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An efficient control scheme of resonant three-oscillator interactions using an external chirped frequency
drive is suggested. The approach is based on formation of a double phase-locked �autoresonant� state in the
system, as the driving oscillation passes linear resonance with one of the interacting oscillators. When doubly
phase locked, the amplitudes of the oscillators increase with time in proportion to the driving frequency
deviation from the linear resonance. The stability of this phase-locked state and the effects of dissipation and
of the initial three-oscillator frequency mismatch on the autoresonance are analyzed. The associated autoreso-
nance threshold phenomenon in the driving amplitude is also discussed. In contrast to other nonlinear systems,
driven, autoresonant three-oscillator excitations are independent of the sign of the driving frequency chirp rate.
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I. INTRODUCTION

Resonant three-wave interactions �R3WIs� and their dy-
namical counterparts, three-oscillator interactions �R3OIs�
play a fundamental role in physics because they represent
lowest-order �in terms of wave amplitudes� nonlinear effects
in systems approximately described by a linear superposition
of discrete waves and oscillations �1�. For example, an in-
coming laser beam in a plasma can decay via R3WIs into
another electromagnetic wave and an ion-acoustic or plasma
wave �2�. R3WIs are also characteristic of many other fields
of nonlinear physics, such as nonlinear optics �3�, hydrody-
namics �4�, and acoustics �5�. Consequently, controlling
R3WIs and R3OIs is an important goal of both basic and
applied physics research. Varying the three-wave resonance
condition by time and/or space inhomogeneity of the back-
ground medium is one approach to affecting R3WIs �6�. An
alternative is to influence the resonance condition by nonlin-
earity of the medium �7�. By combining the space and time
variation and the nonlinearity of the background one may use
autoresonance for controlling R3WIs �8–10�. This more re-
cent approach uses the intrinsic property of many nonlinear
waves and oscillations to stay in resonance �to phase lock�
even when parameters of the system vary in time and/or
space �11�. In the case of three coupled waves or oscillations,
the phase locking is achieved as the nonlinear frequency or
wave vector shifts self-adjust �via variation of the wave am-
plitudes� to compensate the linear dispersion shifts due to the
inhomogeneity of the background.

In this work, we shall consider a different autoresonant
R3WI scheme which does not require variation of the param-
eters of the medium and nonlinear dispersion of the interact-
ing waves. Thus, we shall assume that the medium is uni-
form and time independent and that the only nonlinearity in
the problem is due to the usual three-wave resonant cou-
pling, but introduce an additional element in the system, i.e.,
an external chirped frequency perturbation �drive�. It is the
nonlinear wave coupling combined with the slow variation

of the driving frequency, that will lead to an unconventional
type of autoresonance in the system. Its manifestation will be
seen as the amplification of the wave amplitudes controlled
by a single parameter �chirped frequency of the driving os-
cillation�. For simplicity, instead of waves, we shall consider
a system of nonlinearly coupled linear oscillators xj �j
=1,2 ,3� governed by

ẍj + � j
2xj = − �xkx3, j,k = 1,2, j � k , �1�

ẍ3 + �3
2x3 = − �x1x2 − Fd. �2�

Here we assumed the frequency-matching condition �1+�2
=�3, while Fd=� cos �d, where �d=��d�t�dt represents a
constant amplitude, chirped frequency driving perturbation
in the equation for the third �driven� oscillator. All dependent
and independent variables in this model system are dimen-
sionless, such that xj are rescaled by the initial amplitude A10
of the first oscillator, and the frequencies �and time� are res-
caled by the linear frequency �and inverse frequency� of the
first oscillator. Similarly, the dimensionless coupling coeffi-
cient � and driving amplitude � correspond to the original
A10� /�1

2 and � / �A10�1
2�, respectively. Note that, for �=0,

Eqs. �1� and �2� describe, for example, the well-known para-
metric oscillator problem �3�. Reduction �not considered in
this work� of a similar system of governing equations for
R3WIs would require the wave vector matching condition
k1+k2=k3 and replacement of Fd by a chirped frequency
driving wave � cos�k3 ·r−��d�t�dt�, but this problem is out-
side the scope of the present work.

