
Electrohydrodynamic instabilities in microchannels with time periodic forcing

David A. Boy and Brian D. Storey
Franklin W. Olin College of Engineering, Needham, Massachusetts 02492, USA

�Received 31 January 2007; revised manuscript received 17 April 2007; published 10 August 2007�

In microfluidic applications it has been observed that flows with spatial gradients in electrical conductivity
are unstable under the application of sufficiently strong electric fields. These electrohydrodynamic instabilities
can drive a nonlinear flow despite the low Reynolds number. Such flows hold promise as a simple mechanism
for mixing fluids. In this work, the effect of a time periodic electric field on the instability is explored. The case
where an electric field is applied across a diffuse interface of two fluids with varying electrical conductivity is
considered. Frequency-dependent behavior is found only in the regime where the instability growth rates are
very slow and cannot outpace mixing by molecular diffusion. Improving mixing by modulation of the electric
body force is not a viable strategy in this geometry.

DOI: 10.1103/PhysRevE.76.026304 PACS number�s�: 47.20.�k, 47.65.�d

I. INTRODUCTION

Over the past 15 years there has been extensive research
into designing microfluidic systems to perform biological
and chemical analysis on integrated microchips. These de-
vices offer the promise of integrating many laboratory pro-
cesses onto a single chip, thereby increasing throughput and
decreasing assay cost �1�. Many applications require mixing
fluids, which has long been identified as a key challenge for
microfluidics. The challenge is that viscosity dominates at
the microscale and mixing by natural inertia-driven turbu-
lence is not possible. While momentum diffusion acts
quickly over microscopic length scales, molecular diffusion
is often prohibitively slow. The slow rate of molecular diffu-
sion is especially problematic in solutions containing large
macromolecules. Numerous passive and active mixing strat-
egies have been proposed to overcome this challenge �2,3�.

Recent work has investigated a mixing strategy that uses
electrohydrodynamic �EHD� instabilities to achieve nonlin-
ear, microchannel flow. It has been known for some time that
EHD instabilities can occur when electric fields are applied
to fluids with spatial gradients in their electrical properties
�4–6�. Of interest to the present work are instabilities occur-
ring from the interaction of applied electric fields and fluid
electrical conductivity gradients. These conductivity gradient
instabilities were studied extensively by Melcher and coau-
thors �7–10�. Fluid conductivity gradients couple with ap-
plied electric fields to generate charge in the bulk fluid. The
applied electric field can exert a destabilizing body force on
the charged fluid. If this force exceeds a critical strength
where diffusion can no longer stabilize the flow, then insta-
bility ensues.

Electrokinetic flows with fluid conductivity gradients are
critical to applications such as field amplified sample stack-
ing, isoelectric focusing, and electrophoretic assays where
sample and buffer conductivities are uncontrolled. Electrohy-
drodynamic instabilities have been studied in the context of
these microfluidic geometries and applications. Baygents and
Baldessari studied an electric field applied across a thin fluid
layer with linearly varying conductivity as a model for iso-
electric focusing �11�. Lin et al. experimentally studied the
instability of a diffuse interface of two fluids of different

conductivity with an electric field applied parallel to the in-
terface �12�. They found agreement between experiments,
analysis, and simulations demonstrating the basic physical
mechanisms as described by Hoburg and Melcher were valid
in the microfluidic regime �7�. Chen et al. studied convective
and absolute instability occurring at the interface of two flu-
ids merging at a T junction �13�. They also found agreement
between analysis and experiments, validating the interpreta-
tion of the basic physical mechanisms. El Moctar et al. de-
signed a rapid micromixer that relied upon a voltage applied
across a diffuse interface of two fluids with different electri-
cal properties �14�. Their experiments clearly show a dra-
matic change from laminar to nonlinear flow upon applica-
tion of an electric field. The slow rate of molecular diffusion
normally causes mixing problems in microfluidics. In these
unstable EHD flows, however, the slow rate of diffusion is
the origin of nonlinear flow. Small spatial structures in fluid
conductivity persist and it is from these small scale conduc-
tivity gradients that the destabilizing body forces arise �15�.

Experimental results have shown that electrokinetic mix-
ing can be improved by adding a time periodic component to
the driving electric field �16�. Recent experimental work by
Shin et al. showed that a cross-junction instability has a reso-
nant effect when a periodic component was added to the
driving electric field �17�. In the experiments of Shin et al.,
the flow is forced with a time periodic component of the
electric field that enhances growth rates of interfacial waves,
which originate from the junction. They found an optimal
frequency for enhanced mixing.

The idea of using time periodic forcing to enhance con-
vective transport is common in heat transfer applications
�18,19�. It has been observed that an optimal frequency for
heat transfer enhancement exists in many applications due to
resonance with the hydrodynamics. In addition to enhancing
transport, time periodic forcing can have a major impact on
flow stability. The mathematical foundations for studying hy-
drodynamic stability of periodically forced flows have been
well developed, and details can be found in Von Kerczek and
Davis �20�. Recently, stability of time modulated electroki-
netic microflows has received attention from Suresh and
Homsy �21� and Chang and Homsy �22�.

The goal of this paper is to explore the role that time
periodic electrical forcing has on EHD instabilities in micro-
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channels. Specifically, we are motivated by the problem of
finding enhanced mixing by adding an optimal frequency
component that modulates the electric body force. We are
further motivated by the fact that in many experiments, such
as those by El Moctar et al. �14�, alternating current �ac� is
used to reduce bubble formation from electrolysis. In these
cases it is important to understand stability of electrohydro-
dynamic systems under ac forcing. While we have found that
a time periodic electric field can have a major impact on flow
stability, we have not found a case where control of mixing
rates is achieved by simple adjustment of the frequency.

