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We demonstrate experimental generation of two-dimensional �2D� chaotic vector fields from a surface-
emitting microcavity laser with precisely control of the operating temperature and the operating current. The
2D optical vector field is found to be formed by frequency locking of two linearly polarized laser modes with
different chaotic spatial structures. The eigenfunction expansion method is used to reconstruct the experimental
wave function for analyzing the properties of the vector singularities. It is shown that the distribution of vector
singularities obeys the sign rule of nearest-neighbor singularities in the phase space of the vector field.

DOI: 10.1103/PhysRevE.76.026219 PACS number�s�: 42.25.Ja, 03.65.�w, 42.60.Jf, 42.55.Sa

I. INTRODUCTION

The quantum-billiard model is often used as a paradigm
to study the quantum properties corresponding to classical
chaotic systems �1�. Berry proposed that the statistical prop-
erties of high-lying energy eigenstates of classically chaotic
systems can be generally described by a superposition of
numerous plane waves of fixed wave-vector magnitude but
random amplitude, phase, and direction �2�. Using numerical
analyses, the two-dimensional �2D� chaotic wave functions
have been found to exhibit the spatial patterns of quasilinear
structures �3–5�. In addition to quantum chaos, the quantum-
billiard model is also employed to investigate electron trans-
port phenomena in mesoscopic quantum systems �6,7�. It has
been perceived that the conductance fluctuations in quantum
dots are intimately associated with the quantum wave func-
tions localized on classical trajectories �8–11�. This finding
indicates that the study of the morphology of wave functions
proffers specific insight into experimental quantities in me-
soscopic quantum systems.

The spatial properties of high-order wave functions have
been experimentally investigated with analogous wave sys-
tems including microwave cavities �1,12–15�, acoustic reso-
nators �16,17�, optical fibers �18�, optical systems �19�, and
microcavity lasers �20–23�. In particular, optical coherent
fields not only can be utilized to visualize the morphology of
wave functions in confined systems but also can be em-
ployed to manifest polarization singularities because of their
vector nature �24–26�. The study of polarization singularities
is one significant category of singular optics that is a very
modern area of interest in contemporary physics �27�. There
are two types of singularity of the polarization vectors of
paraxial optical beams: vector singularity and Stokes singu-
larities �28�. Vector singularities are isolated, stationary
points in a plane at which the orientation of the electric vec-
tor of a linearly polarized vector field becomes undefined.
The features of vector singularities have been experimentally
observed in laser modes with the interrelated behavior of
spatial structures and polarization states �29–34�. However,

so far all experimental demonstrations have been related to
the eigenmodes of integrable optical cavities; no experiments
have demonstrated explicitly the entanglement of polariza-
tion and spatial structures in chaotic laser resonators.

In this work, we fabricate a square-shaped vertical cavity
surface-emitting laser �VCSEL� with a moderate ripple
boundary to generate 2D chaotic vector fields by precisely
controlling the operating temperature and operating current.
The experimental results reveal that each vector field consists
of two linearly polarized laser modes with different chaotic
spatial structures, but synchronized to a single frequency. To
show the properties of vector singularities, we use the eigen-
function expansion technique to reconstruct the wave func-
tion for two orthogonal-polarization near-field patterns. With
the reconstructed wave functions, the distribution of vector
singularities is clearly found to obey the sign rule of nearest-
neighbor singularities in the phase space of the vector field
�35�. More importantly, it is confirmed that phase extrema
are hardly visible in 2D chaotic vector fields.

II. GENERATION OF POLARIZATION-ENTANGLED 2D
CHAOTIC VECTOR FIELDS

In this investigation, a square-shaped oxide-confined VC-
SEL with a moderate ripple boundary was developed to be a
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FIG. 1. �Color online� Experimental pattern of the spontaneous
emission showing details of the ripple boundary.
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laterally confined nonintegrable system �22�. Figure 1 shows the pattern of the spontaneous emission that manifests the details
on the ripple boundary. The forms for the bottom and top walls of the ripple are approximately expressed as

Y�x� = �0.044a�1 − exp�− 13.5� x

a
−

1

2
�	
 for the bottom wall,

a − 0.044a�1 − exp�− 13.5� x

a
−

1

2
�	
 for the top wall,

�1�

where a is the central length of the ripple boundary. The right
and left walls of the ripple are described with the same func-
tional form. The structure of this oxide-confined VCSEL is
shown in Fig. 2�a�. The size of the oxide aperture is 45
�45 �m2.

