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Using an open-flow reactor periodically perturbed with light, we observe subharmonic frequency locking of
the oscillatory Belousov-Zhabotinsky chemical reaction at one-sixth the forcing frequency �6:1� over a region
of the parameter space of forcing intensity and forcing frequency where the Farey sequence dictates we should
observe one-third the forcing frequency �3:1�. In this parameter region, the spatial pattern also changes from
slowly moving traveling waves to standing waves with a smaller wavelength. Numerical simulations of the
FitzHugh-Nagumo equations show qualitative agreement with the experimental observations and indicate that
the oscillations in the experiment are a result of period doubling.
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I. INTRODUCTION

Periodic forcing of nonlinear oscillators produces a rich
variety of dynamical responses, including frequency locking,
quasiperiodic oscillations, period doubling, and chaos. These
phenomena have been studied in the driven van der Pol �1–3�
and other nonlinear differential equations �4,5�, circle maps
�6,7�, analog circuits �8–10�, cardiac tissue �11�, and chemi-
cal systems �12�. In spatially extended oscillatory systems,
periodic forcing can change the nature of the phase patterns
from traveling waves or spiral waves in the unforced system
to standing wave labyrinths �13,14� or multiphase spirals
�15�.

In this paper we present experimental observations of
period-doubled chemical patterns for a light-forced
Belousov-Zhabotinsky �BZ� reaction in resonance with the
forcing. In earlier works, a sequence of subharmonic reso-
nances was observed �16� that correspond to the Arnold reso-
nance tongues of a single forced oscillator �17,18�. The Ar-
nold tongues are arranged according to the Farey sequence,
where the relation of the forcing frequency f f to the response
frequency f is in the ratio m :n �19�. In each of the Arnold
tongues, the temporal resonance affects the spatial pattern
�20,21� and in addition adjusts the resonance regions in the
forcing amplitude and frequency parameter plane �22�.

We study a parameter range within the 3:1 resonance
tongue of our experimental system. The pattern response is
in resonance with the forcing frequency f f and responds pri-
marily at a frequency of f f /3. Inside this region our obser-
vations reveal a response with large spectral power at f f /6
where we expect to observe an f f /3 response. We analyze the
phase space trajectories of these patterns to distinguish be-
tween period-doubled 6:2 oscillations in a 3:1 tongue and the
alternative frequency locking in the 6:1 tongue. We make a
detailed comparison to a forced FitzHugh-Nagumo reaction-
diffusion model, which clearly demonstrates period doubling
in the 3:1 tongue.

In spatially extended systems, period doubling has been
studied in parametrically forced coupled pendula �23� and in
the Belousov-Zhabotinsky reaction �24–28�. The previous
studies of period doubling in the BZ reaction have focused

on period doubling of spiral waves including localized peri-
odic forcing of the spiral wave tip �29�. Our approach is to
explore the dynamics and pattern formation of periodic forc-
ing in resonance with the spatially uniform BZ oscillation
frequency.

II. EXPERIMENTAL METHODS

The Belousov-Zhabotinsky reaction is studied using an
open-flow reactor system that allows for continuous supply
of the chemical reagents �16,20,30�. The reaction takes place
in a thin porous Vycor glass membrane, 0.4 mm thick and
22 mm in diameter, sandwiched between two chemical res-
ervoirs. The reagents diffuse homogeneously from the con-
tinuously stirred reservoirs into the glass through its two
faces. Each of the two 8.3 ml volume reservoirs �reservoirs A
and B� are continuously refreshed at a flow rate of
20 ml per hour. They contain 0.8M sulfuric acid �A ,B�;
0.184M potassium bromate �A ,B�; 0.001M tris�2,2�- bipy-
ridyl�dichlororuthenium�II�hexahydrate �A�; 0.32M malonic
acid �B�, and 0.30M sodium bromide �B�. Under these con-
ditions, the reaction is oscillatory, and we observe rotating
spiral waves of Ru�II� concentration in the membrane.