The configuration of interest is a 2D fluid layer bounded
between two solid walls and assumed to be periodic down
the length of the channel. The upper half of the channel
contains a high conductivity fluid while the lower half con-
tains a low conductivity fluid while a voltage is applied
across the fluid layer. We investigate this case using two
equation sets; one set assumes the flow is purely two dimen-
sional, and the other set considers the microchannel to be
shallow. The shallow channel geometry has a set of govern-
ing equations that are averaged across the channel depth re-
sulting in a set of two-dimensional equations that account for
three-dimensional geometry. The geometries of interest are
shown in Fig. 1.

II. GOVERNING EQUATIONS

In an earlier work, a set of governing equations suitable
for the study of electrokinetic instabilities in microchannels
was developed �12�. The governing equations are conserva-
tion of mass for a two species symmetric electrolyte solution,
Poisson’s equation for the electric field, conservation of mass
for an incompressible liquid, and conservation of momentum

including the body force due to an electric field. Our equa-
tions are reduced from the more general ion transport equa-
tions �23�. Our reduced equations make the assumptions that
charge relaxes instantaneously compared to the rate of
change of conductivity due to advection and that the differ-
ence in cationic and anionic concentrations is small com-
pared to the background concentration. Further, we assume a
symmetric, binary electrolyte, which allows us to use con-
ductivity and charge density as variables as opposed to track-
ing molar concentration of individual species. Details on the
derivations and applicability of the model equations can be
found in the literature �12�. We simply list the governing
equations as

��

�t
+ v · �� = D�2� , �1�

� · �� � �� = 0, �2�

��2� = − �E, �3�

� · v = 0, �4�

�� �v

�t
+ v · �v� = − �p + ��2v − �E � � . �5�

Here � is the electric conductivity, D is the diffusivity of the
conductivity field, v is the velocity field, � is the electric
potential, � is the permittivity of the buffer, �E is the charge
density, � is the buffer liquid density, p is the pressure, and �
is the liquid viscosity. Equations �1�–�5� represent the con-
servation of conductivity, current continuity, Poisson’s equa-
tion for the electric potential, conservation of mass for an
incompressible fluid, and conservation of momentum, re-
spectively.

The derivation of the above equations relies upon the fact
that the fluid bulk is essentially electroneutral. The difference
in anionic to cationic concentration relative to the bulk con-
centration �C0 /C0 for our application can be estimated as

�C0

C0
=

��0

FC0H
� 10−4 − 10−7, �6�

indicating that we are safely in the electroneutral regime.
Above, �0 is the applied potential across the fluid layer, F is
Faraday’s constant, H is the channel half width �in the y
direction�, and C0 is the bulk concentration. It is this assump-
tion of electroneutrality that results in ohmic current strongly
dominating over diffusive current. The assumption of instan-
taneous charge relaxation holds when the ratio of the charge
relaxation time to electroviscous time �defined in the next
section� is small. For our application we estimate this ratio to
be

tcharge

tev
=

�/�

�H2/���0
2�

� 10−2 − 10−6, �7�

indicating that our assumption is valid. The assumption of
instantaneous charge relaxation is also expected to break
down once the forcing frequency becomes fast relative to the

FIG. 1. Basic configuration of interest to this study. We are
interested in two physical geometries: an infinitely deep 2D fluid
layer and a shallow channel. For modeling flow in the shallow
channel we will use a set of depth-averaged equations that were
developed in previous work �24�. The initial assumed conductivity
profile is shown as a high conductivity fluid above a low conduc-
tivity fluid.
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charge relaxation time. The forcing frequency f should sat-
isfy the relation f �� /� in order to safely make the assump-
tion. Further details on the validity of the equations and an
explanation of the above scaling arguments can be found in
Lin et al. �12�.

It is important to note that Eqs. �1�–�5� are only valid for
the bulk fluid region outside the electric double layer and
will not account for electrode screening. Such screening ef-
fects can easily be accounted for in the analysis, but we will
show that their inclusion does not effect the basic conclu-
sions of this paper.

III. ANALYSIS

We start by nondimensionalizing the governing equations
with the following scales:

�x,y� = H, ��� = �0, ��� = �0, �u,v� = Uev �
��0

2

H�
,

�t� = tev =
H

Uev
, �P� = �Uev

2 , ��E� =
��0

H2 ,

where �0 is the conductivity of the lower half of the channel
and �0 is the root-mean-squared �RMS� value of the poten-
tial applied across the fluid layer. The velocity scale, the
electroviscous velocity Uev, is set such that viscous forces
balance electrical body forces �12�.

The first equation set that we will study is the 2D projec-
tion of the governing equations. Storey showed that while an
initial 2D conductivity profile will result in 3D flow, a 2D
approximation is still useful to capture the basic instability
mechanisms and threshold �15�. The 2D approximation pre-
dicts instability to occur at much lower electric fields than
found experimentally in thin microchannels �12�. Using the
simulation methods from previous work �15�, we confirmed
the instability threshold predicted with the 2D equations is
reasonably accurate when compared to 3D direct numerical
simulations of channels with square cross section. We expect
the 2D analysis to provide the lower bound for stability in
3D channels.