Although the transverse confinement of the VCSEL de-
vice has been successfully demonstrated to be like a 2D
wave billiard system �20–23�, the fundamental operation is
summarized here in order to make the representation self-
contained and to give our notation. The function of the 2D
wave billiard wall in the VCSEL device comes from the fact
that the large index discontinuity between the oxide layer
and surrounding semiconductor leads to a total internal re-
flection of a wave incident upon the boundary. The separa-
bility of the wave function in the VCSEL device enables the
wave vectors to be decomposed into kz and kt, where kz is the

wave-vector component along the direction of vertical emis-
sion and kt is the transverse wave-vector component. The
vertical dimension of the cavity is designed to have a large kz
component and a relatively small transverse component kt,
generally kt�0.12kz. The angle between the photon velocity
vector and the normal vector of the boundary surface,
tan−1�kz /kt�, can be calculated to be greater than 1.45 rad. On
the other hand, the critical angle for total reflection is given
by sin−1�nox/nGaAs�, where nox is the effective refractive in-
dex of the oxide layer and nGaAsthat of the semiconductor
cavity. With nox�1.54 and nGaAs�3.5, it can be confirmed
that the angle between the photon velocity vector and the
normal vector of the boundary surface is certainly greater
than the critical angle for total reflection. As a consequence,
the lateral oxide boundaries can be modeled as rigid walls
and the losses through the wall boundaries are extremely
low.

Under the circumstance of paraxial optics, kt�kz, the lon-
gitudinal field is significantly small in comparison with the
transverse field. Therefore, the electric field can be approxi-
mated as having only transverse components and no longitu-
dinal component, i.e., so-called quasi-TEM waves. After
separating the z component in the wave equation, we are left
with a two-dimensional Helmholtz equation ��t

2+kt
2���x ,y�

=0, where �t
2 is the Laplacian operator operating on the co-

ordinates in the transverse plane and ��x ,y� is a scalar wave
function that describes the transverse distribution of the laser
mode. As a result, the transverse eigenfunctions of the oxide-
confined VCSEL device are equivalent to the eigenfunctions
of the 2D Schrödinger equation with hard wall boundaries of
the same geometry. The vertical cavity is formed by two
distributed Bragg reflectors �DBRs� and its optical length is
designed to be nearly one wavelength �806.5 nm�. Since the
vertical emission through the top DBR represents the cou-
pling of the wave field from the inside cavity to the outside
environment, the phasor amplitude of the emission field dis-
tribution E�x ,y ,z� can be expressed as E�x ,y ,z�
=��x ,y�e−jkzz. More importantly, the transverse near-field
wave patterns can be straightforwardly reimaged from the
surface-emitting laser output.

The experimental setup is shown in Fig. 2�b�. The VCSEL
device was placed in a cryogenic system with a temperature
stability of 0.01 K in the range 80–270 K. A current source
with a precision of 0.01 mA was utilized to drive the VCSEL
device. The near-field patterns were reimaged into a charge-
coupled device �CCD� camera �Coherent, Beam-Code� with
a microscope �Mitsutoyo, numerical aperture 0.9�. A polar-
izer was used to obtain polarization-resolved near-field pat-
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FIG. 2. �Color online� �a� Basic structure of the surface-emitting
microcavity laser. �b� Experimental configuration for generation of
2D chaotic vector fields.
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terns. The spectral information in the laser output was mea-
sured by a Fourier optical spectrum analyzer �Advantest
Q8347� with a Michelson interferometer. Inasmuch as the
resolution of the spectrum analyzer is 0.002 nm, transverse
modes separated by �0.07 nm in the present device could be
clearly resolved.

