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We use direct numerical simulation to study electrically driven convection in an annular thin film. The
simulation models a laboratory experiment that consists of a weakly conducting, submicron thick liquid crystal
film suspended between two concentric electrodes. The film is driven to convect by imposing a sufficiently
large voltage across it. The flow is driven by a surface charge density inversion which is unstable to the
imposed electrical force. This mechanism is closely analogous to the mass density inversion which is unstable
to the buoyancy force in conventional, thermally driven Rayleigh-Bénard convection. The simulation uses a
pseudospectral method with Chebyshev polynomials in the radial direction and Fourier modes in the azimuthal
direction. The numerical results, which are in good agreement with previous experimental data and theoretical
predictions, reveal several insights. The mode competition near a codimension-two point exhibits hysteresis.
The primary bifurcation is supercritical for a broad range of fluid and geometrical parameters.
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I. INTRODUCTION

Convection has long been a playground for investigators
of nonlinear dynamics and pattern formation �1�. Highly con-
trolled experiments, accurate simulations, and analytic theo-
retical analyses can be combined to give an unusually com-
plete picture of the dynamics, particularly in the weakly
nonlinear regime �2�. The accumulation of complexity as the
driving forces are increased also presents an important route
to chaotic and, eventually, fully turbulent flows �3�. Here, we
present a direct numerical study of annular electroconvection
in a thin film, a model problem that has previously attracted
detailed experimental �4–10� and theoretical �11–13� atten-
tion. This study is a step toward the development of a nu-
merical code capable of reaching the fully turbulent regime
that was recently accessed experimentally �9,10�.

Classic convection experiments include Rayleigh-Bénard
convection �RBC�, the buoyancy-driven instability of a fluid
layer heated from below �1�, and electrohydrodynamic con-
vection �EHC� in nematic liquid crystals. In the latter, an
applied electric field drives a charge density that develops in
certain nematic fluids �14�.

In the present study, we exploit the unusual properties of
smectic liquid crystals which form extremely robust, submi-
cron thick, and freely suspended films. When a constant volt-
age is applied between the inner and outer edges of an an-
nular film, it convects due to an unstable surface charge
distribution that develops near the free surfaces. The film
geometry and the experimental setup are shown schemati-
cally in Fig. 1. Unlike EHC, this electrical driving mecha-
nism does not rely on the dielectric anisotropy of the liquid
crystal. The experiment uses smectic-A phase materials
which are isotropic for flows in the plane of the film.

Electroconvection in smectic films shares some of the ad-
vantages that EHC has over conventional RBC: Fast time
scales, independence from gravity, and all-electrical transport
measurements. However, flow visualization in the thin film is
difficult �4�. An important motivation of the present direct
numerical study is to enable the visualization of the basic
fields.

The linear theory of this instability is well established
�11�, including for the case of an annular geometry with a
superposed shear �13�. The basic mechanism of the instabil-
ity turns out to be highly analogous to that of RBC, albeit
with radial driving forces �15�. The annular geometry gives
rise to numerous codimension-two �CoD2� points and sec-
ondary bifurcations within the weakly nonlinear regime
�8,13,15�. Previous experimental work in this regime has
shown that the amplitude of convection just above onset is
well modeled by a Landau amplitude equation with a cubic
nonlinearity �6�. Previous theoretical analyses, using ampli-
tude equations derived from first principles, showed good
agreement between experiment and theory �8�. More recent
experiments �9� have pushed into the highly nonlinear, tur-
bulent regime where scaling behavior is observed �10�. Di-
rect numerical simulations offer complementary insights into
this system.

In this work, we develop a direct numerical simulation
using a pseudospectral method with realistic governing equa-
tions. This code allows us to extend the range of parameters
beyond what is achievable experimentally and into the
strongly nonlinear regime which is difficult to treat with ana-
lytic theory. In addition, the simulation allows us to visualize
all the basic fields and gain new insights into the complex
flow dynamics in chaotic and turbulent states that occur at
higher electrical forcing.

In this paper, we focus on a detailed numerical study of
states near the primary bifurcation and at a CoD2 point, cov-
ering a large parameter space in the weakly nonlinear re-
gime. We compare numerical data with experimental and

FIG. 1. Schematics of the annular electroconvection experiment:
�a� Top view and �b� side view.
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theoretical results. The paper is organized as follows. First,
in Sec. II A, we briefly introduce the two-dimensional �2D�
annular electroconvection experiment and its phenomenol-
ogy. Then, in Sec. II B, we describe the physics underlying
the mathematical model. In Sec. III we present our numerical
method and setup for direct numerical simulations. In Sec.
IV, we show some numerical data and compare with previous
theoretical and experimental results. We highlight results for
small aspect ratios, small dimensionless number P, which is
similar to the Prandtl number in RBC, and on the bifurcation
dynamics close to a CoD2 point. Section V presents a brief
conclusion and outlines the implications of the numerical
results. We also discuss the prospect for future applications
of the numerical code.

II. 2D ANNULAR ELECTROCONVECTION

In this section, we introduce the experimental system and
briefly describe the basic equations we used to model it.
More details about the experiment can be found in Refs.
�4–10�, while a complete discussion of the mathematical
model is given in Ref. �13�.

