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We study a configuration for displacement detection consisting of a nanomechanical resonator coupled to
both a radio frequency superconducting interference device and to a superconducting stripline resonator. We
employ an adiabatic approximation and rotating wave approximation and calculate the displacement sensitivity.
We study the performance of such a displacement detector when the stripline resonator is driven into a region
of nonlinear oscillations. In this region the system exhibits noise squeezing in the output signal when homo-
dyne detection is employed for readout. We show that displacement sensitivity of the device in this region may
exceed the upper bound imposed upon the sensitivity when operating in the linear region. On the other hand,
we find that the high displacement sensitivity is accompanied by a slowing down of the response of the system,
resulting in a limited bandwidth.
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I. INTRODUCTION

Resonant detection is a widely employed technique in a
variety of applications. A detector belonging to this class
typically consists of a resonator, which is characterized by a
resonance frequency �0 and characteristic damping rates.
Detection is achieved by coupling the measured physical pa-
rameter of interest, denoted as x, to the resonator in such a
way that �0 becomes effectively x dependent, that is, �0
=�0�x�. In such a configuration x can be measured by exter-
nally driving the resonator, and monitoring its response as a
function of time by measuring some output signal X�t�. Such
a scheme allows a sensitive measurement of the parameter x,
provided that the average value of X�t�, which is denoted as
X0, strongly depends on �0, and provided that �0, in turn,
strongly depends on x. These dependencies are characterized
by the responsivity factors R= ��X0 /��0� and ���0 /�x�, re-
spectively. Resonant detection has been employed before for
mass detection �1�, quantum state readout of a quantum bit
�2–5�, detection of gravitational waves �6�, and in many
other applications.

In general, any detection scheme employed for monitor-
ing the parameter of interest x can be characterized by two
important figures of merit. The first is the minimum detect-
able change in x, denoted as �x. This parameter is deter-
mined by the abovementioned responsivity factors, the noise
level, which is usually characterized by the spectral density
of X�t�, and by the averaging time � employed for measuring
the output signal X�t�. The second figure of merit is the ring-
down time tRD, which is a measure of the detector’s response
time to a sudden change in x.

In general, the minimum detectable change �x is propor-
tional to the square root of the available bandwidth, namely,
to �2� /��1/2. It is thus convenient to characterize the sensi-
tivity by the minimum detectable change �x per square root
of bandwidth, which is given by Px=�x / �2� /��1/2. Under
some conditions, which will be discussed below in detail, the

smallest possible value of Px is given by �1,7�

Px
SLL = � ��0

�x
�−1� �0

2Q

kBT

U0

��0

2kBT
coth

��0

2kBT
�1/2

, �1�

where kBT is the thermal energy, U0 is the energy stored in
the resonator, and Q is the quality factor of the resonator.
One of the assumptions, which are made in order to derive
Eq. �1�, is that the response of the resonator is linear. We
therefore refer to the value of Px given by Eq. �1� as the
standard linear limit �SLL� of resonant detection. Under the
same conditions and assumptions, the ring-down time is
given by

tRD =
Q

�0
. �2�

As can be seen from Eq. �1�, sensitivity enhancement can
be achieved by increasing Q, however, this unavoidably will
be accompanied by an undesirable increase in the ring-down
time �see Eq. �2��, namely, slowing down the response of the
system to changes in x. Moreover, Eq. �1� apparently sug-
gests that unlimited reduction in Px can be achieved by in-
creasing U0 by means of increasing the drive amplitude.
Note, however, that Eq. �1�, which was derived by assuming
the case of linear response, is not applicable in the nonlinear
region. Thus, in order to characterize the performance of the
system when nonlinear oscillations are excited by an intense
drive, one has to generalize the analysis by taking nonlinear-
ity into account �3,7–11�.