Since the gains of two orthogonally polarized modes are
generally different, the lasing mode near threshold is usually
dominated by one of the linearly polarized modes. In other
words, the transverse wave is a scalar field and its polariza-
tion is essentially the same for all points of the transverse
plane. However, precise adjustment of the operating tem-
perature can cause the lasing thresholds of two orthogonally
polarized modes to be nearly the same. Under this circum-
stance, the lasing modes are generally found to be made up
of two distinct chaotic wave patterns with orthogonal linear
polarizations. To be precise, the lasing transverse wave is a
2D chaotic vector field and its polarization is spatially de-
pendent. For example, the experimental near-field pattern at
the operating temperature of T=265 K and the threshold cur-
rent of I=26.9 mA did not display exact standing-wave mor-
phology because of the superposition of two orthogonally
polarized modes. Figures 3�a� and 3�b� show the
polarization-resolved near-field patterns in the 0° and 90°
directions, respectively. The polarization angle is referred to
the �110� direction of the �001� GaAs crystal. The orthogo-
nally polarized modes clearly exhibit remarkably distinct
chaotic patterns. The measurement of the optical spectrum
indicates that the whole experimental wave is phase synchro-
nized to a single frequency at 806.45 nm. As a consequence,
the orthogonally polarized components can mutually inter-
fere to lead to a greatly different pattern in the polarization-
resolved near-field image, as shown in Fig. 3�c� for 45° po-
larization and Fig. 3�d� for 135° polarization. Explicitly, the
entanglement of spatial structures and polarization states
leads to the formation of an optical vector field. We investi-
gated the dependence of the 2D chaotic vector field on the
operating parameters, and it turns out that the experimental
vector field remains unchanged for 262.5�T�267.5 K and
for 26.9� I�27.6 mA. The width of these ranges indicates
that generation of 2D chaotic vector fields is a robust phe-
nomenon. To our best knowledge, the present result proffers

the first experimental realization of 2D chaotic vector fields
in a microcavity laser. As described in the following section,
the experimental chaotic vector fields can be analytically de-
scribed by using the eigenfunction expansion technique to
reconstruct two orthogonal-polarization near-field patterns.
The reconstructed patterns are depicted in Figs. 3�a��–3�d��
for a clear comparison. It is worthwhile to clarify that all the
high-order transverse modes excited from an integrable
square cavity are found to be localized on classical periodic
orbits �33�. In other words, a deliberate perturbation plays an
essential role for the generation of the chaotic wave modes.

III. ANALYSIS OF VECTOR SINGULARITIES
FOR THE EXPERIMENTAL CHAOTIC VECTOR FIELD

Since it is not feasible to measure polarization vector
fields in a straightforward way, the reconstruction of the or-
thogonally polarized wave functions is practically useful for
analyzing the properties of vector singularities. In order to
reconstruct the wave functions, we need to deduce the field
point matrix ��xi ,yj� from the experimental intensity point
matrix 
��xi ,yj�
2, where the indices �i , j� denote the pixel
positions of the CCD camera and the total pixel number of
the experimental data is 200�200. Since the nodal lines
separate the positive and negative domains of the wave func-
tion, a so-called positive wave distribution 
�p�xi ,yj�
 can be
obtained by preserving the wave amplitude 
��xi ,yj�
 for the
domains with the same sign and setting the wave amplitude
to zero for the domains with opposite sign �22,36�. Figures
4�a� and 4�b� depict the patterns of 
�p�xi ,yj�
 for the two
orthogonally polarized modes shown in Figs. 3�a� and 3�b�,
respectively. With the positive wave distribution 
�p�xi ,yj�
,
the experimental wave function ��xi ,yj� can be determined
from �22�

��xi,yj� = 2 · 
�p�xi,yj�
 − 
��xi,yj�
 . �2�

Since the experimental wave functions are too coarse to
explore the vector singularities completely, the eigenfunction
expansion technique is utilized to find analytical expressions
for ��xi ,yj�. With the eigenstates of 2D square billiards as a
basis, the experimental polarization-resolved wave function
can be expressed as

(a) (b) (c) (d)

(a') (b') (c') (d')

FIG. 3. Experimental
polarization-resolved near-field
patterns observed at the operating
temperature of T=265 K with po-
larization in the direction �a� 0°
�perpendicular�, �b� 90° �horizon-
tal�, �c� 45°, and �d� 135°. �a��–
�d�� Reconstructed patterns with
the eigenfunction expansion
method for experimental results
shown in �a��–�d��, respectively.
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��x,y� = �
m