We illustrate autoresonance phenomenon in our driven
system in Fig. 1�a�, showing the total energy H=� j=1

3 �ẋj
2

+xj
2� /2+�x1x2x3+Fdx3 versus rescaled �slow� time �=��t,

found by solving Eqs. �1� and �2� numerically for a linear �in
time� driving frequency chirp �d=�3+�t �note that the drive
passes the linear resonance �d=�3 at t=0�, subject to initial
conditions �at �=−125� x1=1, x2,3=0, ẋ1,2,3=0. We used pa-
rameters �1=1, �2=2, �3=3, �=10−5, �=0.031, and �
=0.0174 �solid line� in these simulations. Unless stated oth-
erwise, these parameters will be used in all subsequent nu-*lazar@vms.huji.ac.il
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merical examples in this paper. All simulations in Fig. 1 and
throughout this work used the Runge-Kutta, self-varying step
size differential equation solver ODE45 in the standard MAT-
LAB 7 package �12� with the assigned relative and absolute
error tolerances of 10−9. The decrease of the tolerances by a
factor of 10 yielded no visible variation in Fig. 1. One can
see in the figure a significant growth of energy H of the
system with time beyond the linear resonance despite the
smallness of the driving amplitude, until saturation at �
=17.3. This energy amplification is accompanied by a con-
tinuing double self-phase-locking ���d−�3	const �see
Fig. 1�b�� and ���3−�1−�2	0 in the system �not shown
in the figure�, where � j are individual phases of the oscilla-
tors. The latter are defined by writing xj =Re
Aj�t�exp�
−i� j�t��� , Im�Aj ,� j�=0 and found numerically by forming
the analytic signal using the Hilbert transform of xj �13�.
Figure 1 also illustrates another important characteristic of
autoresonance in our system, i.e., the existence of a threshold
in the driving amplitude for capture into autoresonance. In-
deed, the dotted lines in the figure represent simulations with
all parameters the same, but �=0.0155 �the threshold value
in this case is �th=0.0167�. One can see that the phase-
locking ���d−�3	const discontinues in this case not far
beyond the linear resonance, resulting in energy saturation at
a relatively small value. We found that autoresonance in this
system is achieved independently of the sign of the driving
frequency chirp rate. This is substantially different from the
usual autoresonance of nonlinear oscillations, where the sign
of the frequency chirp rate must correspond to the sign of the
weakly nonlinear frequency shift for successful excitation
�14�.

The understanding of the details of the autoresonant inter-
action in our driven system, as illustrated in Fig. 1, is the
main goal of the present work. The scope of the paper will be
as follows. The capture of the system into resonance and the
resulting autoresonant quasi-steady-state will be discussed in
Sec. II. Section III will deal with the problem of stability of
the quasi-steady-state. We shall discuss the autoresonance
threshold phenomenon in driven R3OI systems in Sec. IV.
The validity of the small nonlinear frequency shift model
will be considered in Sec. V. Finally, in Secs. V and VI, we
shall include the effects of dissipation and linear frequency
mismatch on the autoresonance and present our conclusions.

II. AUTORESONANT EVOLUTION

A. Adiabatic approximation

We precede our analysis of the autoresonance in the
driven system by introducing the usual adiabatic representa-
tion xj =Re�Aje

−i�j�, j=1,2 ,3, where Aj and the phases � j are
real functions of time. We shall assume that the amplitudes
Aj are slow on the scale of periods of the linear oscillations.
In contrast, the phases � j are fast, but the two phase mis-
matches ���3−�1−�2 and ���d−�3 are assumed to be
slow. Then, by substituting xj into Eqs. �1� and �2�, neglect-

ing Äj, keeping the resonant terms only, and separating the
real and imaginary parts, we obtain the following set of slow
evolution equations:

