G cannot be quantitatively accurate due to two diffi-

FIG. 4. The growth rate c� vs Res for a prolate spheroid calcu-
lated from the data for �= 3�

2 − 5�
2 . �0= �

4 , �0= �

2 .

FIG. 5. The evolutions of the orbit function G at different Res.
�0= �

4 , �0= �

2 .

FIG. 6. �d� /dt� vs � /� at different Res for a prolate spheroid.
�0= �

4 , �0= �

2 .

FIG. 7. The evolutions of � in cases where the rotation about
the vorticity axis of the spheroid stops. �0= �

4 , �0= �

2 .
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culties: one is that the minimum of �̇ is small and the other
is that the axis of the spheroid approaches very close to the
vorticity axis. There is no meaningful definition for � when
the two axes coincide exactly.

�v� Regime three �Res�Resc2�. As Res increases above
Resc2, the vorticity axis is no longer the stable attractor, and
the spheroid stays in almost the flow-vorticity plane with �
between 0 and �

2 �Figs. 5–7�. Since the spheroid never stops
its spin about its axis unless it turns into the flow-gradient
plane, we call the motion “inclined rolling,” the term used by
Qi and Luo �15,16�.

With the shear Reynolds number increasing from zero to
256, the particle’s rotation undergoes the following transi-
tions: Jeffery orbit, tumbling, quasi-Jeffery orbit, log rolling,
and inclined rolling.

2. Assessment of the model

We observed that both � and G in the simulations exhibit
the same characteristics as the model �6�. In order to examine
to what extent the model can quantitatively predict the orbit,
we need to determine the values of a�, b�, and c� from the
simulation results and then make a comparison between the
two predictions. There are two methods for determining a�
and b�: one is to take a� as �̇max and b� as �̇min, the other is
to calculate them from G with �19�. The two methods give
the same results if the simulated orbit behavior are in perfect
agreement with the model prediction �10� or �11�. In the
following, we only use the former to fit the model to the
simulation results, just in order to assess the model.

A close scrutiny into Fig. 6 and the corresponding data
show that the behavior of � is not in perfect agreement with
the model. One difference is that the inertial effect results in
�̇min occurring at an angle slightly less than m�+ �

2 , not pre-
cisely at m�+ �

2 . This behavior was also observed by Ding
and Aidun �13� in their simulations of the rotation of an
ellipse in simple shear flow. Figure 6 shows at Res=12.8,
both �̇min and �̇max in all periods are almost the same, being
0.762 and 0.182, respectively. We plot tan��� as a function of

tan��t+k�� at Res=12.8 in Fig. 8. It is clear that the result
departs slightly away from the model prediction. As a result,
it is not surprising that there are discrepancies between the
periods obtained with the simulations and the model. The
model gives the period of 2� /�a�b��16.9 using a�=0.762
and b�=0.182, which is slightly larger than the simulation
result of T=16.6.

Ding and Aidun �13� found that the rotation period of an
elliptical cylinder in simple shear flow was proportional to
�Resc−Res�−1/2 at small �Resc−Res� and they explained the
result by two observations: one was that in the vicinity of �*

where �̇ reached its minimum �̇min, �̇� �̇min+B��−�*�2, B
being a constant; the other was that �̇min��Resc−Res� at
small �Resc−Res�. This result can be easily derived from our
model by assuming �̇max is independent of Res and �̇min is
proportional to �Resc−Res�, since the model gives T
=2���̇max�̇min�−1/2. Figure 6 shows that �̇max is not sensitive
to Res, although it changes with time at relatively high Res.
On the other hand, �̇min approaches zero as Res increases.
The relationship between �̇min and Res is plotted in Fig. 9.
For convenience, �̇min is computed near �= 3�

2 . From Fig. 6,
�̇min for different periods does not differ significantly at
Res�192. Accordingly, we calculate the periods using the
data at ����2�, and the result is shown in Fig. 10.

Figure 9 illustrates that at Res from 96 to 256, �̇min de-
creases approximately linearly with increasing Res and can
be fitted as �̇min=4.424	10−4�289−Re�. Simply setting a�
=0.7 �see Fig. 6�, we obtain T=357�289−Res�−1/2, which is
found systematically a little larger than the periods obtained
with the simulations, as demonstrated in Fig. 10.

Substituting a�=0.7 and b�=4.424	10−4�289−Res� into
�18� yields the average amplitude A=3−ln�289−Res� /2.
This result is compared to the simulation result in Fig. 11 and
the model prediction is found systematically smaller than the
simulation data. The comparison of the evolutions of G�t�
between the simulation at Res=38.4 and the model predic-
tion is given in Fig. 12. In the model, a�=0.73, b�=0.138,
and c�=0.0267. We can see that apart from small differences
in T and A, there is also a phase difference between the two

FIG. 8. tan��� vs tan��t+k�� at Res=12.8, as compared to the
model prediction. For the simulation result, T=16.6, and for the
model prediction, a�=0.762, b�=0.182.