A. Experiment

The convecting fluid consists of a thin annular film of the
liquid crystal material octylcyanobiphenyl �8CB�, which is
freely suspended between two concentric metal electrodes, as
shown in Fig. 1. At the temperature of the experiment, the
8CB is in the smectic-A phase in which the elongated liquid
crystal molecules are aligned perpendicular to the plane of
film and arranged in layers. Flow within the plane of the
layers is isotropic and strongly 2D. The films consisted of an
integer number of 20–100 smectic layers, each layer being
3.16 nm thick �16�. An applied electric voltage between the
inner and outer electrodes drives an electric current through
the film, which is doped to have a small ionic conductivity.

The electrical boundary conditions on the two free sur-
faces which separate the conducting film from charge-free
space require that charges accumulate near these surfaces.
The surface charge configuration is such that positive
charges accumulate near the high electric potential at the
inner electrode, while negative charges accumulate close to
the grounded outer electrode. This inverted surface charge
density is unstable to electric forcing in much the same way
as the inverted mass density distribution of RBC is unstable
to buoyancy forces. When the applied voltage V exceeds the
critical voltage Vc, convection sets in and the fluid is orga-
nized into cells in the form of vortices. A typical experimen-
tal procedure involves varying V, the main experimental con-
trol parameter, slowly from 0 to beyond Vc in a sequence of
small incremental steps past Vc and then with decremental
steps back to 0 V. The quantitative measurements consist of
current-voltage data; the total current I flowing through the
film under an imposed voltage V. The flow pattern is typi-
cally not visualized because suspending small particles in the
film is difficult and tends to strongly perturb the conductivity
and because particles aggregate due to their size being larger
than the film thickness. In some experiments, an azimuthal

flow could also be independently imposed by rotating the
inner electrode. We do not consider this second control pa-
rameter in this paper.

The annular geometry of the film has a Z2 reflection sym-
metry and is O�2� symmetric under continuous azimuthual
rotations �17�. Below the onset of convection, the electrical
forces are unable to overcome dissipation and the electric
current is transported by a pure conduction mechanism that
respects these underlying symmetries. At the primary bifur-
cation to convection at V=Vc, the film breaks the continuous
symmetry under azimuthal rotations. The fluid is organized
into laminar counter-rotating vortex pairs with a discrete
mode number m, giving the flow a Dm symmetry �17�.

Without flow visualization, all that is experimentally ob-
served is the total current I, which is equal to the conduction
current I0 only below the onset of convection. The dimen-
sionless Nusselt number Nu= I / I0 characterizes the overall
amplitude of convection. The reduced Nusselt number Nu
−1 is a measure of the relative strength of the convective
current to conducted current. The direct numerical simulation
complements the experiment by allowing us to calculate
Nu−1, while also visualizing the dynamics of the complete
velocity, electric potential, and charge density fields.

B. Mathematical model

In the experiment, the physical thickness of the film s
�0.1 �m is much smaller than the width of the annulus d
�1 mm. This, and the layered structure of the smectic, al-
lows us to accurately model the film as a 2D, Newtonian
fluid confined to an annular space between infinitely thin
electrodes which lie in the xy plane. The rest of the three-
dimensional computational space is empty and free of
charges. It can be shown �11� that the film is essentially
surface dominated, as the ratio of bulk to surface forces on
the film is O�s /d�. The constant thickness also means that the
fluid is effectively incompressible. The fluid has 2D mass
density �, shear viscosity �, and electrical conductivity �.

The governing equations for 2D annular electroconvec-
tion are comprised of the mass, momentum, and charge con-
servation equations, with one additional Maxwell equation
connecting the charge density q and the electric potential �.
Magnetic effects are negligible.

The governing equations are, in full �13�,

�� · u� = 0, �1�

�� �u�

�t
+ �u� · ���u�� = − ��P + ��2u� + qE� , �2�

�q

�t
= − �� · ��E� + qu� � , �3�

q = �− 2�0�z�3�z=0+, �4�

�3
2�3 = �2

2�3 +
�2�3

�z2 = 0, �5�
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�2 = �3�z = 0� , �6�

where u� is the fluid velocity, P is the pressure, q is the

surface charge density, and E� =−��2�2 is the electric field.
Subscripts denote two- and three-dimensional potentials and
gradients, and �0 is the permittivity of free space. We use
cylindrical coordinates �r ,� ,z�.

The equation of mass conservation and the incompress-
ibility condition yield a solenoidal velocity field

u� = �urr̂+u��̂� by Eq. �1�. The flow velocity is determined
from the conservation of momentum using Eq. �2�, which is
the 2D Navier-Stokes equations with an electrical body force

qE� . The conservation of charge is expressed by a continuity
equation, Eq. �3�, containing an ohmic conductive current

density �E� and a convective current density qu� . Finally, the
2D charge density q obeys Eq. �4�, a Maxwell equation that
describes the nonlocal relationship between the surface
charge q and the electric potential on the film �2. The factor
of 2 arises because the film has two free surfaces. Outside the
film, there are no free charges, so the 3D electric potential �3
obeys the Laplace equation, Eq. �4�. Equation �6� expresses
the fact that the electric potential is everywhere continuous;
its value �2 on the film acts as a boundary condition on the
potential �3 which fills the space outside the film.

The fluid velocity is subject to a nonslip boundary condi-
tion ur=u�=0 at the inner and outer radii of the annulus,
r=ri and r=ro, respectively. The potential �2 is required to
be V on the inner electrode, r�ri, and zero on the outer
electrode, r	ro. At infinity, �3=0. The potential on the film
itself can be found by specifying q for ri
r
ro and solving
the mixed boundary value Laplace problem given by Eqs. �4�
and �5� for �3. Alternatively, �2 can be specified on the film,
and �3 found self-consistently by solving the Dirichlet
Laplace problem given by Eq. �5�. The charge density q then
follows from Eq. �4�. This nonlocal relationship between q
and � is discussed in detail in the Appendix.