Ȧj	 j +
1

2
Aj	̇ j = −

�

4
AkA3 sin �, j,k = 1,2, j � k , �3�

Ȧ3	3 +
1

2
A3	̇3 =

�

4
A1A2 sin � −

�

2
sin � , �4�

	 j
2 = � j

2 +
�

2

AkA3

Aj
cos �, j,k = 1,2, j � k , �5�

	3
2 = �3

2 +
�

2

A1A2

A3
cos � +

�

A3
cos � , �6�

�̇ = 	3 − 	1 − 	2, �̇ = �3 + �t − 	3, �7�

where 	 j = �̇ j. Throughout this work, we consider evolution
of our three-oscillator system, subject to finite initial ampli-
tude of the first oscillator �the pump�, A10=1, and vanishing
initial amplitudes A20,30=0 of the second and third oscilla-
tors. We compare numerical solutions of the original set of
equations �1� and �2� versus �=��t with those of our adia-
batic approximation �Eqs. �3�–�7�� in Fig. 2, using param-
eters �=0.031 and �=0.0197 �above the threshold for au-
toresonance� and the same initial conditions as in Fig. 1. One
can see in the figure that A2 follows closely the envelope of
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FIG. 1. Autoresonant evolution in the driven three-oscillator
system. �a� Energy H and �b� phase mismatch � in the system just
above �solid lines, �=0.0174� and below �dotted lines, �=0.0155�
the threshold for autoresonance.
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FIG. 2. Comparison between the solution of the original equa-
tions �1� and �2� for x2 and the adiabatic approximation, Eqs.
�3�–�7�, for slow envelope A2, using parameters �=0.031 and �
=0.0197.
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x2, indicating that the adiabatic approximation is valid in this
case.

The rescaled time � used in Figs. 1 and 2 is the convenient
independent variable in the adiabatic approximation. Conse-
quently, prior to further analysis, we rewrite our adiabatic
system as

dBj

d�
= −

�

4��	1	2	3

BkB3 sin �, j,k = 1,2, j � k ,

�8�

dB3

d�
=

�

4��	1	2	3

B1B2 sin � −
�

2��	3

sin � , �9�

	 j
2 = � j

2 +
�

2

BkB3

Bj

� 	 j

	k	3
cos �, j,k = 1,2, j � k ,

�10�

	3
2 = �3

2 +
�

2

B1B2

B3
� 	3

	1	2
cos � +

�

B3

�	3 cos � ,

�11�

d�

d�
= �−1/2�	3 − 	1 − 	2� , �12�

d�

d�
= �−1/2��3 + ��� − 	3� , �13�

where we also introduced the rescaled amplitudes Bj

=Aj
�	 j. We proceed to the analysis of the slow evolution of

our system described by these equations next.
First, we assume that the terms with � and � in Eqs. �10�

and �11� are sufficiently small, so that 	 j 	� j. This is our
small nonlinear frequency shift assumption. Then, taking
square roots of �10� and �11� and linearizing to first order in
� and �, we obtain

dBj

d�
= − 
BkB3 sin �, j,k = 1,2, j � k , �14�

dB3

d�
= 
B1B2 sin � − � sin � , �15�

d�

d�
= � − 


B1B2

B3
cos � −

�

B3
cos � , �16�

d�

d�
= 
�B1B2

B3
−

B2B3

B1
−

B1B3

B2
cos � +

�

B3
cos � . �17�

Here 
=� / �4��2�3�� and �=� / �2��3�� are the reduced
coupling parameter and driving amplitude, respectively. We
shall consider the effect of violation of the small nonlinear
frequency shift assumption in Sec. V. Finally, by defining the
phase shifts � j =� j −� jt such that �̇ j =	 j −� j 1, and intro-
ducing slow complex amplitudes bj���=Bj���e−i�j���, we re-
write Eqs. �14�–�17� in the compact form

dbj

d�
= − i
bk

*b3, j,k = 1,2, j � k , �18�

db3

d�
= − i
b1b2 − i�e−i�2/2. �19�

This system describes the initial evolution stage in our driven
system, including the process of capture into resonance.

B. Linear evolution stages

The process of capture of our system into resonance with
the drive can be divided into different evolution stages. In
the initial, linear evolution stage, we neglect the right-hand
side �RHS� in �18� for j=1, assuming �b2 � , �b3 �  �b1�. This
yields b1=b10=1. The equations for the remaining two oscil-
lators in this stage become

db2

d�
+ i
b3 = 0, �20�

db3

d�
+ i
b2 = − i�e−i�2/2, �21�

subject to zero initial conditions, b2,3��0�=0. This inhomoge-
neous system of equations can be solved by the method of
undetermined coefficients, yielding the result

b2��� = c+���ei
� + c−���e−i
�, �22�

b3��� = − c+���ei
� + c−���e−i
�, �23�

where

c± = ± i
�

2
�

�0

�

e−i���2/2±
���d�� = ± i
�

�2
ei
2/2I , �24�

I=�a
be−iu2

du, and a= ��0±
� /�2, b= ��±
� /�2. We can also
express I as

I =��

2

�C�a�� − C�b��� − i�S�a�� − S�b���� , �25�

where C and S are Fresnel integrals �15� evaluated at a�=
−�2/�a and b�=−�2/�b. Alternatively, one can use Fresnel
auxiliary functions f and g to write