FIG. 9. �d� /dt�min vs Res for �0= �

6 and �0= �

4 . The linear fitting
function is �d� /dt�min=4.424	10−4�289−Res�. �0= �

2 .
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results due to the fact that the spheroid does not start to
rotate from a well-developed orbit, but from a zero angular
velocity �see Fig. 6�, and consequently there is a pronounced
transient effect on the rotation of the spheroid at early times
that was not captured adequately by the model.

The above method for determining a� and b� matches
�̇min and �̇max between the simulation and the model. The
other method �19� matches T and A. Due to the slight depar-
ture of the orbit characteristics of the spheroid in the simu-
lations away from the model prediction, it is not possible to
match all quantities. Since T and A are more important than
�̇min and �̇max for the description of the rotation of the spher-
oid, it may be better to use the second method to determine
a� and b� in the model if one wants to use the model to
analyze the rotation of spheroids.

3. Effects of initial orientation

Comparison of Fig. 13 and Fig. 5 reveals that the growth
rate c� is smaller at �0= �

6 than at �0= �
4 at the same Res.

Figure 9 also shows that �̇min is typically smaller at �0= �
6

than at �0= �
4 for the same Res. Resc1 is about 160 for �0

= �
4 , whereas it is less than 128 for �0= �

6 . As a result, there
exist different steady states at a fixed Reynolds number. For
example, at Res=128, the steady state is log rolling for �0

= �
6 , but tumbling for �0= �

4 . The effects of other initial ori-
entations at Res=128 are plotted in Fig. 14. It seems that the
growth rate is lower at a smaller G0, i.e., smaller �0 and �0

closer to m�+ �
2 .

We attribute the above bifurcation phenomenon �i.e., dif-
ferent steady states at a fixed Reynolds number depending on
the initial condition� to the particle and fluid inertial effects.
At a low Reynolds number, there is no bifurcation since the
inertial effect is absent or very small and the rotation of the

FIG. 10. The period T vs Res. For the simulation result, T is
calculated from the data for �=��2�. For the model prediction,
a�=0.7, b�=4.424	10−4�289−Res�. �0= �

4 , �0= �

2 .

FIG. 11. The average amplitude A vs Res for a prolate spheroid,
as compared to the model prediction. For the simulation result, A is
calculated from G�t� for �= 3�

2 − 5�
2 . For the model prediction, a�

=0.7, b�=4.424	10−4�289−Res�. �0= �

4 , �0= �

2 .

FIG. 12. Comparison of the evolutions of G�t� between the
simulation results at Res=38.4 and the model. For the model, a�
=0.73, b�=0.138, and c�=0.0267.

FIG. 13. The evolutions of the orbit function G at different Res.
�0= �

6 , �0= �

2 .
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spheroid solely depends on the hydrodynamic force. By con-
trast, the particle inertia plays an important role in the motion
of the spheroid at a high Reynolds number, and therefore the
spheroid released from different orientations at initial time
can follow different orientational orbits and reach different
steady states.

C. Oblate case

We first examine the orbit behavior at a fixed initial ori-
entation of �0= �

4 and �0=0. For Res=0–192, the numerical
results indicate that there exist three Reynolds regimes for
different steady states:

�i� Regime one �0�Res�Resc1�. The oblate spheroid will
eventually turn its axis of symmetry parallel to the vorticity
axis. As shown in Fig. 15, the turning velocity for the oblate
case is much higher than that for the prolate case at the
comparable Res. Persistent rotation of the spheroid about the
vorticity axis is observed at Res=12.8 and Res=38.4, and

Fig. 16 reveals that �̇ is a sinelike function of �, still ap-
proximately satisfying the model prediction. �̇min occurs at
angles slightly larger than m�, and this is an anomalous be-
havior, because we have seen that the orientation of the
broadside of the prolate spheroid is slightly less than m�
+ �

2 , when �̇ reaches its minimum, and we will see that the
fixed orientation of the broadside of the oblate spheroid is
also slightly less than m�+ �

2 when the oblate spheroid com-
pletely ceases its rotation about the vorticity axis at high Res
�Fig. 18�. Figure 17 shows that the regularly periodic rota-
tions will stop at Res=64 and Res=89.6. For Res=64, the
rotation can pass through �=� and our data show �̇min oc-
curs at an angle larger than �. For Res=89.6, the spheroid
rotates back soon after its release and stays at the orientation
of � slightly smaller than zero for a long time. The orienta-
tion data of the spheroids at t�60 for both Res=64 and
Res=89.6 shown in Fig. 17 may not be reliable because at
that time px and py are too small �see Fig. 15�.