We employed the streamfunction-vorticity formulation for
the primitive variables in the simulation. The streamfunction

� is given by u� =���� ẑ. In two dimensions, the vorticity 


is a scalar obeying ���u� =
ẑ. In terms of the streamfunction
�,

u� = urr̂ + u��̂ =
1

r

��

��
r̂ −

��

�r
�̂ . �7�

The advantages of using the stream-vorticity formulation are
the elimination of the pressure P and the replacement of the
vector velocity by two simpler scalar fields, � and 
.

Starting from the stream-vorticity formulation, we res-
caled length with the film width d, time with the charge
relaxation time �c=�0d /�, and electric potential by the ap-
plied voltage V at ri. The dimensionless streamfunction �
and charge density q are then scaled by �d /�0 and �0V /d,
respectively. We obtain the following dimensionless govern-
ing equations:

�2� = − 
 , �8�

�


�t
+ �u� · ���
 = P�2
 + PR����2 � ��q� , �9�

�q

�t
+ �u� · ���q = �2�2, �10�

�3
2�3 = 0, q = �− 2�z�3�z=0+, �11�

where the important dimensionless parameters are

R 	
�0

2V2

��
and P 	

�0�

��d
. �12�

The main control parameter, the Rayleigh-like number R, is
a measure of the relative strength of applied electric forcing
to viscous dissipation. The Prandtl-like number P is a fluid
parameter which characterizes the ratio of the charge relax-
ation time to the viscous relaxation time. In addition, the
geometry of the annulus is characterized by the radius ratio
�	ri /ro. In dimensionless terms, the inner and outer radii
are

ri =
�

1 − �
and ro =

1

1 − �
. �13�

The computational domain is the annulus ri�r�ro and
0��
2�. We must also solve a Laplace equation for �3 in
the space z	0. We decompose the solutions into an axisym-
metric base state component �denoted by superscript 0� and a
deviation from the base state solution �denoted by super-
script 1� as follows:

��r,�� = ��0��r� + ��1��r,�� ,


�r,�� = 
�0��r� + 
�1��r,�� ,

q�r,�� = q�0��r� + q�1��r,�� ,

�2�r,�� = �2
�0��r� + �2

�1��r,�� ,

�3�r,�,z� = �3
�0��r,z� + �3

�1��r,�,z� .

The charge and potential distributions in the base state, in
which the fluid is quiescent, can be solved for analytically.
Although the base state potential �2

�0� �given by Eq. 3.5 of
Ref. �13�� is everywhere single valued and continuous, its r
derivatives are discontinuous at the edges of the film, where
the potential on the film changes over to the constant im-
posed potential on the electrodes. This causes the base state
charge density q�0�, given analytically in terms of hypergeo-
metric functions �13�, to be divergent at the edges of the film.
These divergences are integrable, however, and the overall
base state is linearly unstable to the imposed electric force.

With the above decompositions, the unknowns to be com-
puted are the deviations, which are solutions of the following
set of equations:

�2��1� = − 
�1�, �14�

�q�1�

�t
+ Jq,� − �2�2

�1� = 0, �15�
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�
�1�

�t
+ J�,
 = P�2
�1� + PRJ�,q, �16�

�3
2�3

�1� = 0, q�1� = �− 2�z�3
�1��z=0, �17�

where Jq,�, J�,
, and J�,q are the nonlinear Jacobian terms:

Jq,� =
1

r
� �q�0�

�r

���1�

��
+

�q�1�

�r

���1�

��
−

���0�

�r

�q�1�

��

−
���1�

�r

�q�1�

��
� , �18�

J�,
 =
1

r
� �
�0�

�r

���1�

��
+

�
�1�

�r

���1�

��
−

���0�

�r

�
�1�

��

−
���1�

�r

�
�1�

��
� , �19�

J�,q =
1

r
� ��2

�0�

�r

�q�1�

��
−

�q�0�

�r

��2
�1�

��
+

��2
�1�

�r

�q�1�

��

−
�q�1�

�r

��2
�1�

��
� . �20�

The variables ��1�, �2
�1�, and �3

�1� satisfy the following bound-
ary conditions for r=ro and ri:

��1���� = �r�
�1���� = �2

�1���� = 0, �21�

�3
�1��r,�,z = 0� = 
0 0 � r � ri,

�2
�1��r,�� ri � r � ro,

0 r 	 ro.
� �22�

The Jacobians Jq,� and J�,q each contain terms proportional
to �q�0� /�r, which diverges at the edges of the film. Fortu-
nately, in each case, these terms multiply quantities that go to
zero at the edges of the film and the overall expressions
remain finite. Similarly, the piecewise continuous nature of
the boundary conditions on �3

�1�, given by Eq. �22�, implies
that �q�1� /�r diverges at the edges of the film, but in Eqs.
�18� and �20�, these divergences multiply quantities that go
to zero.

We now turn to the numerical solution of these equations.

III. DIRECT NUMERICAL SIMULATION

We constructed a time-stepping, pseudospectral code to
calculate the solutions for the perturbations governed by Eqs.
�14�–�17�. We compared two different time-discretization
schemes in order to check the accuracy of the solutions. We
then used the solutions to calculate some integrated physical
quantities which could be related directly to experiment.