In the present paper we theoretically study a configuration
in which a superconducting stripline resonator is employed
for resonant detection of the displacement x of a nanome-
chanical resonator �12,13�. In general, the nanomechanical
resonator can be coupled directly to the superconducting
stripline resonator �14�, however, achieving high responsiv-
ity factor ���0 /�x� is quite difficult using direct coupling due
to size mismatch between both resonators. On the other
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hand, a much larger responsivity factor can be achieved by
employing a radio frequency �rf� superconducting interfer-
ence device �SQUID�, which can be strongly coupled to both
resonators, allowing thus indirect coupling between them
�15,16�. Retardation effects in such an indirect coupling con-
figuration are expected to be small since the dynamics of the
rf SQUID is typically much faster in comparison with both
resonators. Note that similar configurations have been stud-
ied recently in Refs. �17–20�. In the present work we employ
an adiabatic approximation and a rotating wave approxima-
tion �RWA� to study the dynamics of the system and calcu-
late the displacement sensitivity. We first consider the case
where the response of the stripline resonator is linear and
reproduce Eqs. �1� and �2� in this limit. However, we find
that the response becomes nonlinear at a relatively low input
drive power. Next, we show that Px in the nonlinear region
may become significantly smaller than the value given by
Eq. �1�, exceeding thus the SLL imposed upon the sensitivity
when operating in the linear region. On the other hand, we
find that the enhanced displacement sensitivity is accompa-
nied by a slowing down of the response of the system, re-
sulting in a limited bandwidth, namely, a ring-down time
much longer than the value given by Eq. �2�.

II. THE DEVICE

The device, which is schematically shown in Fig. 1, con-
sists of an rf SQUID inductively coupled to a stripline reso-
nator. The loop of the rf SQUID, which has a self-inductance
�, is interrupted by a Josephson junction �JJ� having a criti-
cal current Ic and a capacitance CJ. A perpendicularly applied
magnetic field produces a flux �e threading the loop of the rf
SQUID. The stripline resonator is made of two identical
stripline sections of length l /2 each having inductance LT
and capacitance CT per unit length and characteristic imped-
ance ZT=	LT /CT. The stripline sections are connected by a
doubly clamped beam made of a narrow strip, which is freely
suspended and allowed to oscillate mechanically. We assume
the case where the fundamental mechanical mode vibrates in
the plane of the figure and denote the amplitude of this flex-
ural mode as x. Let m be the effective mass of the fundamen-
tal mechanical mode, and �m its angular resonance fre-
quency. The suspended mechanical beam is assumed to have
an inductance Lb �independent of x� and a negligible capaci-
tance to ground. The coupling between the mechanical reso-

nator and the rest of the system originates from the depen-
dence of the mutual inductance M between the inductor Lb
and the rf SQUID loop on the mechanical displacement x,
that is, M =M�x�.

A. Transmission line resonator

The transmission line is assumed to extend from
y=−l /2 to y= l /2, and the lumped inductance Lb is located at
y=0. Consider the case where only the fundamental mode of
the resonator is driven. Disregarding all other modes we ex-
press the voltage V�y , t� and current I�y , t� along the trans-
mission line as

V�y,t� =
 	̇

LT cos�
�y +
l

2
��


Lb sin

l

2

y � 0,

− 	̇

LT cos�
�y −
l

2
��


Lb sin

l

2

y � 0,

�3�

I�y,t� =
 	

sin�
�y +
l

2
��

Lb sin

l

2

y � 0,

− 	

sin�
�y −
l

2
��

Lb sin

l

2

y � 0,

�4�

where 	 represents the flux in the lumped inductor at y=0.
The value of 
 is determined by applying Faraday’s law to
the lumped inductor at y=0 �16�

cot

l

2
= −


l

2

Lb

LTl
. �5�

For the fundamental mode the solution is in the range �


l
2� �see Fig. 2�.

B. Inductive coupling

The total magnetic flux � threading the loop of the rf
SQUID is given by

� = �e + �i, �6�

where �i represents the flux generated by both, the circulat-
ing current in the rf SQUID Is and by the current in the
suspended mechanical beam Ib

�i = Is� + MIb, �7�

where � is the self-inductance of the loop. Similarly, the
magnetic flux 	 in the inductor Lb is given by

	 = IbLb + MIs. �8�

Inverting these relations yields

FIG. 1. �Color online� The device consists of a nanomechanical
resonator coupled to both a rf SQUID and to a superconducting
stripline resonator.
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Is =
Lb�i − M	

�Lb�1 − �M
2 �

, �9�

Ib =
�	 − M�i

�Lb�1 − �M
2 �

, �10�

where

�M =
M

	�Lb

. �11�

The gauge invariant phase across the Josephson junction �
is given by

� = 2�n −
2��

�0
, �12�

where n is an integer and �0=h /2e is the flux quantum. We
set n=0, since observable quantities do not depend on n.