I = i��

2
��e−ia2

�f + ig��a� − �e−ib2
�f + ig��b�� . �26�

Next, we seek an asymptotic approximation for I at �a � , �b �
�1. Assuming some large negative initial �0, such that a�
�1, we consider two possibilities, �i� b�1 and �ii� b�0,
�b � �1, separately. In case �i� we use the symmetry relations
C�−x�=−C�x�, S�−x�=−S�x� and the asymptotic values
C�x�→1/2, S�x�→1/2 at x→� in Eq. �25� to approximate

I =��

2
�1 − i� . �27�

In case �ii� for x�1, f�x��1/�x and g�x��1/�2x3. There-
fore, by neglecting g in Eq. �26�, we obtain
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I = i
1

2
� e−ib2

b
−

e−ia2

a
 . �28�

Now, we use �27� and �28� in the expressions for c±, and
write solutions b2,3 �see Eqs. �22� and �23��. We distinguish
between two different stages of initial evolution in our sys-
tem. In stage �a�, ��0, �� � �
, we have

b2��� = �e−i�2/2� ei��2−�0
2�/2

�0
2 − 
2 P +




�2 − 
2 , �29�

b3��� = �e−i�2/2� ei��2−�0
2�/2

�0
2 − 
2 Q +

�

�2 − 
2 , �30�

where P=−
 cos�
��−�0��+ i�0 sin�
��−�0�� and Q=
−�0 cos�
��−�0��+ i
 sin�
��−�0��. For continuing phase
locking between the third oscillator and the drive, the � de-
pendence of phase �3 of b3 should be approximately �2 /2.
Then the expression in the parentheses in Eq. �30� must be
nearly real, which is the case when

��0
2 + 
2

�0
2 − 
2 

���
�2 − 
2 . �31�

For negative times �, the last inequality is satisfied if 

 �� �  ��0�. Therefore, taking ��0� large enough guarantees
capture of the third oscillator into resonance �resulting in a
bounded phase mismatch �=�d−�3� at some �� � = ��� � �
.
Since the value of the dominant term in the parentheses in
Eq. �30� in this case is negative, the phase mismatch assumes
the value �=� after capture into resonance. Next, assuming
phase locking of the third oscillator and the drive, we discuss
the initial evolution of the phase mismatch ���3−�1−�2
	�3−�2 between the three oscillators. When phase locked,
the � dependence of phase �2 should be the same as that of
phase �3, i.e., �2��2 /2. This is the case when the expres-
sion in the parentheses in Eq. �29� is approximately real, i.e.,
for

��0
2 + 
2

�0
2 − 
2 




�2 − 
2 . �32�

At large negative times � and �0, this inequality is satisfied
for 
 �� � �
 ��0�, guaranteeing phase locking of the three
oscillators �boundness of �� at some �� � = ��� � �
. Since the
value of the dominant term in the parentheses in Eq. �29� is
positive, while the value of the dominant term in the paren-
theses of �30� is negative, the phase mismatch � is locked at
�.

In the second stage �stage �b�� of initial evolution, �� �

, and

b2��� = �
1 + i

2
��ei
2/2+i
� −

�

2
Q�, �33�

b3��� = − �
1 + i

2
��ei
2/2+i
� −

�

2
P�, �34�

where Q�=e−i�0
2/2−i
��0−�� / ��0−
�−e−i�2/2 / ��−
� and P�

=e−i�0
2/2−i
��0−�� / ��0−
�−e−i�2/2 / ��−
�. The first terms in Eqs.

�33� and �34� are dominant for ��0−
 � �1 and ��−
 � �1.
Therefore, b2���	−b3��� and the phase mismatch � locks at
�. At the same time, the phase locking between the third
oscillator and the drive discontinues, and the phase mismatch
� varies rapidly in time. We present a numerical example of
different stages of initial evolution of the system in Fig. 3.
The times ��=−120 and ��=−11.3 at which � and � be-
come locked, as well as the escape of � from resonance at
�=�m=−0.5, are seen in the figure.