�
n

Cm,n sin�m�

a
x	sin�n�

a
y	 , �3�

where a is the length of the square boundary, m and n are the
quantum numbers in the xand y directions, respectively, and
Cm,n denote the expansion coefficients. Even though some
other bases can be chosen for the expansion, the simple ana-
lytical form of the eigenstates of 2D square billiards causes
the calculation to be extremely straightforward. The orthogo-
nality relation leads Cm,n to be

Cm,n = �
0

a �
0

a

��x,y�sin�m�

a
x	sin�n�

a
y	dx dy . �4�

With the experimental wave function ��xi ,yj�, the integral in
Eq. �4� can be numerically calculated by a summation:

Cm,n = �
i=1

N

�
j=1

N

��xi,yj�sin�m�

a
xi	sin�n�

a
yj	�xi �yj . �5�

Figures 5�a� and 5�b� show the intensity plots for 
Cm,n
 for
the experimental polarization-resolved modes at 0° and 90°,
respectively. The distributions of 
Cm,n
 are found to be spe-
cifically localized on a thin ring. It is noteworthy that the
intensity distribution in Fig. 3�b� exhibits a slight scarring
effect; nevertheless, its statistical properties are rather close
to the characteristics of the chaotic wave function of Berry’s
conjecture �2�, as shown in Figs. 6 and 7. With the expansion

coefficients Cm,n, we can obtain analytical wave functions for
the experimental polarized-resolved modes in terms of 2D
square-billiard eigenstates. Figures 3�a�� and 3�b�� depict
the wave patterns of the analytical wave functions corre-
sponding to the experimental polarization-resolved modes at
0° and 90°, respectively. It can be clearly seen that the ex-
perimental polarization-resolved patterns are well recon-
structed with the analytical wave functions.

Let �x�x ,y� and �y�x ,y� denote the polarization-resolved
wave functions at 0° and 90°, respectively. In terms of
�x�x ,y� and �y�x ,y�, the vector field distribution for the ex-
perimental pattern is given by


E� = �x�x,y�
x� + �y�x,y�
y� , �6�

where 
x� and 
y� are the unit vectors in the x and y direc-
tions, respectively. With the vector field 
E� the polarization-
resolved wave functions at 45° and 135° are given by

�45�x,y� =
1
�2

��x�x,y� + �y�x,y�� �7�

and

�135�x,y� =
1
�2

�− �x�x,y� + �y�x,y�� . �8�

Figures 3�c�� and �3d�� depict the numerical results for the
intensity patterns of 
�45�x ,y�
2 and 
�135�x ,y�
2, respectively.
The good agreement between the numerical and experimen-
tal patterns evidences the accuracy of the reconstructed wave
function in representing the observed vector field.

To further validate that the experimental observation is a
chaotic vector field, we use the reconstructed wave functions
to calculate the amplitude and intensity distributions. For the
chaotic wave function of Berry’s conjecture, the amplitude
distribution is a Gaussian function,

P��� =
1

�2�	
e−�2/2	2

, �9�

(a) (b)

FIG. 4. �a�, �b� Intensity plots of the positive wave functions

�p�xi ,yj�
 for experimental results shown in Figs. 3�a� and 3�b�,
respectively.
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FIG. 5. �a�, �b� Distribution of
the coefficients 
Cm,n
 obtained by
Eq. �3� for experimental results
shown in Figs. 3�a� and 3�b�,
respectively.

CHEN et al. PHYSICAL REVIEW E 76, 026219 �2007�

026219-4



and the intensity distribution is shown to be a Porter-Thomas
distribution

P�
�
2� =
1

�2�
�
2
e−
�
2/2. �10�

Figures 6 and 7 illustrate the amplitude and intensity distri-
butions of the polarization-resolved wave functions, respec-
tively. All amplitude and intensity distributions of the
polarization-resolved wave functions shown in Fig. 3 are

found to be in fairly good agreement with the theoretical
distributions.

In addition to the chaotic modes, scarred modes related to
classical periodic orbits also exist in the present ripple square
billiard. Figures 8�a�–8�d� show the experimental
polarization-resolved near-field patterns observed at the op-
erating temperature of T=210 K. All intensity patterns can
be clearly seen to be localized on the trajectories of classical
periodic orbits. These findings are basically consistent with
the theoretical results obtained by Li et al. �37� except for the
characteristics of the vector field.