We image the spiral waves by passing spatially homoge-
neous low-intensity light through the membrane, and mea-
sure the relative intensity of the transmitted light using a
charge-coupled device camera ��13 pixels/mm� bandpass
filtered from 420 to 500 nm. Regions of the glass membrane
that contain Ru�II� absorb light at 451 nm, so regions of high
intensity have a lower concentration of Ru�II�. Since the
typical pattern wavelength is �0.5 mm and the membrane is
0.4 mm thick, the pattern is quasi-two-dimensional.

The ruthenium catalyst of the BZ reaction is photosensi-
tive in the visible range �31�, and we apply forcing by shin-
ing a spatially uniform light on the membrane �30�. The light
is applied using a commercial video projector �Sanyo PLC-
750M� and a condenser lens. The output of the video projec-
tor is computer controlled using a video card with a refresh
rate faster than 0.1 s. Using the computer controller, we
modulate the spatially uniform light periodically in time with
a square wave between low and high intensity. Both the light
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intensity and frequency can be adjusted to study the effect of
periodic forcing on pattern formation in the BZ reaction.

III. EXPERIMENTAL RESULTS

A. Power spectra

Without light forcing, the BZ reaction oscillates with a
natural frequency f0 that depends on the chemical conditions
�32�. With light forcing of sufficient amplitude and with a
frequency f f near an integer ratio of the natural frequency,
f f ��m /n�f0, the system responds by adjusting the response
oscillation frequency f = �n /m�f f even though f � f0. Regions
of subharmonic frequency locking, or Arnold tongues, can be
mapped out by varying the forcing frequency and amplitude
�33�. We label the resonance tongues according to the ratio
m :n. In the following, we will be concerned with the 3:1
tongue �f f �3f0� and the nearby resonances.

The response to the forcing frequency is found by exam-
ining the power spectra of the resulting pattern. We apply the
discrete Fourier transform in time at each pixel p�x ,y� in the
pattern and then plot the average of the power spectral den-
sity vs frequency. Peaks in the subharmonic structure of the
power spectral density indicate the resonant response.

When forcing with a frequency f f �3f0=49 mHz, we ob-
serve a response with large spectral power at f / f f =1/6 as
shown in Fig. 1�a�. In this range of forcing parameters, we
expect f = f f /3 or perhaps some nearby ratio like 2/7 or 1 /4.
The ratio f / f f of response frequency to forcing frequency

should decrease when the forcing frequency is increased, fol-
lowing the Farey sequence �16,34�. But at slightly higher
forcing frequency f f =50 mHz we observe a peak in the re-
sponse at f / f f =2/7 �Fig. 1�b��. This is larger than the re-
sponse at f f =49 mHz and contrary to the ordering of the
Arnold tongues. At f f =51 mHz, we observe a response at
f / f f =1/4, which is lower than at f f =50 mHz �and follows
the correct ordering� but still higher than at f f =49 mHz �Fig.
1�c��.

One possible explanation for the response at f / f f =1/6
when we expect 1 /3 is period doubling. We test for period
doubling in the experiment by starting with a 3:1 resonant
response �f / f f =1/3� for parameters near those of the 1/6
response. We slowly increase the forcing strength while
maintaining a constant forcing frequency. The initial forcing
strength and frequency are chosen such that the response is
3:1 resonant and the spatial pattern consists of large uni-
formly oscillating domains at one of the three stable phases.
Figure 2�a� shows the the power spectrum with a large peak
at f / f f =1/3 and harmonics at integer multiples of that fre-
quency. When the forcing strength is increased �keeping the
frequency the same�, a new peak forms at f / f f =1/6 �Fig.
2�b�� at nearly the same power as at f / f f =1/3 indicating a
6:2 period-doubled response.