In two dimensions it is convenient to use the vorticity-
stream function form of the Navier-Stokes equations. We can
also remove the charge density from the formulation by sub-
stituting Eq. �3� into the momentum equation. Making the
appropriate substitutions yields a set of nondimensionalized,
2D equations for the x-y plane,

��

�t
+ v · �� =

1

Ra
�2� , �8�

� · �� � �� = 0, �9�

��

�t
+ v · �� =

1

Re
��2� + ���2�� 	 ��� , �10�

�2
 = − � , �11�

where � is the z component of the vorticity, 
 is the stream
function, and the stream function is related to velocity in the
usual manner.

There are two dimensionless parameters that emerge in
this analysis: Reynolds number Re, and electric Rayleigh
number Ra,

Re �
�UevH

�
�

���0
2

�2 , Sc �
�

�D
, Ra � Re Sc.

These two parameters are related to each other through the
Schmidt number Sc, which is a fluid property. The Schmidt
number is set to 500 throughout this paper based on the
experimental parameters used by Lin et al. �12�. A Schmidt
number of 500 is typical of low molecular weight, aqueous
electrolytes. The Rayleigh number is the most important pa-
rameter for determining stability, and variation of the
Schmidt number has little impact on the final results. We
checked a variety of cases with larger Schmidt numbers to
confirm that the Rayleigh number is the key parameter. Also,
as long as the Reynolds number is relatively low, its value
has little impact on stability. In the limit of zero Reynolds
number, the Stokes equations apply, and the Rayleigh num-
ber becomes the only dimensionless parameter.

Boundary conditions at the upper and lower channel wall
are no flux of conductivity, no normal velocity, and no fluid
slip. The potential boundary condition is Dirichlet. The ve-
locity boundary conditions are applied to the stream func-
tion, which is subjected to boundary conditions 
=0 and
�
 /�y=0 at the walls. It is important to note that we will be
neglecting electro-osmotic flow effects throughout this
analysis. It was found in previous work to have little influ-
ence over stability behavior when the ratio of electro-
osmotic to electroviscous velocity is small �12,13�. Neglect-
ing electro-osmotic flow reduces the number of free
parameters that the system depends upon and simplifies the
presentation of results. This assumption is revisited in the
Discussion section.

The second equation set we will study is appropriate for
modeling flow in microchannels with shallow aspect ratios
�see Fig. 1�. Flow in these shallow channels is significantly
different than flow in a 2D fluid layer �24,25�. Storey et al.
used a zeroth-order Hele-Shaw analysis to derive a set of
depth-averaged equations �24�. By taking advantage of the
channel’s small aspect ratio and integrating the governing
equations across the z direction, Storey et al. were able to
derive a 2D equation set for flow in the x-y plane. A later
paper carried this Hele-Shaw analysis to higher order �25�.
That set of equations was found to more accurately model
the nonlinear flow and accounted for conductivity dispersion.
The important feature of these depth-averaged equations is
that a 2D equation set can formally account for viscous ef-
fects across the shallow third dimension.

The derivation of the depth-averaged equations is lengthy
and details are found in Refs. �24,25�. To be consistent with
our previous analysis, we take the electro-osmotic velocity to
be zero; this assumption simplifies the dispersion effect
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within the governing depth-averaged equations. The higher
order depth-averaged equations in dimensionless form are
�25�

��

�t
+ v · �� =

1

�2 Ra
	�2� +

2

105
Ra2 �4 � · �v�v · ����
 ,

�12�

� · �� � �� = 0, �13�

�2� ��

�t
+ v · ��� =

1

�2 Re
����2�� 	 �� − 3� + �2�2�� ,

�14�

�2
 = − � , �15�

where �=d /H and d is the channel half-depth in the z direc-
tion. The dimensionless parameters are exactly as before ex-
cept that velocity is scaled as �2Uev. The definitions of the
Reynolds and Rayleigh numbers remain the same. The
boundary conditions at the upper and lower channel walls are
identical to the 2D equations.

The first set, Eqs. �8�–�11�, will be referred to as the 2D
equations. These equations take only a 2D component of the
fundamental flow equations and assume the fluid layer is
infinitely deep and invariant in the z direction. The second
equation set, Eqs. �12�–�15�, will be referred to as the depth-
averaged equations. The depth-averaged equations have
taken an integrated average over the shallow depth �z direc-
tion� of the channel. The depth-averaging operation accounts
for 3D effects but results in a 2D equation set.

A. Linearized equations

To study the effect of time periodic electric fields on sta-
bility, we linearize the governing equations about a base
state. The base state is assumed to be only a function of y.
We start with a conductivity profile that would result from
instantly placing two fluids into contact and allowing the
interface to diffuse for a short time. We assume that the
conductivity profile is steady thereafter. Ramifications of this
quasisteady assumption are explained in detail in the Results
section. Once the conductivity profile is known, we can com-
pute the base state for the electric potential from current
continuity. The base state velocity is zero. To perform the
linearization, we assume solutions composed of a zeroth-
order base state and a spatially periodic small perturbation,
i.e., f = f0+�f1�t ,y�eikx. The above substitution is made in the
governing equations, and like powers of � are collected. The
linearization procedure is straightforward, and we only
present the final result.

The base state for electric potential is found by integrating
the zeroth-order current continuity equation,

d

dy
��0

d�0

dy
� = 0, �16�

using the boundary condition that the lower boundary is al-
ways held at zero potential and the upper boundary varies as


2 cos�ft� such that �0�t ,y�=
2�0�y�cos�ft�. By using the
RMS value as the scale for electric potential, the ac and dc
cases will converge in the high frequency limit.