A. Time-discretization methods

The first time-discretization method we used was the
Adams-Bashforth and backward-differentiation �AB/BDI2�
scheme �18�. In this method, the time derivative was mod-

eled by �tU��3Uk+1−4Uk+Uk−1� / �2�t�, where the super-
script k denotes the time-stepping index and �t was a prop-
erly chosen discrete time step size. The diffusion term f was
approximated by fk+1, using a backward scheme. The nonlin-
ear Jacobian terms and the external forcing terms F were
estimated with the first order Adams-Bashforth scheme:
AB1�F
=2Fk−Fk−1. The combination of these two first-order
approximation schemes, Adams-Bashforth and backward dif-
ferentiation, gives the discretized equations to second order
accuracy.

We also used the semi-implicit first order Euler differen-
tiation scheme �19� as a second method of time discretiza-
tion. In this method, the time derivative is approximated by
�tU��Uk+1−Uk� / ��t�. The nonlinear terms and external
forcing terms were estimated by the forward Euler scheme,
i.e., using the values Fk at current time step k, while the
diffusion term was approximated by fk+1, using a backward
Euler scheme.

B. Numerical solution of the time-discretized equations

We solved the time-discretized equations using a pseu-
dospectral method. The streamfunction �, the vorticity 
, the
2D electric potential �2, and the surface charge density q

were approximated by a truncated Fourier series in the �̂
direction and by Chebyshev polynomials in the r̂ direction,

��1��r,�,t� = �
m=−K

K

�̂m�r,t�eim�, �23�


�1��r,�,t� = �
m=−K

K

ŵm�r,t�eim�, �24�

�2
�1��r,�,t� = �

m=−K

K

�̂2m�r,t�eim�, �25�

q�1��r,�,t� = �
m=−K

K

q̂m�r,t�eim�. �26�

The variables �, 
, �2, and q are all real so in practice we
solve for m=0,1 , . . . ,K and use the complex conjugate rela-
tionship �̂−m= �̂m

� for m
0.
The 2D electric potential �2 and the surface charge den-

sity q are not freely evolving, independent variables. In fact,
they evolve simultaneously so that at each time step they are
linked by the nonlocal coupling described in Sec. II B. In the
Appendix, we describe how we numerically calculated the

nonlocal relationship between �̂2m�r� and q̂m�r� by solving
Eqs. �4� and �5�. This instantaneous relationship can be com-
puted in a separate calculation and then applied at each time
step, which greatly simplifies the time stepping procedure.

The partial differential equations given by Eqs. �14�–�17�
were converted into ordinary differential equations �ODEs�
in r by substituting Eqs. �23�–�26� and using the orthogonal-
ity of the Fourier modes. We then employed the Chebyshev
collocation method �20,21� to solve the ODEs with the Fou-
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rier coefficients as unknowns. There were Nc+1 grid points
in the radial direction, where Nc is the order of the highest
Chebyshev polynomial included. The radial range from ri to
ro is linearly mapped onto a new variable x using

x = 2r − �1 + �

1 − �
� , �27�

such that −1�x�1 spans the film. The collocation method
approximates the solution as a truncated Chebyshev polyno-
mial series and makes the residuals at collocation points xj
=cos��j /Nc�, j=0,1 ,2 , . . . ,Nc equal to zero. The unknowns
are then the Fourier spectral values of the variables of inter-
est at the Nc+1 collocation points, i.e., �̂k�xj�, 
̂k�xj�, and

�̂2
k�xj�, for j=0,1 , . . . ,Nc, and at each time step k.

The nonlinear terms in Eqs. �14�–�17� were calculated
using the pseudospectral technique �20� which consists of
performing the differentiations in the spectral space and the
products in the physical space. The spectral space and physi-
cal space are connected computationally by a fast Fourier
transform.

We investigated the primary bifurcation to convection as a
function of the Rayleigh-like control parameter R, the
radius-ratio �, and the Prandtl-like number P. We ran the
time stepping simulation by gradually increasing R in small
increments separated by many time steps, starting from the
conduction state, passing through the onset of convection at
Rc. For R
Rc, we used initial conditions such that �=0,
so that the fluid was quiescent. The electric potential �2 was
given by random white noise with amplitude in the range
10−5–10−4. For R�Rc, we used the converged, steady-state
numerical solution at the previously calculated R as the ini-
tial condition for the next R. The radial boundary conditions
applied to the Fourier coefficients for all modes m were

�̂m =
d

dr
�̂m = �̂2m = 0 for r = ro,ri. �28�

To enforce the rigid boundary condition on the streamfunc-
tion � in Eq. �28�, we used the influence matrix method
�19,20� to calculate the corresponding Dirichlet boundary
condition on the vorticity 
. The Jacobian terms in Eqs. �15�
and �16� were computed in the Fourier space with a “3/2-
rule” antialiasing technique �20�.

Overall, the method described above is extremely conser-
vative and stable, yet is still efficient enough that we can
reach R�1000 with only modest computational effort.

C. Integrated physical quantities of interest

The electric Nusselt number Nu is a dimensionless mea-
sure of the fraction of the total current transported by con-
vection. It is the electrical analog of the thermal Nusselt
number which characterizes the total heat transport in
Rayleigh-Bénard convection �1�.