B. Phase space trajectories

In addition to the power spectra, we reconstruct a two-
dimensional phase space from our intensity vs time measure-
ments using a time delay coordinate method. Similar meth-
ods have been demonstrated in numerical systems �35� and
BZ systems where a single variable is measured �36�. For a
fixed point in the pattern, p0=w�x ,y�, we plot p0�t� vs p0�t
−�� with � chosen to capture the structure of the orbit in
phase space. The point p0 is a representative point from the
interior of the homogeneously oscillating 3:1 domains. For
the data in Fig. 2, �=10�0.49/ f f. As the forcing strength is
increased, the single-orbit trajectory shown in in Fig. 2�c� is
twisted into a double-orbit trajectory shown in Fig. 2�d�. The
signature of period doubling in this phase space is two dis-
tinct loops. Instead of the same oscillation every three forc-
ing cycles, there are two distinct oscillations, one small and
one large loop, every six cycles. This is distinctly different
from the response for a forced system when f f �6f0, which
also has significant spectral power at f f /6 but makes only
one oscillation in six forcing cycles.

In addition to the temporal response, spatial pattern for-
mation also gives us another piece of evidence for period
doubling. In order to clearly see the patterns, we process the
data and filter to keep only the frequencies with significant
power. Let p�x ,y , t� represent the light signal recorded by the
camera in the reactor system. We Fourier transform the sig-
nal, as above, to get the power spectrum, use a bandpass
filter to select out a set of frequencies to analyze, and then
inverse-transform the filter signal. If we filter the data only
near f / f f =1/3 and 1/6, the result is a representation of the
data as

p�x,y,t� = A6�x,y,T�ei�ft/6 + A3�x,y,T�ei�ft/3 + c.c., �1�

where � f =2�f f, and A6�x ,y ,T� and A3�x ,y ,T� represent the
complex amplitude of the signal at f / f f =1/6 and 1/3. The
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FIG. 1. �a� Subharmonic response at one-sixth the forcing fre-
quency f / f f =1/6 for periodic forcing at f f =49 mHz. �b� At
50 mHz the dominant response is at f / f f =2/7 and �c� at 51 mHz it
is at f / f f =1/4. The responses in �b� and �c� are consistent with each
other but contrary to �a� in the ordering of the Arnold tongues.
Since the frequency in �a� is half the expected f / f f =1/3, this indi-
cates a period-doubled response. The large peak at f / f f =1 is from
the imaging of the forcing light and is an artifact of the experimen-
tal setup, and not a large response from the chemical system.
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amplitude and phase of A6 and A3 vary over space and pos-
sibly in time on a time scale T much longer than the forcing
period 1/ f f.

The phase of the 3:1 pattern response, arg�A3�, with no
period doubling is either three-phase spiral waves or slowly
moving irregular-shaped domains of three phases �21�. In the
period-doubled 3:1 response, the same type of irregular-
shaped domains are found at f / f f =1/3, but at f / f f =1/6 the
pattern phase, arg�A6�, is a standing wave consisting of six
phases as shown in Fig. 3. This is in sharp contrast with the
6:1 pattern response of six-phase spiral waves reported pre-
viously �21�.

In addition to the difference in the spatial phase organiza-
tion of the pattern, the A6 response observed through a period
doubling in the 3:1 tongue has significantly different phase

structure from the response at higher-frequency forcing. By
plotting the phase arg�A6� in the complex plane two distinct
shapes are revealed as shown in Fig. 4. Both cases have a
sixfold symmetry corresponding to six stable uniform
phases, which are found at the points farthest from the cen-
ter. The interfaces connecting these phases in space to make
a pattern are very different. In the 6:1 tongue, the states are
connected with traveling fronts that shift the phase by � /3
and do not go through the origin. The period-doubled pattern
phases are connected by fronts that go through the origin
�standing waves� where the complex amplitude goes to zero.
In this case, the phase difference between neighboring spatial
regions is � or 2� /3.