The equations for the first-order perturbation to the base
state with the 2D equations are �we drop the subscript 1 for
simplicity�

��

�t
= ik


d�0

dy
+

1

Ra
�2� , �17�

d�0

dy

��

�y
+ �0�

2� + 
2�d�0

dy

��

�y
+ �

d2�0

dy2 �cos�ft� = 0,

�18�

��2


�t
=

1

Re
	�4
 + 
2�ik�

d3�0

dy3 − ik�2�
d�0

dy
�cos�ft�
 .

�19�

The equations for the first-order perturbation to the base state
with the depth-averaged equations are

��

�t
= ik


d�0

dy
+

1

�2 Ra
�2� , �20�

d�0

dy

��

�y
+ �0�

2� + 
2�d�0

dy

��

�y
+ �

d2�0

dy2 �cos�ft� = 0,

�21�

�2��2


�t
=

1

�2 Re
	�2�4
 − 3�2


+ 
2�ik�
d3�0

dy3 − ik�2�
d�0

dy
�cos�ft�
 .

�22�

B. Galerkin expansion

Following the work of Von Kerczek, who analyzed peri-
odically forced Stokes boundary layers, we use the Galerkin
approach to write the equations as a set of ordinary differen-
tial equations for the coefficients to a set of basis functions
�20�. We expand the variables as a series of basis functions
that naturally satisfy the boundary conditions,


 = �
n=1

N

fn�t�
n�y�, � = �
n=0

N−1

gn�t��n�y� , �23�

� = �
n=1

N

hn�t��n�y� .

For the stream function we use solutions of the eigenvalue
problem,

� d2

dy2 − k2�2


n = − �n
2� d2

dy2 − k2�
n, �24�

subjected to clamped boundary conditions as our basis func-
tions �26�. The basis functions for the conductivity are
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�n = Cn cos� y + 1

2
n
� , �25�

where Cn=1/
2 for n=0 and Cn=1 otherwise. The basis
functions for the potential are

�n = sin� y + 1

2
n
� . �26�

We proceed in the usual manner where we take an inner
product, �a ,b�=�−1

1 abdy, of the four sets of linearized equa-
tions with the appropriate basis functions. From our defini-
tions,

I = ��n,�m� = ��n,�m�, J = �
n,
m� ,

where I is the identity matrix.
Straightforward calculation yields the final matrix form of

the ordinary differential equations for the vector of coeffi-
cients f and g,

dx

dt
= ��t�x , �27�

where the vector components of x are x1= f and x2=g.
The matrix components of � with the 2D equation set are

�11,2D =
1

Re
�R − k2J�−1�S − 2k2R + k4J� , �28�

�12,2D =
− i2k

Re
�R − k2J�−1T�A−1B�cos2�ft� , �29�

�21,2D = ikP , �30�

�22,2D =
1

Ra
�Q − k2I� . �31�

The matrix components of � computed with the depth-
averaged equation set are related to those computed with the
2D equation set as follows:

�11,DA = −
3

�4 Re
I +

1

�2�11,2D, �32�

�12,DA =
1

�4�12,2D, �33�

�21,DA = �21,2D, �34�

�22,DA =
1

�2�22,2D. �35�

The components matrices of � are defined as follows:

P = � d�0

dy

n,�m�, Q = � d2�n

dy
,�m� ,

R = � d2
n

dy2 ,
m�, S = � d4
n

dy4 ,
m� ,

A = � d�0

dy

d�n

dy
+ �0� d2

dy2 − k2��n,�m� , �36�

B = � d�0

dy

d�n

dy
+

d2�0

dy2 �n,�m� ,

T = �−
d�0

dy
� d2

dy2 − k2��n +
d3�0

dy3 �n,
m� . �37�

The matrices can be computed analytically when the expres-
sions only involve the basis functions themselves �26�. Ma-
trices that involve the base state of conductivity or electric
potential must be computed numerically. We found our re-
sults are not sensitive to the method or details of numerical
integration.

IV. RESULTS

A. Constant electric field (dc)

To predict stability with a constant electric field we set the
forcing frequency to zero and compute the eigenvalues of �.
If the real part of any eigenvalue s is greater than zero then
the flow is unstable. The base state of conductivity is as-
sumed to be steady in the analysis. Therefore, we can only
consider the solution valid if the disturbance growth rate is
fast compared to molecular diffusion of the base state
�11,12�. In dimensional units, the time scale for molecular
diffusion of the interface is

tdiff �
„��t�H…

2

D
, �38�

where ��t� is the dimensionless thickness of the interface,
which increases with time. The dimensional time it takes the
perturbation to grow by a factor A, is

tgrow �
H log�A�

sUev
, �39�

where H /Uev is the nondimensional time scale. Our quasi-
steady solution is valid when

tdiff

tgrow
=

sr�
2HUev

log�A�D
=

sr�
2 Ra

log�A�
� 1. �40�

For the initial interface that we are considering, the thickness
is approximately �=0.2. To determine where our solution is
valid, we apply a conservative estimate and look where the
amplitude of the disturbance grows by A=10 000 before sig-
nificant diffusion of the base state occurs. Using this criteria
the solution assuming a steady base state of conductivity is
clearly valid when