Nu is defined to be the ratio of the total current to the
conductive current. The azimuthal components of the current
density average to zero around the annulus, leaving only the
radial contribution, which can be integrated to give

Nu =
�0

2��urq − �r�2�r d�

�0
2��− �r�2

�0��r d�
. �29�

Taking advantage of the zero radial velocity at the bound-
aries to simplify Eq. �29�, Nu can be computed numerically
from

Nu = 1 + �r log���
d

dr
�̂2m=0

�1� �r��
r=ri

. �30�

The term in the square brackets can be taken at either ri or ro.
Nu is directly related to the physical currents that can be
measured experimentally �5–10�. It is also a direct measure
of the amplitude of the convective velocity.

We also calculated the mean area density of the kinetic
energy

Ekin =
1

2a
�

ri

ro �
0

2�

u� · u�r dr d� , �31�

where a is the dimensionless area of the annulus. Ekin is a
useful diagnostic of the strength of convection.

To test the convergence of the time stepping code onto a
steady state solution, we calculated the changes in Nu and
Ekin, as well as the norm of the change in Fourier coefficients
between one time step and the previous one. The solutions
were considered converged not only when the norm was less
than 10−5 but also when the changes in Nu and Ekin were
�0.05%.

IV. RESULTS AND DISCUSSION

We first validated the code by simulating weakly forced
conditions near the onset of convection. The quantitative nu-
merical results for the critical Rayleigh-like number Rc at
onset were benchmarked and found to be in better than 2%
agreement with the predictions of linear stability theory �13�.

The annular geometry, described by the radius ratio �, has
various interesting effects on Rc and the critical number of
vortex pairs mc at the onset of convection, both of which are
predicted by linear theory �13� and measured experimentally
�6�. In general, the main effect of varying � is to select the
overall azimuthal mode, which is quantized to fit an integer
number of vortex pairs around the perimeter of the annular
cell. For R�Rc, nonlinear effects make themselves felt. The
annulus has a reflection symmetry and a continuous symme-
try under azimuthal rotations. We can deduce something
about the nonlinear state from these symmetries alone. We
expect, on the basis of these symmetries, that a generic Lan-
dau amplitude equation will describe the neighborhood of
the primary bifurcation in the weakly nonlinear regime �2,6�.
For a steady convective state, the time independent ampli-
tude equation is �6�

�A − gA3 − hA5 + f = 0, �32�

where A is the amplitude of convection and �= �R /Rc�−1 is
the reduced control parameter. The coefficient g of the cubic
nonlinear term determines whether the bifurcation to electro-
convection is continuous �supercritical� for g�0, discontinu-
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ous �subcritical� for g
0, or tricritical for g=0. The field
term f allows for some imperfection in the bifurcation and
was found to be necessary to realistically model small
symmetry-breaking imperfections in the real laboratory ex-
periment �6�. The amplitude A can be scaled to the reduced
Nusselt number �12� so that A2=Nu−1. Mimicking the
analysis used previously on real experimental data �6�, we
determined Rc, g, h, and f by fitting the numerical data for
Nu−R to Eq. �32� using a nonlinear least-squares method.
We could then numerically investigate the dependence of Rc,
mc, and g over a broad parameter space of radius ratio � and
Prandtl-like number P. We are able to reach a wider range of
these parameters than was possible in previous theoretical
and experimental work.

A. Dependence on the Rayleigh-like number R

Using the numerical model, we follow the experimental
protocol of ramping R slowly up and down through onset.
Experimentally, this is done by increasing and decreasing the
applied voltage.

Figure 2�a� shows the dimensionless current carried by
convection, Nu−1, as the control parameter R varies. Zero
convective current indicates the conduction regime in which
dissipation effects dominate and prevent convection even un-
der the electric forcing. Slowly increasing R, we observed a

critical threshold showing the onset of convection at Rc.
Near this bifurcation, we observed critical slowing down,
indicated by extremely long convergence times. We some-
times observed a slight hysteresis due to dynamical effects. It
is well known both analytically and experimentally that a
bifurcation point is shifted when a control parameter is swept
through a bifurcation at a finite rate �22�. We allow for criti-
cal slowing down by greatly increasing the computational
time allotted to reach the convergence criterion. However, a
small residual delay in the bifurcation with increasing R is
still observable in Fig. 2�b�, which shows the amplitude of
convection A vs R.

Above Rc, a pattern of stationary convective vortices is
formed that carries extra current and breaks the continuous
symmetry under azimuthal rotation. Convection remains
steady in the weakly nonlinear regime up to R�5Rc. Figure
3 shows the surface charge distribution and the correspond-
ing velocity field for steady convection in which the laminar
flow provides a constant contribution to the electric current.

FIG. 2. �Color online� Representative numerical data for the
dimensionless convective current, Nu−1, as the Rayleigh-like num-
ber R changes. Here the other parameters are �=0.56 and P=10.
Data obtained for increasing �decreasing� R are shown as � ���.
�b� The corresponding amplitude of convection A=�Nu−1 as a
function of R. The solid line is a nonlinear least-squares fit of the
data to the Landau amplitude equation given by Eq. �32�.

FIG. 3. �Color� The basic fields for steady convection at
R=199.8, �=0.56, and P=10: The total electric charge density q
�color� and the velocity field �black�. Only the upper half of the
annular cell is shown. Positive charge moves away from the high
potential electrode at the inner radius, while negative charge moves
away from the grounded outer electrode.