C. Asymptotic autoresonant quasi-steady-state

We have found numerically that for a range of parameters

 and � the system is recaptured into resonance at a specific
time �=�a�0 ��a=2.7 in the example shown in Fig. 3�, be-
yond which the phase mismatches � and � perform con-
verging oscillations around the values

�s 	 0 �mod 2��, �s 	 const �mod 2�� . �35�

We shall discuss this problem of recapture into resonance in
Sec. IV, while, in this section, we focus on the evolution of
the system after the recapture. Consequently, we analyze the
system �14�–�17� under assumptions �35� at ���a. The left-
hand sides of Eqs. �16� and �17� can then be replaced by 0,
so, approximating cos �	1, one can write

� − 

B1B2

B3
−

� cos �s

B3
= 0, �36�


�B1B2

B3
−

B2B3

B1
−

B1B3

B2
 +

� cos �s

B3
= 0. �37�

We supplement the last two equations by the Manley-Rowe
relation

B1
2 − B2

2 = B10
2 − B20

2 = 1, �38�

obtained from Eqs. �14�. Thus, we have a system of three
algebraic equations for B1, B2, and B3. We seek asymptotic
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FIG. 3. Evolution of phase mismatches � and � �
=1,�
=1.8�.
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solution of this system at large positive �, such that the am-
plitudes Bj are sufficiently large and one can neglect the
terms � cos �s /B3 in Eqs. �36� and �37�. This asymptotic
quasi-steady-state can be easily found:

B1s = B2s =
�

�2

, �39�

B3s =
�

2

. �40�

We illustrate these result in Fig. 4, showing the numerical
solution of the adiabatic set of equations �3�–�7� �line �a��,
the solution of Eqs. �14�–�17� for small nonlinear frequency
shifts �line �b��, and the asymptotic result �39� �line �c��. The
calculations were performed for the same parameters �
=0.031 and �=0.0197 �i.e., 
=1 and �=1.8�. One observes
a good agreement between the adiabatic solution �a� and the
small nonlinear frequency shift model �b� for ��70. How-
ever, when nonlinear frequency shifts become large the es-
cape from resonance at �=70 is observed. This phenomenon
will be discussed later, in Sec. V. One can also see in the
figure a good agreement between the adiabatic solution �b�
and its asymptotic limit �c� for ��10.

III. STABILITY OF THE ASYMPTOTIC QUASI-STEADY-
STATE

At this stage, we proceed to study stability of the au-
toresonant quasi-steady-state derived above. The evolution
of deviations of phase mismatches ��=�− ���, ��=�

− ���, from the values ��� and ��� averaged over integration
time in the numerical example with 
=1, �=10 is plotted in
Fig. 5. The black regions in the figure include high-
frequency, visually unresolved oscillations of �� and ��,
while the boundaries of the black regions represent the en-
velopes of these high-frequency oscillations. One can also
see that high-frequency oscillations of �� are superimposed
on a low-frequency oscillating component and that maxima
of ���� and ���� decrease in time, indicating stability of the
quasi-steady-state. Further information about these oscilla-
tions is revealed by calculating the Fourier spectra of �� and

�� �see Fig. 6�. One can see that, indeed, the spectrum of
�� has two components: �a� a narrowband at low frequency
around some 	1� and �b� a wideband, higher-frequency com-
ponent between 	2� and 	2� with a decreasing spectral density
at higher frequencies. The spectrum of �� is similar to that
of ��, but has only the wideband component and a higher
spectral density compared to that in ��. The analysis of the
evolution equations for �� and �� is presented next, aiming
at explaining the features of their Fourier spectra.