�ii� Regime two �Resc1�Res�Resc2�. When Res increases
up to 128, the spheroid will not align its axis with the vor-

FIG. 14. The evolutions of the orbit function G at different
initial orientations. Res=128.

FIG. 15. The evolutions of the orbit function G at different Res

for an oblate spheroid. �0= �

4 , �0=0.

FIG. 16. �d� /dt� vs � /� at Res=12.8 and 38.4 for an oblate
spheroid. �0= �

4 , �0=0.

FIG. 17. The evolutions of � /� at Res=64 and 89.6 for an
oblate spheroid. �0= �

4 , �0=0.
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ticity axis, but stays almost in the gradient-vorticity plane ��
is about −0.06�, from Fig. 18�, with � between 0 and �

2 . This
is the state of “inclined rolling.” It is difficult to determine
the subcritical and supercritical Reynolds numbers Resc1 and
Resc2, since G or � cannot be calculated accurately when the
spheroid axis is very close to the vorticity axis or the flow-
gradient plane. For example, it is difficult to discern if Res
=89.6 belongs to the log-rolling regime or the inclined-
rolling regime, based on the result in Fig. 15 and in Fig. 19.
It may be more suitable to define a critical G or � threshold
for demarcating this regime. Figures 15 and 19 show that the
Reynolds number interval for an obvious inclined-rolling
state is small, and is expected to be much narrower than
�89.6,160�.

�iii� Regime three �Res�Resc2�. In this regime, the oblate
spheroid will turn its axis of symmetry parallel to the gradi-
ent axis along approximately the gradient-vorticity plane.
Figure 18 shows that the deviation of the orientation � from

the gradient axis �m�� increases with increasing Res, consis-
tent with the results of Ding and Aidun �13� for the ellipse
case. In addition, Fig. 19 indicates that there is an overshoot
for the spheroid approaching the flow-gradient plane, result-
ing in a striking pulse of G in Fig. 15.

Therefore, with the shear Reynolds number increasing
from zero to 192, the rotation of an oblate spheroid under-
goes the following transitions: Jeffery orbit, log rolling, in-
clined rolling, and motionless state. The log-rolling and
inclined-rolling states have also been identified by Qi and
Luo �15,16�.

The results of G at �0= �
3 and �0=0 are shown in Fig. 20.

Like the prolate case, the behavior of G also depends on the
initial orientations of the spheroid. The significant effects of
the initial orientations occur at Res being 128 and larger. In
this high Res regime, it appears that the axis of the spheroid
for �0= �

3 can approach closer to the vorticity axis and then
the turning of the axis of the spheroid away from the vortic-
ity axis is hindered, compared to the case of �0= �

4 �Figs. 15
and 20�. Again, at Res=128, there exist two steady states: log
rolling for �0= �

3 and inclined rolling for �0= �
4 .

IV. CONCLUSIONS

We have presented the DLM/FD algorithm for the simu-
lation of the motion of three-dimensional nonspherical par-
ticles in fluids and a simple empirical model for the descrip-
tion of the rotation of a spheroid in simple shear flow �and
possibly other types of flows�. The numerical results on the
rotation of both prolate and oblate spheroids in a Couette
flow have been reported and compared to the empirical
model. The following conclusions can be drawn from the
present study:

�1� When the effects of inertia are not too strong to cause
the stop of the rotation of the spheroid axis about the vortic-
ity axis, �̇ is approximately a cosine function of � and the

FIG. 18. The evolutions of � /� at Res=128, 160, and 192 for
an oblate spheroid. �0= �

4 , �0=0.

FIG. 19. The evolutions of pz at Res=128, 160, and 192 for an
oblate spheroid. �0= �

4 , �0=0.

FIG. 20. The evolutions of the orbit function G at different Res

for an oblate spheroid. �0= �

3 , �0=0.
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exponential grow rate of the orbit function c� is approxi-
mately a constant. These two characteristics of the orbit can
be well predicted by a simple model.

�2� For a fixed initial orientation, with Res increasing from
0 to 256, the steady states for a prolate spheroid undergo the
following transitions: Jeffery orbit, tumbling, quasi-Jeffery
orbit, log rolling, and inclined rolling.

�3� For a fixed initial orientation, with Res increasing from
0 to 192, the steady states for an oblate spheroid undergo the
following transitions: Jeffery orbit, log rolling, inclined roll-
ing, and motionless state.

�4� The orbit behavior is significantly affected by the ini-
tial orientation. There exist different steady states for certain
shear Reynolds number regimes.
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