FIG. 4. �Color� �a� The streamfunction and �b� the perturbed 2D
electric potential �2

�1� for the same control parameters as in Fig. 3.
For this specific �, the state is dominated by the m=7 Fourier mode
and there are seven counter-rotating vortex pairs.
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The corresponding streamfunction and perturbed electric po-
tential are shown in Fig. 4. From these figures, we see nar-
row positively charged regions which are being carried by
the flow toward the grounded outer electrode, separated by
broader negatively charged regions returning. These local
convective currents add to the total current and act to reduce
the applied potential gradient. The simulation provides in-
sightful visualizations of the local fields that nicely comple-
ment the physical experiments which could not be visual-
ized. This insight will play an important role in
understanding more complicated bifurcations at higher R,
eventually into the turbulent regime �9,10�, and the complex
rotating states that occur under an applied shear �6–8�.

B. Dependence on geometry

The radius ratio �=ri /ro strongly influences the critical
Rayleigh-like number Rc, the critical mode number mc, and,
to a lesser extent, the nonlinear saturation coefficient g.

Figure 5�a� shows the � dependence of Rc from numeri-
cal computations and from linear stability theory �13�. The
trend of Rc in the numerical data is increasing overall as a
function of the radius ratio and quantitatively agrees with a

fully nonlocal theory calculation shown by the solid line
�13�.

We used several values of Nc and K, ranging between 29
and 45 and between 32 and 64, respectively. Numerical data
with different values of Nc and K agree with each other to
within a small scatter. The error bars in Fig. 5�a� were ob-
tained from the spread of numerical data and were calculated
using different time step sizes, random initial conditions, grid
sizes, and time discretization approximations. Each data
point consists of at least three complete sets of numerical
runs, sweeping the voltage up and down.

The calculation becomes more difficult for small �, due to
the increasing asymmetry between the inner and outer elec-
trodes. We were able to numerically explore with reasonable
accuracy down to �=0.1. This is well below the minimum
radius reached experimentally, which corresponded to �
=0.33. Various truncations also limit the range of the nonlo-
cal linear stability theory �13� to 0.33���0.8. Although its
accuracy is somewhat compromised, the numerical code re-
mains very stable and can thus be used to broaden the range
of � accessible. At the smallest �, mc=2 and there are just
four vortices around the annulus.

Figure 5�b� shows critical mode number mc from the
simulation, linear theory, and experiment �13�. For special
values of �, two adjacent values of azimuthal mode number
are simultaneously unstable at onset and Rc��� exhibits a
cusp, giving it a scalloped structure. These are the special
CoD2 points which we discuss in detail in Sec. IV D below.

Numerical simulations reveal that the primary bifurcation
is continuous and supercritical for P=10 and across a broad
range of �, as shown in Fig. 6. Values of g are found be-
tween 2.0 and 2.6. These values are in excellent agreement
with calculations of g for 0.60���0.80 from a local,
weakly nonlinear theory �8�. Both numerical and theoretical
data therefore suggest only a weak dependence of g on �.

These results can be compared to experimental measure-
ments in which g was extracted by fitting current-voltage
data �6�. The experimental results, which show considerable
scatter, are also shown in Fig. 6. The experiment generally

FIG. 5. �Color online� �a� The radius ratio dependence of the
critical Rayleigh number Rc. The solid circles ��� are the results of
the numerical simulation. Open and filled boxes �� , � � are the
theoretical predictions of nonlocal linear stability analysis, using
third order and sixth order expansions in the radial direction, re-
spectively. �b� The critical number of counter-rotating vortex pairs
mc. All the simulation data ��� are for a fixed P=10. The solid lines
are the predictions of fully nonlocal linear stability theory and �
are experimental results from Ref. �6�.

FIG. 6. �Color online� The radius ratio dependence of the coef-
ficient of the cubic nonlinearity g. Numerical data ��� for P=10
with various radius ratios � show a continuous and supercritical
bifurcation �g�0�. They agree well with a nonlocal theory predic-
tion for P=123 shown by red filled squares ���. Black filled dia-
monds ��� are experimental results, from Ref. �6�, for various P
�1.
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shows supercritical bifurcations for various P�1. For the
larger �, these agree with simulation and weakly nonlinear
theory.

For small �, and particularly for the smallest �=0.33, a
systematic disagreement is observed. At �=0.33, the experi-
mentally measured g actually becomes negative, indicating a
subcritical bifurcation which is in clear disagreement with
the simulation and weakly nonlinear theory. The most likely
explanation for this disagreement is that the geometry of the
electrodes in the experimental cell deviates more from the
idealizations of the model as � becomes smaller. The support
structure for the center electrode may become significant. We
observe that the field term f in the fitting function Eq. �32�,
which describes the imperfection of the bifurcation, increases
for small �. Also, the result for g at �=0.33 was obtained by
averaging over data taken over a range of P, which may have
introduced some bias since the experimental values of P tend
to be closer to one, and therefore fractionally more uncertain,
for small �. More experiments will be required to sort out
this discrepancy.

C. Dependence on the Prandtl-like number P

The Prandtl-like number P measures the dimensionless
ratio of the charge and viscous relaxation times. Large P
limits the influence of the nonlinear advection and time de-
rivative terms compared to the viscous and external driving
force terms. Linear stability analysis predicts that Rc should
be independent of P for all �. This result follows from the
fact that the base state is quiescent. In particular, linear
theory predicts Rc�82 at �=0.33. In agreement with this,
the simulation data at �=0.33 consistently shows values of
Rc spread between 80 and 82 for a wide range of P between
0.01 and 1000.