s Ra � 250. �41�

When s Ra�250 we expect our linear analysis to be valid
and the instability to be very strong relative to molecular
diffusion, representing a region where mixing is quite vigor-
ous. When 0�s Ra�250, the flow may be unstable but we
must use caution when interpreting the results of the analysis
that assumes a steady base state.
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We can also compute whether the flow will be unstable
with a transient base state by directly solving the time-
dependent linearized equations using Chebyshev pseu-
dospectral methods �27�. The numerical methods are similar
to those discussed by Lin et al. �12�. Our procedure takes the
fastest growing eigenfunction for a given base state as the
initial perturbation. We then simultaneously integrate for-
ward in time the equations governing the zeroth-order base
state and the first-order perturbation. We observe that the
perturbation will exponentially grow in amplitude, reach a
maximum value, and then begin to decay as the initial con-
ductivity gradient �and driving force for the instability� dif-
fuses away. We can certainly consider a flow unstable if the
perturbation reaches a maximum amplification of 10 000.
Again, the selection of 10 000 as the necessary criteria is a
very conservative one and selecting different amplification
criteria does not change our basic results. The reason that we
do not use the Galerkin procedure to integrate the equations
forward in time �i.e., Eq. �27�� is that � depends upon the
base state and would need to be recomputed at every time
step. In addition, having alternate numerical methods for the
same problem provides us with additional validation of our
results.

Figure 2 shows stability results at a conductivity ratio of
10:1 with the 2D equation set. The solid contours show val-
ues of s Ra=0 and s Ra=250 as a function of Ra and wave
number k. The solid lines are computed from the eigenvalues
of �. The dashed contours show results from integrating the
linearized equations accounting for the transient base state as
described above. We show contours where the maximum am-
plitude of the disturbance is A=10 and A=10 000. The tran-
sient analysis agrees with our scaling argument based upon
competition of time scales for diffusion and perturbation

growth; the curve for s Ra=250 is similar to the curve of
A=10 000. Figure 2 demonstrates that the time scale argu-
ment applied to results obtained with a steady base state is
reasonable. This result is important as it will allow us to
interpret the stability results obtained when the system is
under ac forcing.

To further confirm our interpretation and linear stability
analysis, we perform a direct numerical simulation of Eqs.
�6�–�9�. Snapshots from the simulation are shown in the im-
ages of Fig. 2 and details of the simulation methods were
discussed by Lin et al. �12�. Figure 2 shows that below Ra
�460, the flow is linearly stable. In the region 460�Ra
�4000 the flow is unstable when the base state is considered
steady. However, our simulations and analysis show that in-
stability growth rates are overwhelmed by molecular diffu-
sion of the base state in this region. The perturbation will
only grow by a factor of 10 �A=10�, at most, before molecu-
lar diffusion eliminates the initial conductivity gradient as
shown by the lower dashed curve. In the region 4000�Ra
�6000 the flow is unstable, but the direct numerical simu-
lations predict a weak flow that cannot significantly deform
the conductivity field. The exact magnitude of the flow ve-
locity depends upon the assumed disturbance amplitude, but
strong mixing does not occur. Close to Ra�6000, simula-
tions begin to show observable waves in the conductivity
field. Well above Ra�6000 the flow quickly becomes well
mixed. We therefore interpret the results such that strong and
rapid mixing is expected when s Ra�250. Below s Ra
�250 instability may be observed but it is insufficient for
micromixer design. While the criteria for mixing cannot be
precise, we will show that in the case of the time periodic
forcing the exact criteria will not influence the basic conclu-
sions of this paper. Similar scaling arguments were used by

FIG. 2. �Color online� Linear stability diagram with the 2D equation set and a conductivity ratio of 10:1. Solid contours of s Ra are
shown for values of 0 and 250 computed with a steady base state. Two dashed contours show results from the simulation with a transient
base state. The curves shown are for amplification factors of A=10 and A=10 000. Snapshots of the conductivity field computed from
nonlinear simulations are shown at values of Ra=4000, 7500, and 15 000 in �a�, �b�, and �c�, respectively. The three dotted lines on the
contour plot show these values of Ra. We can use this figure to classify different regimes of the flow. For Ra�6000 we observe the flow
to be unstable and therefore to have strong mixing. For Ra�6000 we observe unstable waves in the conductivity field but not strong folding
and mixing. For 4000�Ra�6000 we observe some flow with perhaps only slightly observable waves. For Ra�4000 we find the pertur-
bation to the initial state will only grow by a factor of 10 before the conductivity field simply diffuses away.
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Lin et al. and the interpretation was experimentally validated
for a slightly different geometry.

The results of stability analysis conducted with the depth-
averaged equation set are summarized in Fig. 3 for a conduc-
tivity ratio of 10:1. Figure 3 shows contours of s Ra, the
stability boundary based on integrating the linearized equa-
tions accounting for a transient base state, and snapshots of
nonlinear simulations at selected Rayleigh numbers. The in-
terpretation is exactly as before. The reader should note that
the y axis is Ra �2. For a thin channel with �=0.1, the y axis
would be multiplied by 100 to obtain a Rayleigh number to
compare to Fig. 2. Comparing Fig. 2 to Fig. 3 we find the
shallow channel flow is much more stable than the 2D chan-
nel, in agreement with previous experimental work �12�. The
basic stability behavior with the depth-averaged equation set
is similar to the 2D equation set, however, the snapshots of
conductivity field show significantly different flow. The ob-
vious difference is high wave numbers dominate in the
depth-averaged simulations. The emergence of high wave
numbers is related to the fact that the z direction introduces a
new smaller length scale into the analysis.