The vector singularities are generally described by the
angle function

P�
�
�
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�
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� �
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FIG. 6. �Color online� �a�–�d�
Amplitude distributions of the
polarization-resolved wave func-
tions �blue stepped lines� for ex-
perimental results shown in Figs.
3�a�–3�d�, respectively. Red lines:
Gaussian distributions �Eq. �9��.
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FIG. 7. �Color online� �a�–�d�
Intensity distributions of the
polarization-resolved wave func-
tions �blue stepped lines� for ex-
perimental results shown in Figs.
3�a�–3�d�, respectively. Red lines:
Gaussian distributions �Eq. �10��.
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�x,y� = arctan��y�x,y�
�x�x,y�	 . �11�

The vortices of the angle function 
�x ,y� correspond to the
vector singularities at which the orientation of the electric
field vector is undefined. Figure 9�a� depicts the numerical
pattern of the angle function 
�x ,y� for the experimental
vector field. Here the angle is color coded �gray scaled� and
the singularities are at the points where all colors come to-
gether. The polarization vector field is clearly seen to reveal
a highly sophisticated interlace pattern. A small region of the
vector field is depicted in Fig. 9�b� to demonstrate the minute
features of the vector singularities.

It is of pedagogical importance to confirm the sign rule
that the nearest-neighbor singularities on any contour of con-
stant phase are required to have opposite signs �38�. Figure
9�c� illustrates the zero-crossing map of �x�x ,y� and �y�x ,y�
for the square region shown in Fig. 9�b�. All saddle points
are manifestly found to be open saddles with no joined arms.
In other words, no closed saddles are found in the experi-
mental vector field and no phase extrema are observed. This
result is consistent with the theoretical analysis that the phase
extrema are really rare because there is little room left in the
phase field to accommodate them �38�.

IV. CONCLUSION

Previously, we manufactured a square-shaped VCSEL de-
vice with a moderate ripple boundary to investigate the sta-
tistical properties of chaotic wave functions in a noninte-
grable system �22�. In the present work, the same laser
device has been utilized to generate 2D chaotic vector fields
by means of precisely controlling the operating temperature
and operating current. The 2D chaotic vector field was found
to be composed of two linearly polarized laser modes with
different chaotic spatial structures, but synchronized to a
single frequency. The eigenfunction expansion technique has
been employed to reconstruct the wave function for each
orthogonal polarization near-field pattern to explore the
properties of vector singularities. The numerical analysis
verifies the sign rule that the nearest-neighbor singularities
on any contour of constant phase have opposite signs in the
phase space of the vector field. It is also confirmed that phase
extrema are scarcely visible in 2D chaotic vector fields.

Recently, we studied the polarization singularities of 2D
regular vector fields in a standard spherical laser cavity that

is an integrable system with the transverse confinement
equivalent to an isotropic 2D harmonic oscillator �34,39�.
Here we have generated and investigated the polarization
singularities of 2D chaotic vector fields in a surface-emitting
microcavity that is a nonintegrable system with the trans-
verse confinement equivalent to a 2D rigid wall. As ex-
pected, the distributions of the polarization singularities are
quite different for these two distinct paraxial laser cavities.
However, experimental results and theoretical analyses re-
veal that phase extrema do not exist in the general 2D
paraxial vector fields no matter whether they are regular or
chaotic. Therefore, the conditions of existence of the phase
extrema deserve further study.
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FIG. 8. Experimental polarization-resolved near-field patterns
observed at the operating temperature of T=210 K with polariza-
tion in the direction �a� 0° �perpendicular�, �b� 90° �horizontal�, �c�
45°, and �d� 135°.
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FIG. 9. �Color online� �a� Numerical pattern of the angle func-
tion 
�x ,y� for the experimental vector field. �b� Zoomed view of
the angle field 
�x ,y�. The arrows display the normalized vector
field distributions. �c� Zero-crossing map of �x�x ,y� and �y�x ,y� for
the square region shown in �b�: positive and negative index singu-
larities indicated by their signs + and −, respectively.
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