The Prandtl-like number P has an effect on the nonlinear
behavior, and in particular on the coefficient of the cubic
nonlinearity g. Figure 7 shows g for a range of P between
0.01 and 1000. This is a much wider range than that achiev-
able experimentally. The smallest value achieved in experi-
ments was P�2. The simulation data for �=0.33 show very
little dependence on P for 0.1�P�1000. However, for
small P
0.01, g increases by a factor of �2. This is a
dramatic change compared to the near independence of g on

P for 0.1�P�1000. The simulation data agree with previ-
ous theoretical calculations �8�. Experimental results also
show the P independence of g for large P. For example, g
�2 for 25
P
65 and �=0.64 �6�.

D. Codimension-two points

Numerous codimension-two �CoD2� points exist in the
parameter space of the Rayleigh-like number R and the ra-
dius ratio �. At such CoD2 points, two adjacent azimuthal
modes, m and m+1, become simultaneously unstable at on-
set. This allows for unusual mode interactions near such
points, which may lead to complex dynamics close to onset.
The location of CoD2 points can be predicted by linear sta-
bility analysis. They appear in Fig. 5�a� at the intersection
points of the scallop-shaped curves which map the onset val-
ues of R for each m. The dynamics of mode competition
close to these CoD2 point has not previously been studied
experimentally, or by weakly nonlinear analysis. The present
numerical simulation gives us the tools to investigate the
dynamics near onset, close to a CoD2 point.

Langford and Rusu previously studied patterns in annular
electroconvection using equivariant bifurcation theory �17�.
They enumerated the possible bifurcations near CoD2 points.
Under the assumption of a supercritical primary bifurcation,
they predicted only two possible scenarios for the low lying
secondary bifurcations. In one case, there is a smooth tran-
sition from the m to the m+1 mode via a stable mixed-mode
branch of Z2 symmetry. This preserves reflection symmetry
of the annulus while breaking the azimuthal rotational sym-
metry. Under the other scenario, there is a hysteretic jump
between the stable branches for modes m and m+1.

We selected �=0.452, which is predicted by linear theory
�13� to be close to the CoD2 point for m=5 and m=6. Close
to this �, for R slightly larger than Rc, the numerical simu-
lation shows that the amplitudes of the m=5 and m=6 Fou-
rier modes both show positive growth for a long period of
time, up to �150�c. However, the competition between the
two modes is such that one mode eventually decays while
the other saturates to a steady state after a long time. Figure
8 shows the complete evolution. Figure 9 shows the end
result of the mode competition at �=0.452, for two slightly
different values of R and different random white noise initial
conditions. The final state is very sensitive to the initial con-
dition, and it is found to latch into either m=5 or m=6.

The numerical simulation thus shows that, at least for this
case, the secondary bifurcation is of the hysteretic type, cor-
responding to Fig. 3a in Ref. �17�. It is nevertheless possible
to observe a mixed mode. Figure 8�a� shows the streamfunc-
tion of the coexisting m=5 and m=6 state, which does have
the expected Z2 symmetry. However, this mixed-mode state
is transient, unstable, and eventually relaxes to a single-mode
state. At present, we know of no CoD2 points which show
stable mixed modes, although not all values of �, R, and P
have been explored.

V. CONCLUSION

In this paper, we have employed direct numerical simula-
tion to analyze electrically driven convection in an annular

FIG. 7. �Color online� Simulation data of the cubic nonlinearity
coefficient g over a wide range of P for a fixed �=0.33. The nu-
merical data show supercritical bifurcations g�0 for various P and
the P independence of g for P�0.1.
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thin film. We computed the critical Rayleigh-like number Rc,
critical mode number mc, and the coefficient g of the cubic
term in the Landau amplitude equation as a function of the
radius ratio �, a parameter that completely characterizes the
bounded annular geometry. We also found the variation of
the coefficient g with the Prandtl-like number P for one fixed
value of �. The numerical results are generally in good
agreement with experimental data and previous theoretical
studies based on linear stability �13� and weakly nonlinear

analysis. We have established that the primary bifurcation at
onset is supercritical for a wide range of � and P. The only
disagreement with experimental results, which is so far un-
explained, comes for small �, for which fits to experimental
data indicated a weakly backward primary bifurcation.

These calculations nicely complement previous experi-
mental studies, for which no visualization was possible, by
allowing us to image the various fields in space and time, as
well as to extend significantly the range of � and P that can
be reached. The visualization and detailed numerical studies
revealed the dynamics near a codimension-two point. The
competition between critical modes m and m+1 proceeds via
a mixed state that possesses Z2 reflection symmetry, as first
suggested by equivariant bifurcation theory �17�.

This work may be extended in several interesting direc-
tions. In future work, we hope to simulate the effect of su-
perposing an azimuthal shear flow on the convection. Experi-
ments and linear theory �13� of this situation have shown that
the shear suppresses convection and leads to a rich variety of
bifurcation scenarios. In addition, we plan to push the simu-
lation to the high Rayleigh-like number regime, in which
scaling has been observed experimentally �9,10�.
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APPENDIX: RELATIONSHIP BETWEEN SURFACE
CHARGE AND 2D ELECTRIC POTENTIAL

The surface charge density q and the 2D electric potential
on the film �2 are nonlocally related. Either of these two
quantities, plus the 2D potential on the electrodes, form the
boundary conditions for the 3D Laplace equation that deter-
mines the potential outside the film. The remaining 2D quan-
tity must be determined self-consistently from the solution of
the 3D Laplace problem. This nonlocal relationship makes
the simulation of electroconvection more complicated than
that of thermally driven RBC. This additional complication
is evident by the coupling of four unknown quantities in the
governing equations, instead of the usual three for RBC. For-
tunately, the additional potential and charge fields are
coupled instantaneously by a Maxwell equation, so that the
nonlocal calculation involves no additional time derivatives,
and can thus be solved once and for all before time stepping
the other fields. This calculation must ultimately be done
numerically, but the Laplace problem can first be solved im-
plicitly in integral form. The calculation is made more
straightforward by the decomposition of the fields into Fou-
rier modes in the pseudospectral technique.