B. Time periodic forcing (ac)

The methods for time periodic stability analysis are out-
lined by Von Kerczek and Davis �20�. Equation �27� is writ-
ten as a matrix equation,

dF

dt
= ��t�F , �42�

where F�t=0� is the identity matrix. Equation �42� is numeri-
cally integrated for one period of the forcing and the eigen-

values � of the matrix F�t=2
 / f� are computed. The Flo-
quet exponent is defined as �=log��� /2
, which provides
the amount of amplification from one forcing cycle to the
next. Since the time scale is not normalized by frequency, we
plot contours of the effective growth rate s=�f . This growth
rate allows us to directly compare the periodically forced
case with the dc case. In the periodically forced problem
there is a mean growth rate est, in addition to the oscillatory
component. Our analysis of time periodic forcing does not
account for the transient, diffusing base state of electrical
conductivity. We know from the dc situation that at suffi-
ciently high Rayleigh numbers the quasisteady assumption is
accurate and fails near s=0.

In the figures that follow, we do not use the electroviscous
time scale to scale the frequency. While the electroviscous
scale works well for the dc problem �see Lin et al. for a
detailed discussion�, it is not appropriate for scaling fre-
quency in the ac problem. From a balance of electrical and
inertial forces we can derive the electroinertial time scale to
be tei=
tevt�, where tev=H /Uev is the electroviscous time
and t�=H2 /v is the momentum diffusion time. Recognizing
that diffusion of conductivity is the important time scale tD

=H2 /D, we arrive at the time scale 
tevtD. We found this
time scale more appropriate for scaling frequency. The di-
mensionless frequency used throughout our formulation is
multiplied by 
Ra to convert to this new scaling. Using this
scaling, the flow exhibits frequency dependence around
f
Ra�1.

The stability results for a single wave number k=2.5, with
the 2D equations and time periodic forcing are summarized
in Fig. 4. We present the single wave number k=2.5, because
this mode has relatively rapid growth at all Rayleigh num-

FIG. 3. �Color online� Linear stability diagram with the depth-averaged equation set and a conductivity ratio of 10:1. Solid contours of
s Ra are shown for values of 0 and 250 computed with a steady base state. The two dashed contours show results from simulations with a
transient base state. The curves shown are for amplification factors of A=10 and A=10 000. Snapshots of the conductivity field computed
from nonlinear simulations are shown at values of Ra=2000, 1000, and 500 in �a�, �b�, and �c�, respectively. The dotted lines on the contour
plot indicate these values of Ra. We can use this figure to classify different regimes of the flow. For Ra �2�800 we observe the flow to be
unstable and therefore to have strong mixing. For Ra �2�800 we observe unstable waves in the conductivity field but not strong folding and
mixing. For 400�Ra �2�800 we observe some flow with perhaps slightly observable waves. For Ra �2�400 we find the perturbation to
the initial state will only grow by a factor of 10 before the conductivity field simply diffuses away.
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bers of interest. Results are very similar for other wave num-
bers. In Fig. 4�a� we show the contour map varying two
parameters, Rayleigh number and frequency. In Fig. 4�b� we
show the growth rate as a function of frequency for selected
Rayleigh numbers. Figure 4�b� is equivalent to holding all
parameters constant but varying the frequency. This view
shows a clear system resonance. Following the curve for a
Rayleigh number of 450 in Fig. 4�b� we find the system is
stable at high frequency and then comes unstable as the fre-
quency is lowered and the system passes into its first reso-
nance.

While the system shows a clear frequency dependence,
these behaviors are observed in a regime where molecular
diffusion of the base state dominates the problem. The analy-
sis of the dc case found good mixing when Ra�6000. This
value is denoted by the dashed “dc field” line in Fig. 4�a�.
Well below this line is where significant system resonance is
found. Direct numerical simulations confirm that in the re-
gion Ra�6000 simple molecular diffusion of the base state
dominates the problem. At higher Rayleigh numbers where
instability dominates the problem, we find that the system
becomes insensitive to frequency. We see at Ra=2500 in Fig.
4�b�, that the frequency dependence already is slight. As Ra
is increased further, the response curves show essentially no
frequency dependence. Direct numerical simulations of the

nonlinear 2D equations were performed at different frequen-
cies for Ra=10 000 and Ra=15 000. In all these simulations,
a frequency dependence on mixing rates was not observable.
Further, we can apply our scaling argument on the competi-
tion between diffusion and instability time scale to Fig. 4�b�.
The peak of the resonance for the Ra=450 would correspond
to s Ra�5. Our scaling argument would predict that the ini-
tial disturbance would amplify by only a factor of A�1.2
before the base state was eliminated by molecular diffusion.

On the contour map of Fig. 4�a�, we also show a curve
that represents the solution blowing up during a single forc-
ing cycle; denoted as “single cycle.” If the frequency is low
compared to the growth rate, it is possible for perturbations
to amplify significantly in a single forcing cycle. Floquet
analysis predicts growth from one forcing cycle to the next.
The region above the “single cycle” curve is flows where the
instability would amplify by a factor of 10 000 in one cycle.
If there was interesting frequency-dependent behavior above
this curve it also would be unobservable. As discussed pre-
viously, molecular diffusion renders the region below the
dashed “dc field” line uninteresting for mixing applications.
Therefore, we are left with only the upper right portion of
Fig. 4�a�, where frequency-dependent behavior is observable.
The growth rate contours become flat in this region of pa-
rameter space.

The usefulness of rescaling frequency is apparent from
the fact that resonances occur at approximately the same fre-
quency for different Rayleigh numbers in Fig. 4�a�. When
scaling frequency by the electroviscous time, the resonances
shift to the left as the Rayleigh number is increased. Our
analysis shows that growth rate contours become constant at
high frequency. This growth rate agrees with the dc analysis
corresponding to the same RMS value of electric potential.
The agreement between the high frequency ac limit and the
dc case provides an additional check on our analysis.