A. Linear stability analysis

We proceed by allowing small deviations from the quasi-
steady-state solution,

Bj = Bjs + �Bj, � = �s + ��, � = �s + �� . �41�

Then, linearizing in �14�–�17�, and assuming, for simplicity,
that 
��1.5, i.e. �see Sec. IV�, �s	�, we obtain

d��Bj�
d�

= − 
BksB3s��, j,k = 1,2, j � k , �42�

d��B3�
d�

= 
B1sB2s�� + ��� , �43�

d����
d�

=
��B3 − 
�B1s�B2 + B2s�B1�

B3s
, �44�
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FIG. 4. Comparison of amplitude B2 versus time in different
approximations. �a� The numerical solution of the adiabatic equa-
tions �3�–�7�, �b� the small nonlinear frequency shift limit, Eqs.
�14�–�17�, and �c� the asymptotic limit �39�.
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FIG. 5. Evolution of the phase mismatch deviations �� and ��
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represent envelopes of visually unresolved high-frequency
oscillations.
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d����
d�

= �2
��B1 + �B2 − 2�2�B3� . �45�

The differentiation of �45� with respect to � and the use of
Eqs. �42� and �43� yields

d2����
d�2 = − 3�2�� − 4
��� . �46�

Similarly, by substituting Eqs. �39� and �40� into Eq. �44�,
differentiating the result with respect to �, and using Eqs.
�42� and �43�, we obtain,

d2����
d�2 = 2�2�� + 2
��� . �47�

The last two coupled, second-order linear equations com-
prise a set for studying stability of the asymptotic quasi-
steady-state in our system. We shall analyze this set below by
using a WKB-type analysis involving singular value decom-
position of the associated matrix problem �16�.

First, we write Eqs. �46� and �47� in matrix form

d2

d�2X + M · X = 0, �48�

where X= ��� ,���T and

M = � 3�2 4
�

− 2�2 − 2
�
 .

Next, we represent X as

X = Re�Yei�� , �49�

where the real amplitude vector Y is assumed to be slow
�such that dY /d� is of O���, � being a small dimensionless
parameter describing this slowness of variation in the sys-
tem�, while the eikonal phase � is fast, but, nevertheless, the

frequency 	̃=d� /d� is slow. Then, substituting Eq. �49�
into Eq. �48� and neglecting the second derivative of Y, we
arrive at

i�2	̃
dY

d�
+

d	̃

d�
Y + D · Y = 0, �50�

where

D = M − 	̃2I = �3�2 − 	̃2 4
�

− 2�2 − 2
� − 	̃2
 , �51�

while I is a unit matrix. Now, by observing that dY /d�,

d	̃ /d� in Eq. �50� are of O���, we seek solutions of this
equation in the form of the series Y=Y0+Y1+¯, where the
terms Yn are viewed as O��n�. Then, in zero order, Eq. �50�
yields D ·Y0=0, requiring �D � =0, yielding the characteristic
frequencies

	̃1,2 =�2
� − 3�2

2
�− 1 ±�1 −

8
��2

�2
� − 3�2�2 .

�52�

Asymptotically, at �→�,

	̃1 →�2

3

�, 	̃2 → �3� . �53�

Next, in seeking Y0, we go to first order in Eq. �50�, i.e.,

D · Y1 + i�2	̃
dY0

d�
+

d	̃

d�
Y0 = 0. �54�

In dealing with this equation, we perform singular value de-
composition of D �16�,

D = d1v1u1
H + d2v2u2

H, �55�

where, generally, complex pairs of vectors u1, u2 and v1, v2
are orthonormal �u j

H ·uk=� jk, v j
H ·vk=� jk�, dj �j=1,2� are real

singular values of D, while the superscript H denotes the
transpose complex conjugate. We decompose Y0=y1u1
+y2u2, so that in zero order �D ·Y0=0�

d1y1 = 0, d2y2 = 0. �56�

Then, by choosing d1=0 and d2�0, we have y2=0 and Y0
=y1u1, as well as

D · u1 = d1v1 = 0, v1
H · D = d1u1

H = 0. �57�

Then, we multiply the first-order Eq. �54� by v1
H from the left

and use �57� to get the slow equation for y1:

	̃v1
H · u1

dy1

d�
+ �	̃v1

H ·
du1

d�
+

1

2

d	̃

d�
v1

H · u1y1 = 0. �58�

Here, we use the asymptotic forms of D evaluated at 	̃1,2,
i.e.,

D = � 3�2 0

− 2�2 0
, D = � 0 0

− 2�2 − 3�2  , �59�

in calculating u1 and v1
H, respectively. The final result of this

calculation yields the asymptotic dependence of Y0=y1u1 on
time, which, after returning to our original variables �� and
��, yields ��� ,���T=X1+X2, where the two modes of os-
cillations are