C. Capacitive and inductive energies

Assuming that the only excited mode is the fundamental
one, the capacitive energy stored in the stripline resonator is
found using Eqs. �4� and �5�

CT

2



−l/2

l/2

V2 dy =
Ce	̇

2

2
, �13�

where Ce, which is given by

Ce =
CTLT

2
2�Lb
, �14�

represents the effective capacitance of the stripline resonator.
The factor �, which is defined by

� = −
sin�
l�


l + sin�
l�
, �15�

can be calculated by solving numerically Eq. �5� �see Fig. 2�.
Similarly, the inductive energy stored in the resonator, ex-
cluding the energy stored in the lumped inductor Lb at y=0,
is found using Eqs. �4� and �5�

LT

2



−l/2

l/2

I2 dy =
	2

2Le
, �16�

where Le, which is given by

1

Le
= Ce�e

2 +
1

Lb
, �17�

represents the effective inductance of the stripline resonator
excluding the lumped element at y=0, and where

�e =



	LTCT

. �18�

The inductive energy stored in the rf SQUID loop and the
lumped inductor Lb is calculated using Eqs. �9� and �10�

1

2
�Is Ib ��� M

M Lb
��Is

Ib
� =

	2

2Lb
+
�� − �e −

M	

Lb
�2

2��1 − �M
2 �

.

�19�

III. LAGRANGIAN AND HAMILTONIAN
OF THE CLOSED SYSTEM

Here we derive a Lagrangian for the closed system con-
sisting of the nanomechanical resonator, stripline resonator
and the rf SQUID. The effect of damping will be later taken
into account by introducing coupling to thermal baths. The
Lagrangian of the closed system is expressed as a function of
x, 	, and � and their time derivatives �denoted by an over-
dot�

L =
mẋ2

2
+

Ce	̇
2

2
+

CJ�̇
2

2
− U0 − U1, �20�

where the potential terms are given by

U0 =
m�m

2 x2

2
+

Ce�e
2	2

2
, �21a�

U1 =
�� − �e −

M	

Lb
�2

2��1 − �M
2 �

−

�0Ic cos
2��

�0

2�
. �21b�

Using Eqs. �6� and �9�–�11�, the corresponding Euler-
Lagrange equations can be expressed as

mẍ + m�m
2 x − IsIb

dM

dx
= 0, �22a�

Ce	̈ +
	

Le
+ Ib = 0, �22b�
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FIG. 2. �Color online� The factor 
l �blue solid line� and �

�green dashed line� calculated using Eq. �5� as a function Lb /LTl.
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CJ�̈ + Is + Ic sin
2��

�0
= 0. �22c�

The interpretation of these equations of motion is straightfor-
ward. Equation �22a� is Newton’s second law for the me-
chanical resonator, where the force is composed of the re-
storing elastic force −m�m

2 x and the term due to the
dependence of M on x. Equation �22b� relates the current in
the suspended beam Ib with the currents in the effective ca-
pacitor Ce and the effective inductor Le. Equation �22c�
states that the circulating current Is equals the sum of the

current Ic sin � through the JJ and the current CJV̇J through
the capacitor, where the voltage VJ across the JJ is given by

the second Josephson equation VJ= ��0 /2���̇.
The variables canonically conjugate to x, 	 and � are

given by p=mẋ, q=Ce	̇, and Q=CJ�̇, respectively. The
Hamiltonian is given by

H = pẋ + q	̇ + Q�̇ − L = H0 + H1, �23�

where

H0 =
p2

2m
+

q2

2Ce
+ U0, �24�

H1 =
Q2

2CJ
+ U1. �25�

Quantization is achieved by regarding the variables
�x , p ,	 ,q ,� ,Q� as Hermitian operators satisfying Heisen-
berg commutation relations.