The only practical way to increase the Rayleigh number
in a given experiment is to increase the applied potential. If
the applied electric potential increases, the time scale will
decrease �see Sec. II: Analysis�. The contours shown in Fig.
4�a� are dimensionless growth rates. As the Rayleigh number
increases, the dimensionless growth rate at high frequency
levels off to a constant value. In physical time units, the
instability will occur much more rapidly at high electric
fields because the time scale has decreased.

In the previous example, we presented a conductivity ra-
tio of 10:1. At a higher conductivity ratio of 100:1 we see
similar qualitative behavior, though the frequency depen-
dence becomes more pronounced. Figure 5 presents the same
stability information as Fig. 4. At low Ra we find that the
frequency dependence is quite dramatic for these high con-
ductivity ratios. The Ra=65 line in Fig. 5�b� shows signifi-
cant resonance. However, this behavior still occurs in a re-
gion where instability time scales are slow enough to be
overwhelmed by molecular diffusion of the base state. Reso-
nances are not observable in numerical experiments at even
this high conductivity ratio.

We now turn to the depth-averaged equation set. The sta-
bility behavior for a conductivity ratio of 10:1 at k=1.5 is
summarized in Fig. 6. A lower wave number is used for
presentation as higher wave numbers have even less pro-
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FIG. 4. Stability behavior of the k=2.5 mode for a conductivity
ratio of 10:1 with the 2D equations. In �a� we show contour lines of
growth rate equal to 0, 0.015, and 0.03. We also show the boundary
where the flow is unstable in a dc field accounting for a transient
base state �dashed line� and the curve above which the flow is
unstable in a single forcing cycle. In �b� we show growth rate as a
function of frequency at selected Ra.
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nounced frequency dependence. Figure 6 shows the same
features that we observed with the 2D equation set and the
interpretation is identical to Fig. 4. Again, we are not able to
find examples with the depth-averaged equations where pe-
riodic forcing would have an observable effect on mixing in
numerical experiments.

In the preceding figures, we have presented results for
selected wave numbers and selected conductivity ratios. The
behavior of different wave numbers is similar, and we have
chosen to present wave numbers that are among the fastest
growing. Results for different wave numbers do not differ
significantly in their behavior, nor do they change the basic
conclusions of this paper. We explored various conductivity
ratios up to 100 and found no new results. We have also
explored the high Rayleigh number and high frequency re-
gime outside the regimes presented. We have not yet found a
situation of physical parameters where mixing rates can be
controlled by varying the frequency.

V. DISCUSSION

Our analysis neglected charging of the double layer at the
electrodes. The charging time, as given by Bazant et al., is
tc= �� /H�Ra in dimensionless units where � is the Debye

length �28�. Neglecting the double layer is valid when the
frequency is greater than the inverse charging time for the
system f
Ra�H / ��
Ra�. Typical values for � /H in micro-
fluidic systems can range from 0.01 in small devices with
dilute electrolytes to several orders of magnitude smaller in
larger systems with concentrated electrolytes. At low fre-
quency, when charging should be accounted for, the double
layer capacitance acts as a high-pass RC filter on the electric
field in the bulk. Double layer charging simply adds another
mechanism to reduce instability at low frequency.

Our analysis focused on the bulk instability and neglected
electro-osmotic slip at the electrode surface, a valid assump-
tion for ideally polarizable electrodes. Instability due to
electro-osmotic slip of the first and second kind has been
well studied �29–31�. Such instabilities do not rely upon set-
ting up a bulk conductivity gradient and therefore occur by a
different mechanism than the bulk instability we consider.
Electro-osmotic instability of the first kind, while possible
theoretically, is not feasible for aqueous, inorganic electro-
lytes �30,31�. Electro-osmotic instability of the second kind
occurs only when a current near the limiting value is passing
through the system and the double layer takes on a nonequi-
librium structure. Such instabilities could occur in our sys-
tem when there are significant Faradaic reactions at low fre-
quency �31�.

Frequency, f Ra1/2

R
a

s=0.12

s=0.06

s=0

DC field
single cycle

10
−1

10
0

10
1

10
2

10
3

10
−1

10
0

10
1−0.1

−0.05

0

0.05

0.1

0.15

0.2

Frequency, f Ra1/2

G
ro

w
th

R
at

e

Ra=65

Ra=1000

Ra=2500

(a)

(b)

FIG. 5. Stability behavior of the k=2.5 mode for a conductivity
ratio of 100:1 with the 2D equations. In �a� we show contour lines
of growth rate equal to 0, 0.06, and 0.12. We also show the bound-
ary where the flow is unstable in a dc field accounting for a tran-
sient base state �dashed line� and the curve above which the flow is
unstable in a single forcing cycle. In �b� we show growth rate as a
function of frequency at selected Ra.
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FIG. 6. Stability behavior of the k=1.5 mode for a conductivity
ratio of 10:1 with the depth-averaged equations. In �a� we show
contour lines of growth rate equal to 0, 0.05, and 0.07. We also
show the boundary where the flow is unstable in a dc field �dashed
line� accounting for a transient base state and the curve above
which the flow is unstable in a single forcing cycle. In �b� we show
growth rate as a function of frequency at selected Ra.
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While electro-osmotic instability may play a role at low
frequency where significant reactions can occur, the analysis
is complicated by the fact that the applied voltages typically
exceed the thermal voltage 25 mV by a factor of 100 or
more. The limits of applicability for the dilute solution equa-
tions are well exceeded in such microfluidic applications
�32�. Additional atomistic modeling and experimental work
is needed on electrochemical flows at large applied voltages
before such problems can be fully analyzed.