X1 = Re��0

1
z1exp�i� 	̃1����d��� �60�

and

X2 = Re�� 3/�13

− 2/�13
 z2

��
exp�i� 	̃2����d��� . �61�

Here the constant coefficients z1,2 and the initial phases in the
exponents are determined by the initial conditions on X and
dX /d�. Thus, small deviations of the phase mismatches from
the quasi-steady-state values �35� do not increase with �, i.e.,
the state is stable for all values of 
 and �. Furthermore, now
we can explain all the features of the Fourier spectra of ��
and ��, illustrated in Fig. 6. Indeed, the narrow low-
frequency band of the spectrum of �� at frequency 	1� is

associated with the 	̃1 term in Eqs. �60� and �61�, which
vanishes for ��. In the numerical example in Fig. 6, 
=1

and �=10, having 	̃1	�2
3
�=2.6. The wideband, higher-
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frequency spectrum component between 	2� and 	2� can be

associated with the 	̃2 term. Since the spectra were com-

puted in the time interval 60���100, 	2�		̃2��=60=60�3

	104 and 	2�		̃2��=100	100�3	173. The decrease of the
spectral density for higher frequencies is explained by the
1/�� dependence in X2. The ratio between the spectral den-
sity of the high-frequency contributions in �� and �� is
approximately �3/2�2=2.25, which is the square of the ratio

between the magnitudes of the 	̃2 terms in the expressions
for �� and ��. All these results are in full agreement with
our numerical spectra.

IV. THE THRESHOLD PHENOMENON

This section discusses the threshold phenomenon with re-
spect to the driving amplitude for capturing our system into
resonance and the conditions for continuing autoresonance in
the system. Recall that our driven system evolves subject to
initial amplitudes B10=1, and B20,30=0. We have shown in
Sec. II B that the system is captured into resonance at �
	�, �	� in the linear evolution stage under these initial
conditions, regardless of the initial phase of the oscillators or
their phase relative to that of the drive. Therefore, the dy-
namics of the system in later stages is determined by the
parameters 
 and � only. In particular, the successful capture
of the system into autoresonance, resulting in a quasi-steady-
state, depends on the values of these parameters. Our nu-
merical scan of the �
 ,�� parameter space revealed that for
successful autoresonance at a specific value of the coupling
parameter 
, the driving parameter � must be larger than
some threshold value �th. The numerical results for the prod-
uct 
�th versus 
 are shown in Fig. 7. One can see that for
weaker couplings, 
�2, 
�th	1.5. In contrast, for 
�2,
the value of 
�th increases monotonically with 
. Now, we
take the sum of Eq. �14� for j=1 and 2, and express sin � in
terms of Bj

sin � = −
B1dB1/d� + B2dB2/d�

2
B1B2B3
. �62�

The substitution of this expression into �15� yields sin � in
terms of Bj:

sin � = −
1

2�B3
�2B3

dB3

d�
+ B1

dB1

d�
+ B2

dB2

d�
 . �63�

This expression, assuming the quasi-steady-state, yields
sin �s=−1.5/
�. Requiring sin �s�−1, we find the neces-
sary condition, 
��1.5, for the existence of the quasi-
steady-state. Indeed, our numerical results in Fig. 7 illustrate
satisfaction of this condition when in autoresonance. We also
see that, for weaker couplings, 
�2, this condition is not
only necessary, but sufficient for continuing autoresonance in
the system.

V. VALIDITY OF THE SMALL NONLINEAR FREQUENCY
SHIFT MODEL

It has been observed in Sec. II C that, in contrast to the
prediction of the small nonlinear shift model �14�–�17�, the
full adiabatic evolution equations �3�–�7� predict escape from
autoresonance at large �. To deal with this issue, we have
extended our asymptotic quasi-steady-state of Eqs. �8� and
�10�–�13� to second order in �, under the assumption
d� /d�=d� /d�=0 and neglecting the last term in �11�. The
resulting expressions for Bj and 	 j are