IV. ADIABATIC APPROXIMATION

As a basis for expanding the general solution we use the
eigenvectors of the following Schrödinger equation:

H1�n�x,	�� = �n�x,	��n�x,	�� , �26�

where x and 	 are treated here as parameters �rather than
degrees of freedom�. The local eigenvectors are assumed to
be orthonormal

��m�x,	��n�x,	�� = �nm. �27�

The eigenenergies �n�x ,	� and the associated wavefunc-
tions 	n are found by solving the following Schrödinger
equation

�− �C
�2

��2 + u�	n =
�n

E0
	n, �28�

where

u =
�� − �0�2

1 − �M
2 + 2�L cos � , �29�

� =
2��

�0
− � , �30�

�0 =
2��e

�0
+

2�M�x�	
�0Lb

− � , �31�

�L =
2��Ic

�0
, �32�

�C =
2e2

CJE0
, �33�

E0 =
�0

2

8�2�
. �34�

The total wave function is expanded as

� = �
n

�n�x,	,t��n� . �35�

In the adiabatic approximation �21� the time evolution of the
coefficients �n is governed by the following set of decoupled
equations of motion:

�H0 + �n�x,	���n = i��̇n. �36�

Note that in the present case the geometrical vector potential
�21� vanishes since the wavefunctions 	n��� can be chosen
to be real. The validity of the adiabatic approximation will be
discussed below.

V. TWO LEVEL APPROXIMATION

In what follows we focus on the case where ��0 � �1 and
�L�1−�M

2 ��1. In this case the adiabatic potential u��� given
by Eq. �29� contains two wells separated by a barrier near
�=0. At low temperatures only the two lowest energy levels
contribute. In this limit the local Hamiltonian H1 can be
expressed in the basis of the states �� � and �� �, represent-
ing localized states in the left and right well, respectively,
having opposite circulating currents. In this basis, H1 can be
expressed using Pauli’s matrices

H1=̇��0�z + ��x. �37�

The real parameters � and � can be determined by solving
numerically the Schrödinger equation �28� �17�. The eigen-
vectors and eigenenergies are denoted as H1 � ± �=�± � ± �,
where

�± = ± 	�2�0
2 + �2. �38�

VI. ROTATING WAVE APPROXIMATION

Consider the case where �e=�0 /2, that is

�0 =
2�M�x�	

�0Lb
, �39�

and assume that adiabaticity holds and that the rf SQUID
remains in its lowest energy state. In this case, as can be seen
from Eq. �38�, expansion of �−�x ,	� yields only even powers
of 	. These even powers of 	 can be expressed in terms of
the annihilation operator
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Ae =
ei�et

	2�
�	Ce�e	 +

i
	Ce�e

q� �40�

and its Hermitian conjugate Ae
†, yielding terms oscillating at

frequencies 2n�e, where n is integer. In the RWA such terms
are neglected unless n=0 since the effect of the oscillating
terms on the dynamics on a time scale much longer than a
typical oscillation period is negligibly small �22�. Moreover,
constant terms in the Hamiltonian are disregarded since they
only give rise to a global phase factor. Displacement detec-
tion is performed by externally driving the fundamental
mode of the stripline resonator. To study the effect of non-
linearity to lowest order we keep terms up to fourth order in
	. On the other hand, since the mechanical displacement is
assumed to be very small, we keep terms up to first order
only in x. Thus, in the RWA the Hamiltonian H0+�− is given
by

HRWA = ��mNm + ��0�x�Ne + �KNe
2, �41�

where Nm and Ne=Ae
†Ae are number operators of the me-

chanical and stripline resonators, respectively,

K =
3�

4�
��

�

2�M0

�0Lb
	 �

2Ce�e
�4

, �42�

�0�x� = �e − �2�1 + 2
d log M

dx
x� , �43�

�2 =
�

�
��

�

2�M0

�0Lb
	 �

2Ce�e
�2

, �44�

and M0=M�0�.

VII. HOMODYNE DETECTION

The stripline resonator is weakly coupled �with a coupling
constant �1� to a semi-infinite feedline, which guides the
input and output rf signals. To model the effect of dissipation
�both linear and nonlinear�, we add two fictitious semi-
infinite transmission lines to the model, which allow energy
escape from the resonator. The first transmission line is lin-
early coupled to the resonator with a coupling constant �2,
and the second one is nonlinearly coupled with a coupling
constant �3 �23�.