Thus far, all results have been presented in terms of the
dimensionless Rayleigh number. In order to connect to pre-
vious and possible future experimental results we can easily
convert our results to the physical values. Using physical
parameters of water and taking Sc=500, typical of aqueous
inorganic electrolytes, we can compute voltages that would
achieve the mixing regimes discussed in this work. For the
2D equations, the mixing threshold of Ra=6000 for a 10:1
conductivity ratio corresponds to an applied voltage of ap-
proximately 4 V. For the depth-averaged equations in a chan-
nel with a 10:1 aspect ratio, the critical dc voltage is ap-
proximately 14 V. It is interesting to note that these critical
voltages do not depend upon the size of the channel, only the
properties of the liquid electrolyte and the initial conductiv-
ity ratio. The voltage required for mixing aqueous fluids is
consistent with those used in existing microfluidic devices.

The most direct experimental paper corresponding to the
geometry of interest is the work of El Moctar et al. �14�. In
their experiments, the permittivity of the buffer streams was
dependent upon the frequency. In our comparison we focus
on the regime where the frequency is sufficiently high such
that the relative permittivity of the buffer streams is the same
�see Fig. 3 of Ref. �14��. Using our analysis as in Fig. 2 we
predict a critical voltage for observable instability and mix-
ing to be approximately 18 V when we apply the parameters
of their experiments. This predicted voltage is in range of
their experiments, but lower than their reported 50 V thresh-
old value for mixing. Their experimental setup had the addi-
tional effect that fluid is continuously pumped over the elec-
trodes by external means. Therefore, to observe mixing we
must consider whether the instability can grow to sufficient
amplitude in the time that the fluid is between the electrodes.

Our model predicts that the maximum growth rate for El
Moctar et al.’s experiments is s=0.63 at k=5.2. The ampli-
fication of a linear disturbance over the time fluid is between
the electrodes can be computed as

A = estfUev/H, �43�

where tf is the flow time between the electrodes and H /Uev is
the time scale used in the nondimensionalization. Using the
experimental parameters we predict that a disturbance would
amplify by a factor of A=1000 over the distance of the elec-
trode at 70 V and a factor of A=10 000 at 80 V. Such rapid
linear growth rates at these voltages correspond to predic-
tions of a well-mixed flow. Our theoretical predictions are
consistent with the voltages used in experiments where good
mixing was observed. Only simulations with nonlinear inter-
actions can determine the mixing efficiency, however, our

analysis from the linear stability problem provides a good
estimate of the voltage needed for mixing.

In making our estimation we made a simplifying assump-
tion that the Rayleigh number was very large while the Rey-
nolds number remained small. The stability problem will
only depend upon the conductivity ratio when we take the
limits Re→0 and Ra→�. We confirm that the experimental
images provided in El Moctar et al. are well inside this re-
gime. In microfluidic mixer applications where the Rayleigh
numbers may be well above threshold to induce strong mix-
ing of the fluid, this limit is accurate and simplifies the prob-
lem even further.

VI. CONCLUSIONS

Recent research has shown that electrohydrodynamic in-
stabilities in microchannels can drive a low Reynolds num-
ber mixing flow. The instabilities hold promise as a passive
mixing mechanism for microfluidic applications �14�. Our
goal was to investigate the behavior of these instabilities
when the driving electric forcing is time periodic. We ex-
plored an extensive range of parameter space, and have con-
cluded that improving mixing by modulating the electric
body force does not seem like a feasible strategy. In the
regime where frequency dependence is found, the time scales
of instability are so slow that molecular diffusion thoroughly
mixes the fluids before instability sets in. The regimes of
interest for mixing applications show that the ac case using
the RMS voltage behaves the same as the dc case with no
frequency dependence.

However, we found a strong frequency dependence when
the base state of fluid electrical conductivity is considered
steady. With the assumption of a steady base state, the flow
can pass from stable to unstable by simple adjustment of the
frequency. We expect that time periodic forcing would be
important in configurations where conductivity gradients are
permanent. A steady conductivity gradient can occur where
the fluids are immiscible or the conductivity gradient is set
by thermal or electrochemical effects. Such configurations
are an area for future study.

While there are significant quantitative differences, quali-
tatively there is no significant difference in modeling the
flow with the 2D equation set and the depth-averaged equa-
tion set. Both equation sets predict very similar results and
similar features when viewed in Rayleigh number–wave
number parameter space. This result indicates that, if full 3D
modeling were conducted, we would not expect to find new
behavior.

Experimental results of Shin et al. �17� showed a
frequency-dependent mixing rate in unstable electrokinetic
flow. In their experiments, they studied a thin layer of high
conductivity fluid sandwiched between two low conductivity
streams merged at a cross junction. The flow is driven by
electro-osmosis. In their configuration, the flow is arranged
such that the relative flow rates of the high and low conduc-
tivity fluid are periodic in time. In our study, it was only the
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electric body force that was periodic in time. Based on our
study it seems that the frequency dependence observed by
Shin et al. �17� is likely due to modulating the flow rates.
Variations on their scheme may hold promise for frequency-
controlled mixing. Based on our results, mixing schemes that
rely upon modulation of the electric body force do not seem

to hold much promise as a method for improving fluid mix-
ing.
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