The higher harmonics not included in the expansion in
Eq. �1� do not contain any additional pattern formation fea-
tures for the period-doubled system. We have found that
there are two independent modes, but not more. For ex-
ample, the phase of the A2 signal �the response at f / f f
=1/2� is, in fact, just the sum of the phases at A6 and A3, the
previous two,

arg�A2� = arg�A6� + arg�A3� . �2�

IV. THE PERIODICALLY FORCED FITZHUGH-NAGUMO
MODEL

We use a version of the FitzHugh-Nagumo �FHN�
reaction-diffusion equations as a model for a periodically
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FIG. 2. �a� Power spectrum of a 3:1 resonant response. �b�
Power spectrum of a 6:2 resonant period-doubled response. �c�
Phase space trajectory in the 3:1 response makes a single loop every
three forcing cycles. �d� Phase space trajectory in the 6:2 period-
doubled response makes two distinct loops for every six forcing
cycles. Chemical parameters are given in Sec. II; forcing frequency
50 mHz, forcing strength in �a� and �c� 33.6 W/m2, in �b� and �d�
37.2 W/m2.

(a) (b)

FIG. 3. �Color online� Patterns formed in a 128�128 pixel
region of the BZ reactor with parameters corresponding to a 3:1
response to the forcing. �a� The pattern at f / f f =1/3 is irregularly
shaped domains. �b� The pattern at f / f f =1/6 is shorter-wavelength
standing waves. The higher harmonics have linear combinations of
these two basic patterns. Chemical parameters are given in Sec. II;
forcing frequency 49 mHz, forcing strength 37.8 W/m2.
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FIG. 4. Phase of the pattern for an f / f f =1/6 response in the 3:1
tongue and 6:1 tongue. �a� The period-doubled standing-wave pat-
tern in the 3:1 tongue. �b� The spiral wave in the 6:1 tongue. The
two different cases are clearly topologically distinct. Chemical pa-
rameters are given in Sec. II; forcing parameters 49 mHz and
37.8 W/m2 in �a� and 100 mHz and 60.29 W/m2 in �b�.
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forced oscillatory system. We modify the FHN model to in-
clude time-periodic forcing,

ut = u − u3 − v + �2u , �3a�

vt = ��u − a1v − a0� + � sin�� ft�v + 	�2v . �3b�

The fields u�x ,y� and v�x ,y� represent the concentrations of
activator and inhibitor types of chemical reagents. The peri-
odic forcing is provided by the sinusoidal term with ampli-
tude � and frequency � f. The parameter � is the ratio of the
characteristic time scales of u and v, and 	 is the ratio of the
diffusion rates of u and v. In the following we use a one-
dimensional version of Eqs. �3� where the fields are func-
tions of only one space variable x.

With no forcing, �=0, Eq. �3� has a spatially uniform
solution u=u0, v=v0 with a Hopf bifurcation to uniform os-
cillations at the critical point �=�H. The Hopf point for the
symmetric model �a0=0� is �H=1/a1 and the natural oscilla-
tion frequency is �0=�1/a1−1. In addition to the uniform
oscillations, traveling waves including spiral waves exist be-
low the Hopf bifurcation �
�H.

When forced with sufficient amplitude � and with fre-
quencies near rational multiples of the natural frequency,
� f /�0=m /n, the system may lock to the forcing frequency.
The locking regions form resonance tongues �Arnold
tongues� in the � f-� parameter plane. Inside the resonance
tongues, the system adjusts its oscillating frequency to a spe-
cific rational multiple of � f. For example, for forcing near
three times the natural frequency � f �3�0, the system ad-
justs to � f /3 and is in the 3:1 resonance tongue. Figure 5
shows the resonance boundaries for the 3:1 resonance tongue
with the nearby 2:1 and 4:1 tongues.

For large enough forcing amplitude inside the 3:1 tongue
there is a region where the period of the 3:1 resonant orbit
doubles. In this region of period doubling, the effective fre-
quency of the system response is halved, which is easily
observable in the power spectra. Figure 6 shows the power
spectra and orbits for the 3:1 response and the 3:1 period-
doubled response in Eqs. �3�. The period-doubled response
shows the lowest-frequency peak in the power spectra at
� f /6 �and with higher harmonics� as opposed to � f /3 for the
3:1 response. The orbits in the u-v phase plane also show a
transition from a single loop to a double loop over the same
time period of three forcing cycles. These observations are
similar to those in the BZ reaction.