The dependence of �0 on x can be exploited for displace-
ment detection. This is achieved by exciting the fundamental
mode of the stripline resonator by launching into the feedline
a monochromatic input pump signal having a real amplitude
bin and an angular frequency �p close to the resonance fre-
quency �0. The output signal cout reflected off the resonator
is measured using homodyne detection, which is performed
by employing a balance mixing with an intense local oscil-
lator having the same frequency as the pump frequency �p,
and an adjustable phase �LO. That is, the normalized �with
respect to the amplitude of the local oscillator� output signal
of the homodyne detector is given by

X�LO
= cout

† e−i�LO + coute
i�LO. �45�

To proceed, we employ below some results of Ref. �23�,
which has studied a similar case of homodyne detection of a
driven nonlinear resonator.

A. Equation of motion

Using the standard method of Gardiner and Collett �24�,
and applying a transformation to a reference frame rotating
at angular frequency �p

Ae = Ce−i�pt, �46�

yield the following equation for the operator C:

dC

dt
+ � = F�t� , �47�

where

��C,C†� = �� + i��0 − �p� + �iK + �3�C†C�C + i	2�1bine
i�1,

�48�

�=�1+�2, �1 is the �real� phase shift of transmission from
the feedline into the resonator, and F�t� is a noise term, hav-
ing a vanishing average �F�t��=0, and an autocorrelation
function, which is determined by assuming that the three
semi-infinite transmission lines are at thermal equilibrium at
temperatures T1, T2, and T3, respectively.

B. Linearization

Let C=B+c, where B is a complex number for which

��B,B*� = 0, �49�

namely, B is a steady state solution of Eq. �47� for the noise-
less case F=0. When the noise term F can be considered as
small, one can find an equation of motion for the fluctuation
around B by linearizing Eq. �47�

dc

dt
+ Wc + Vc† = F , �50�

where

W = � ��

�C
�

C=B

= � + i��0 − �p� + 2�iK + �3�B*B �51�

and

V = � ��

�C†�
C=B

= �iK + �3�B2. �52�

C. Onset of bistability point

In general, for any fixed value of the driving amplitude
bin, Eq. �49� can be expressed as a relation between �B�2 and
�p. When bin is sufficiently large the response of the resona-
tor becomes bistable, that is �B�2 becomes a multivalued
function of �p. The onset of bistability point is defined as the
point for which
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��p

� �B�2
= 0, �53�

�2�p

���B�2�2 = 0. �54�

Such a point occurs only if the nonlinear damping is suffi-
ciently small �23�, namely, only when the following condi-
tion holds:

�K� � 	3�3. �55�

At the onset of bistability point the drive frequency and am-
plitude are given by

��p − �0�c = �
K

�K��4�3�K� + 	3�K2 + �3
2�

K2 − 3�3
2 � , �56�

�bin�c =
8

3	3

�3�K2 + �3
2�

��K� − 	3�3�3
, �57�

and the resonator mode amplitude is

�B�c
2 =

2�

	3��K� − 	3�3�
. �58�

D. Ring-down time

The solution of the equation of motion �50� can be ex-
pressed as �23�

c�t� = 

−�

�

dt�G�t − t����t�� , �59�

where

��t� =
dF�t�

dt
+ W*F�t� − VF†�t� . �60�

The propagator is given by

G�t� = u�t�
e−�0t − e�1t

�1 − �0
, �61�

where u�t� is the unit step function, and the Lyapunov expo-
nents �0 and �1 are the eigenvalues of the homogeneous
equation, which satisfy

�0 + �1 = 2W�, �62�

�0�1 = �W�2 − �V�2, �63�

where W� is the real part of W. Thus one has

�0,1 = W��1 ±	1 +
�W�2

�W��2 ��2 − 1�� , �64�

where

� = � V

W
� . �65�

We chose to characterize the ring-down time scale as

tRD = �0
−1 + �1

−1 =
2W�

�W�2�1 − �2�
. �66�

Note that in the limit �→1 slowing down occurs and tRD
→�. This limit corresponds to the case of operating the reso-
nator near a jump point, close to the edge of the bistability
region. On the other hand, the limit �=0 corresponds to the
linear case, for which tRD at resonance ��p=�0� is given by
Eq. �2�.