Since no free charge exists outside of the film, the 3D
potential satisfies the Laplace equation �2�3=0 with appro-
priate boundary conditions �BCs� on the film and electrodes,
which fill the xy plane. The surface charge density q is de-
termined by the discontinuity in �3 in the ẑ direction on the

FIG. 8. �Color online� Mode competition close to the CoD2
point at �=0.452 and R=87. �a� The streamfunction of a transient
mixed-mode state with m=5 and m=6 components. This state cor-
responds to the Z2 symmetric solution predicted in Ref. �17�. �b�
The early time growth of the Fourier amplitudes of modes m=5 and
m=6, starting from an initial condition of equally large amplitudes

for both modes. The growth rates of �̂2m are both �0.05, for early
times �90�c. �c� The full time evolution of the amplitudes of the
two modes, showing that mode competition eventually results in
one mode suppressing the other.
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surface of the film. The BCs require that �3 in charge-free
space is finite for z	0 and vanishes for z→�. General so-
lutions for z	0 are

�3�r,�,z� = �
m=−�

� �
0

�

e−kzJm�kr�Am�k�eim�dk , �A1�

q�r,�� = �− 2�z�3�z=0+

= 2 �
m=−�

�

��
0

�

ke−kzJm�kr�Am�k�eim�dk�z=0+

= �
m=−�

�

q̂m�r�eim� � �
m=−K

K

q̂m�r�eim�, �A2�

where Jm is the Bessel function of the first kind. In the above,
we have used the pseudospectral expansion in the azimuthal
modes to numerically estimate the surface charge using
modes m in the finite range −K�m�K. K is selected to be
sufficiently large that spectral contribution of modes with
m�K is negligible.

The BC for the electric potential on the surface of the film
is �2�r ,��=�3�r ,� ,z=0�, and

�2�r,�� = �
m=−�

� �
0

�

Jm�kr�Am�k�eim�dk = �
m=−�

�

�̂2m�r�eim�

� �
m=−K

K

�̂2m�r�eim�. �A3�

The coefficients Am�k� can be calculated with the aid of the
Hankel transform,

�
0

�

xJm�kx�Jm�k�x�dx =
1

k
��k� − k� . �A4�

Using Eq. �A4�, one can solve for the coefficient

Am�k� = k�
0

�

��̂2m���Jm�k��d� . �A5�

Using the above formulation, the nonlocal relationship be-
tween the Fourier coefficients of the surface charge q and the
2D electric potential �2 is given by the following integral
equation:

�̂m�r� = 2�
0

�

k2Jm�kr��
0

�

��̂2m���Jm�k��d� dk . �A6�

This expression is simplified by the fact that �̂2m���=0 for
�
ri and ��ro, so the range of the � integration can be
restricted to ri���ro.

Looking back to Eq. �A1�, we see that the wave number k
describes how rapidly the integrand of �3 exponentially de-
creases in the z direction. We can therefore approximate the
k integration in Eq. �A6� with a large but finite upper limit
kmax. To carry out the k integral numerically, we approximate
it as a Riemann sum using a small step �k, with kn=n�k and
0�n�Nk=kmax/�k.

In the pseudospectral method, we only need to evaluate
Eq. �A6� at the Nc+1 Chebyshev collocation points in the
radial direction. As described previously, Nc+1 radial posi-
tions r are mapped onto x positions using Eq. �27�, with xj
=cos��j /Nc�, where j=0,1 ,2 , . . . ,Nc. The � integration in
Eq. �A6� can be similarly approximated by a sum so that

q̂m�xi� � 2�
n=0

Nk

kn
2Jm�knxi��

j=0

Nc

rj�̂2m�xj�Jm�knxj��rj �k ,

�A7�

where �rj is an appropriately chosen variable interval. Car-
rying out the sum over n, this can be expressed as a nonlocal,
linear transformation between the Fourier-Chebyshev coeffi-

cients of q̂m and �̂2m,

q̂m�xi� = �
j=0

Nc

Tij
m�̂2m�xj� . �A8�

We used a k step size of �k=10−3. It remains to select an
appropriate cutoff kmax. The best value of kmax was found to
be related to the choice of maximum Fourier mode m=K. We
found that kmax��1.5–2��K was sufficient. Varying kmax

introduces only very small errors. The integrated charge
transport Nu differs by �0.3% at R=160 for simulations
with kmax=40, 50, 58, and 70. We typically used kmax=50 to
calculate the matrices Tij

m for each Fourier mode m. The ma-
trix elements depend only on �, Nc, and kmax, and were cal-
culated once at the beginning of the time stepping loop.

Equation �A8� was used thereafter to convert �̂2m to q̂m.

FIG. 9. �Color online� Per-
turbed 2D electric potential �2

near a codimension-two point
�CoD2� at �=0.452. The
Rayleigh-like numbers were R
=87.006 for m=5 �left� and R
=87.859 for m=6 �right�. Both
patterns used different random
white noise as the initial
condition.
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