FIG. 5. �Color online� Resonance boundaries for the 2:1, 3:1,
and 4:1 tongues for the periodically forced FHN equations �3�. The
horizontal axis spans the ratio of the forcing frequency � f to the
natural frequency, �0�0.214, of the unforced system. Within the
tongue boundaries, uniform solutions may lock at m :n ratios of the
forcing. In the upper part of the 3:1 tongue, there is a region of
period doubling �labeled PD�. Further period doublings or chaotic
oscillations may occur for higher forcing in the 3:1 tongue and in
the upper regions of the 2:1 and 4:1 tongues. The parameters in the
FHN equations are �=0.1, a1=0.5, a0=0.05, and 	=0.1.
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FIG. 6. Power spectra and corresponding phase trajectories for
the 3:1 response and period-doubled response in the forced FHN
equations �3�. �a� The power spectrum for the 3:1 response shows a
primary peak at � /� f =1/3. �b� The power spectrum for the 3:1
period-doubled response shows a frequency response at � /� f

=1/6 in addition to the higher harmonics. �c� The orbit of the 3:1
response in the u-v plane. �d� The orbit of the period-doubled re-
sponse in the 3:1 tongue. The parameters are the same as in Fig. 5
with the parametric forcing amplitude and frequency indicated by
the solid circles. �a�,�c� �=0.5, � f =0.82. �b�,�d� �=0.6, � f =0.875.
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The typical patterns in the 3:1 tongue of the forced FHN
model �3� are traveling waves between the three stable
phases. In two-dimensional systems these waves may form
rotating spiral patterns if the system size is large enough to
accommodate the spiral �21�. In the period-doubled param-
eter region the traveling pattern is accompanied by a
standing-wave stationary pattern at �=� f /6 as in the BZ
system. Figure 7 shows the pattern response at � f /3 and
� f /6 using the same analysis method as for the experimental
data �see Eq. �1��. The pattern is shown both as a function of
space and in the complex plane of the phase.

For the FHN solutions in Fig. 7 the phase in space as
shown as a cumulative phase to demonstrate that the phase
shifts for the fronts are always 2� /3 for the � f /3 response
and can be either 2� /3 or � through the possible six phases

in the � f /6 response. The complex phase plane shows that
the fronts between the six phases always traverse through
zero �the zero is a node position�, indicating a standing-wave
pattern as in the BZ system.

V. CONCLUSION

We have demonstrated period-doubling dynamics in both
the BZ chemical reaction and a periodically forced version of
the FHN equations. The period doubling is found in a param-
eter range inside the 3:1 resonance tongue and leads to a
subharmonic signal at � f /6 where we would expect the
lowest-frequency signal to be � f /3. Examination of the os-
cillation orbits and phase structure of the pattern formation
gives further evidence that the phenomenon is a result of
period doubling.

It is not possible in the experiment to rule out an overlap
of 2:1 and 3:1 resonance regimes as an alternative explana-
tion for the low-frequency response we see inside the 3:1
resonance tongue. The interaction of the 2:1 and 3:1 modes
may lead to a subharmonic signal at f f /6. This explanation is
ruled out in the FHN model where the tongue boundaries are
well defined and the period-doubling regime falls entirely in
the 3:1 tongue where there is no overlapping with the 2:1
tongue. The similarities between the experiment and the
simulation we have presented here favor period doubling as
the explanation for our experimental observations.

Period doubling should occur in other tongues depending
on the exact nonlinear dynamics of the chemical or model
system. We have also observed possible period doubling in
the 2:1 resonance tongue, but have not yet verified that this is
the case. In addition there are likely further period doublings
inside the region we have found and, as in other systems,
there could be an entire period-doubling cascade to chaos
�3�.
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