VIII. DISPLACEMENT SENSITIVITY

Consider a measurement in which X�LO
�t� is monitored in

the time interval �0,��, and the average measured value is
used to estimate the displacement x. Assuming the case
where � is much longer than the characteristic correlation
time of X�LO

�t�, one finds that the minimum detectable dis-
placement is given by �1�

�x = � �X0

�x
�−1�2�

�
�1/2

PX
1/2�0� . �67�

Moreover, using Eq. �43�, one finds the minimum detectable
displacement per square root of bandwidth, which is defined
as Px= �� /2��1/2�x, is given by

Px = �2�2
d ln M

dx
�−1

R−1PX
1/2�0� , �68�

where R is the responsivity with respect to a change in �0,
namely, R= ��X0 /��0�. To evaluate Px we calculate below the
responsivity R and the spectral density PX

1/2�0� using results,
which were obtained in Ref. �23�.

A. Responsivity

In steady state, when input noise is disregarded, the am-
plitude of the fundamental mode of the stripline resonator is
expressed as Be−i�pt, where the complex number B is found
by solving Eq. �49�, and the average output signal is ex-
pressed as boute

−i�pt �bout is in general complex�. The ampli-
tude of the output signal in the feedline bout is related to the
input signal bin and the mode amplitude B by an input-output
relation �24�

bout = bin − i	2�1e−i�1B . �69�

Consider a small change in the resonance frequency ��0.
The resultant change in the steady state mode amplitude �B
can be calculated using Eq. �49�

i���0�B + W�B + V��B�* = 0. �70�

The solution of this equation together with Eqs. �45� and �69�
allows calculating the responsivity

R =
2	2�1�B�

�W��1 − �2�
�sin��t + �C� + � sin��t − �C�� , �71�

where

�t =
2�LO − �W + �V − 2�1

2
, �72�
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�C =
2�B − �W − �V − �

2
, �73�

ei�B =B / �B�, ei�W =W / �W�, and ei�V =V / �V�.

B. Spectral density

The zero frequency spectral density PX�0� was calculated
in Ref. �23�

PX�0� = �2�1�1 − �e2i�t�
�W��1 − �2�

− e−i�W�2

coth
��0

2kBT1

+
�2

�1
�2�1�1 − �e2i�t�

�W��1 − �2�
�2

coth
��0

2kBT2

+
2�3�B�2

�1
�2�1�1 − �e2i�t�

�W��1 − �2�
�2

coth
��0

2kBT3
. �74�

C. The linear case

In this case K=�3=0, W= i��0−�p�+�, and V=0, and
consequently �=0. Thus, the responsivity is given by

R =
2	2�1�B��sin��t + �C��

�W�
. �75�

Moreover, for the case where T1=T2, Eq. �74� becomes

PX�0� = coth
��0

2kBT1
. �76�

The largest responsivity is obtained at resonance, namely,
when �p=�0, and when the homodyne detector measures the
phase of oscillations, namely, when �sin��t+�C� � =1. For
this case Px obtains its smallest value, which is denoted as
Px0, and is given by

Px0 = �2�2
d ln M

dx
�−1� �2

8�1�B�2
coth

��0

2kBT1
�1/2

. �77�

Note that this result coincides with the SLL value Px
SLL given

by Eq. �1� provided that the quality factor in Eq. �1� is taken
to be given by Q=2�0�1 /�2. That is, Px0� Px

SLL in the limit
of strongly overcoupled resonator, namely when the damping
of the resonator is dominated by the coupling to the feedline
��1���.

The response of the stripline resonator is approximately
linear only when �B� is much smaller than the critical value
corresponding to the onset of nonlinear bistability. Using this
critical value �B�c, which is given by Eq. �58�, and using Eqs.
�42� and �44�, one finds that the smallest possible value of
Px0 in this regime is roughly given by

Px0,c �
0.14�d ln M

dx
�−1

	�/�
	 �

�1
�1 −

	3�3

�K�
�coth

��0

2kBT1
.

�78�

D. The general case

The minimum detectable displacement per square root of
bandwidth in the general case can be written as

Px = Px
SLLg��t� , �79�

where

g��t� =

�W�
� � �1 − �2�2PX�0�

coth
��0

2kBT1
�

1/2

�sin��t + �C� + � sin��t − �C��
, �80�

and PX�0� is given by Eq. �74�. The function g��t� is peri-
odic with a period �. Its minimum value is denoted as gmin.
Beating the SLL given by Eq. �1� is achieved when gmin is
made smaller than unity.

IX. VALIDITY OF APPROXIMATIONS

In this section we examine the conditions, which are re-
quired to justify the approximations made, and determine the
range of validity of our results. Clearly, our analysis breaks
down if the driving amplitude bin is made sufficiently large.
In this case both the adiabatic approximation and the as-
sumption that back-reaction effects are negligibly small will
become invalid. The range of validity of the adiabatic ap-
proximation is examined below by estimating the rate of
Zener transitions. Moreover, we study below the conditions
under which back-reaction effects acting back on the me-
chanical resonator play an important role. Using these results
we derive conditions for the validity of the abovementioned
approximations. These conditions are then examined for the
case where the system is driven to the onset of nonlinear
bistability. This analysis allows us to determine whether the
device can be operated in the regime of nonlinear bistability,
where the effects of bifurcation amplification �25–31� and
noise squeezing can be exploited �23,32–34�, without, how-
ever, violating the adiabatic approximation and without in-
ducing strong back-reaction effects.

A. Adiabatic condition

As before, consider the case where the externally applied
flux is given by �e=�0 /2, and the stripline resonator is
driven close to the onset of nonlinear bistability, where the
number of photons approaches the critical value given by Eq.
�58�, and assume for simplicity the case where �3� �K�. Us-
ing Refs. �17,35� one finds that adiabaticity holds, namely,
Zener transitions between adiabatic states are unlikely, pro-
vided that

��2

���c
 1, �81�

where

�c =
2�M0

�0Lb

	2��e�B�c
2

Ce
. �82�

B. Back reaction

Back reaction of the driven stripline resonator results in a
force noise acting on the mechanical resonator and a renor-
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malization of the mechanical resonance frequency �m and
the damping rate �m �36,37�. The renormalized values, de-
noted as �m

eff and �m
eff, are expressed using the renormaliza-

tion factors Rf and Rd

Rf =
�m

eff − �m

�m
, �83a�

Rd =
�m

eff − �m

�m
, �83b�

which where calculated in Ref. �16�

Rf = ! fQmR0, �84a�

Rd = !dQmR0, �84b�

where Qm=�m /�m,

R0 =

8��2
2�B�2�d ln M

dx
�2

m�m
3 , �85�

! f =

1

2

��

�m
�� �

�m
�2

− 1 + ���

�m
�2�

�� �

�m
�2

+ �1 +
��

�m
�2��� �

�m
�2

+ �1 −
��

�m
�2� ,

�86a�

!d = −

�

�m

��

�m

�� �

�m
�2

+ �1 +
��

�m
�2��� �

�m
�2

+ �1 −
��

�m
�2� ,

�86b�

and

�� = �e − �2 − �p. �87�

We now wish to examine whether backreaction effects are
important when the stripline resonator is driven to the onset
of nonlinear bistability. For simplicity we neglect nonlinear
damping, that is we take �3=0. Using Eqs. �42�, �44�, and
�48�, one finds that the value of R0 �Eq. �85�� at the onset of
nonlinear bistability, which is denoted as R0c, is given by

R0c =
�

�m

64��d ln M

dx
�2

3	3m�m
2 . �88�

It is straightforward to show that �! f � ��m /� and �!d �
��m /� for any value of ��. Thus, back-reaction can be
considered as negligible when

�m
2

��m
R0c � 1. �89�

X. EXAMPLE

We examine below an example of a device having the
following parameters: ZT=50 �, Lb /LTl=1, �e /2�=5 GHz,
�e /�=104, �2=0.1�1, and �3=0.1K /	3 for the stripline
resonator, m=10−16 kg, �m /2�=0.01 GHz, and �m /�m
=104 for the nanomechanical resonator, �=9.1"10−10 H,
CJ=0.86"10−14 F, and Ic=0.44 #A for the rf SQUID, cou-
pling terms M0 /Lb=0.005, Lb /�=0.25, �d ln M /dx�−1

=100 nm, and temperature T=0.02 K. These parameters for
the stripline resonator �38�, for the nanomechanical resonator
�39�, and for the rf SQUID �40,41�, are within reach with
present day technology.

Using the FASTHENRY simulation program we find that the
chosen value of � corresponds, for example, to a loop made
of Al �penetration depth 50 nm�, having a square shape with
edge length of 190 #m, a line width of 1 #m, and a film
thickness of 50 nm. The values of CJ and Ic correspond to a
junction having a plasma frequency of about 25 GHz.

Using these values one finds �L=1.2, �C=0.1, and E0 /�
=560 GHz. The values of �L, �C, and �M are employed for
calculating numerically the eigenstates of Eq. �28� �17�.
From these results one finds the parameters in the two-level
approximation of Hamiltonian H1 �Eq. �37�� �=1.2E0 and
�=0.073E0, and the nonlinear terms �2 /2�=1.3 MHz and
K /2�=0.19 kHz.

The validity of the adiabatic approximation is confirmed
by evaluating the factor in inequality �81�

��2

���c
= 12, �90�

whereas, to confirm that back-reaction effects can be consid-
ered as negligible we evaluate the factor in inequality �89�

�m
2

��m
R0c = 1.4 " 10−4. �91�

Using Eq. �78� we calculate the smallest possible value of
Px0

Px0,c = 6.9 " 10−14 m
	Hz

. �92�

A significant sensitivity enhancement, however, can be
achieved by exploiting nonlinearity. Figure 3 shows the de-
pendence of the mode amplitude �B�, the factor �, the reflec-
tion coefficient �bout /bin�2, the enhancement factor gmin, and
the ring-down time tRD on the pump frequency. Panel �a�
represents the nearly linear case for which bin=0.001�bin�c,
panel �b� the critical case for which bin= �bin�c, and panel �c�
the overcritical case for which bin=1.5�bin�c. As can be
clearly seen from Fig. 3, a significant sensitivity enhance-
ment gmin�1 can be achieved when driving the resonator
close to a jump point. However, in the same region, slowing
down occurs, resulting in a long ring-down time tRD�2/�.

XI. DISCUSSION AND CONCLUSIONS

In the present paper we consider a resonant detection con-
figuration, in which the response of the resonator is mea-
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sured by monitoring an output signal in the feedline, which is
reflected off the resonator. We show that operating in the
regime of nonlinear response may allow a significant en-
hancement in the sensitivity by driving the stripline resonator
near a jump point at the edge of the region of bistability. The
factor gmin, which represents this enhancement, can be made
significantly smaller than unity in this limit. However, this
result is not general to all resonance detectors. Consider an
alternative configuration, in which, instead of measuring an
output signal reflected off the resonator, the response is mea-
sured by directly homodyning the mode amplitude in the
resonator. In the latter case, a similar analysis yields that the
enhancement factor gmin cannot be made smaller than 0.5
�42�. Thus, to take full advantage of nonlinearity, it is advis-
able to monitor the response of the resonator by measuring a

reflected off signal, rather than measuring an internal cavity
signal.

As was discussed above, the largest sensitivity enhance-
ment is obtained close to the edge of the region of bistability,
where 1−��1. On the other hand, in the very same region,
the perturbative approach, which we employ to study the
response of the stripline resonator, becomes invalid since the
fluctuation around steady state, which is assumed to be
small, is strongly enhanced due to bifurcation amplification
of input noise �23�. The integrated spectral density of the
fluctuation, which was calculated in Eq. 80 of Ref. �42� �for
the case T1=T2=T3�, can be employed to determine the
range of validity of the perturbative approach

1

1 − �
coth

��0

2kBT1
� �B�2. �93�

By applying this condition to the case of operating at the
onset of bistability point �see panel �b� of Fig. 3�, one finds
that the smallest value of gmin in the region where inequality
�93� holds is �10−3 for the set of parameters chosen in the
above considered example. Thus a significant sensitivity en-
hancement is achieved even when the region close to the
jump, where the perturbative analysis breaks down, is ex-
cluded. On the other hand, the perturbative analysis cannot
answer the question of what the smallest possible value of
gmin is. Further work is required in order to answer this ques-
tion and to properly describe the system very close to the
edge of the region of bistability, where nonlinear terms of
higher orders become important.

In the present paper only the case where back-reaction
effects do not play an important role is considered. Thus our
results are inapplicable when the displacement sensitivity ap-
proaches the value corresponding to zero point motion of the
mechanical resonator 	� /m�m�m �1.6"10−15 m/	Hz for the
above considered example�, and consequently quantum
back-reaction becomes important �43�. Moreover, the results
are valid only when inequality �89� is satisfied. To increase
the range of applicability of the theory and to study back-
reaction effects, a more general approach will be considered
in a forthcoming paper �44�.
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