B1,2 = a1� + a2�2, B3 = a3� + a4�2, �64�

where a1=2�2�1�2�3� /�, a2=�2�4�1�2+3�1�3

+3�2�3�� /8���1�2�3, a3=2��1�2�3� /�, a4= �4�1�2

+�1�3+�2�3�� /4���1�2�3, and

	 j = � j +
1

2
��� +

���k − � j�
16� j�k

�2, j,k = 1,2, j � k ,

�65�

	3 = �3 + ��� . �66�

Note that, to O���, Eqs. �64� are the same as in the
asymptotic small nonlinear frequency shift limit �39�, �40�.
The positive O��2� term in �64� explains the deviation of the
numerical solution of the full set of adiabatic equations
�3�–�7� from the linear quasi-steady-state solution �39� for
��70 as shown in Fig. 4. Next, we eliminate sin � from �8�
and �9�, yielding

sin � = −
��	3

�B3
�2B3

dB3

d�
+ B1

dB1

d�
+ B2

dB2

d�
 . �67�

Then, assuming that the system is in a quasi-steady-state,
substituting expressions �64� and �66�, and demanding
sin ��−1, one obtains a �-dependent inequality for the sys-
tem parameters. This inequality can be satisfied for times �
less than a critical time �e, beyond which the quasi-steady-
state ceases to exist. This escape time can be estimated by
taking O��� term in the Taylor expansion of the RHS in �67�,
yielding

�e 	

2

3
����1�2 − 8�3�

�3/2�8�1�2 + 3�3
2�

. �68�

For example, for the set of parameters used in Fig. 2, one
finds �e	71, in reasonably good agreement with �e=67 from

−2 −1 0 1 2
0

2

4

6

8

log
10

(λ)

λµ
th

λµ
th

= 1.5

FIG. 7. Autoresonance threshold �th vs the coupling parameter

.
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the numerical solution of the full adiabatic set of equations
�3�–�7� and �e=50 from the original set of equations �1� and
�2�. Finally, we observe that �e increases with increase of the
driving amplitude, allowing the system to reach higher exci-
tation levels.

VI. ADDITIONAL EFFECTS

A. Dissipation

Here we discuss the influence of a dissipation term of
form −�ẋ3 on the RHS of Eq. �2�. Addition of this term in
our adiabatic analysis results in a set of equations identical to
�14�, �16�, and �17�, but �15� is replaced by

dB3

d�
= 
B1B2 sin � − � sin � − �B3, �69�

where �=� / �2���. Then, similarly to the developments in
Sec. IV, one obtains the following necessary condition for
existence of the autoresonant quasi-steady-state:


� �
3

2
+

�

2
� . �70�

Therefore, in the case of a dissipative system, the autoreso-
nant threshold value of 
� increases with � and, for given 

and �, the quasi-steady-state exists for ���d only, where
�d= �2
�−3� /�. For later times, the system escapes from
resonance, and the oscillator amplitudes decay exponentially,

Bj��� = Bjs��d�e−��/3���−�D�, �71�

where Bjs are given by �39� and �40�. We present an example
of such evolution of a dissipative system in Fig. 8. The nu-
merical solution of the slow system �14�, �16�, �17�, and �69�
�solid line� in the figure is compared to that given by Eq. �71�
�dashed line�. The parameters were 
=1, �=10, and �=0.3.
The dotted line represents the asymptotic autoresonant
asymptotic solution �39�. One can see that adding dissipation
in the system contributes to the convergence of B2 to the
asymptotic solution. The predicted value of �d and the evo-
lution of B2 for ���d are similar to the solution of the slow
evolution equations in our system.

B. Frequency mismatch

Here we discuss the effect of a mismatch between the
linear frequencies of the decoupled oscillators. We write �1
+�2=�3+�� where �� may be either positive or negative.
In this case, similarly to the developments in Sec. II A, one
obtains a set of equations identical to �14�–�16�, but Eq. �17�
is replaced by

d�

d�
= 
�B1B2

B3
−

B2B3

B1
−

B1B3

B2
cos � +

�

B3
cos � + � ,

�72�

where �=�� /��. We have used this system for numerical
investigation of the threshold for autoresonance in the pres-
ence of linear frequency mismatch. The threshold �th in the
driving amplitude was defined as the minimal value of � for
which the system was captured into the autoresonant state.
Figure 9 presents the numerical results for 
�th versus 
.
The case �=0 corresponds to our previous results �see Sec.
IV� for a perfect linear frequency matching. For cases with
��0, the dominant effects are the increase of 
�th with ���
and the weak dependence on the sign of �.

VII. CONCLUSIONS

�a� We have demonstrated efficient control of resonant
three-oscillator interactions by using an additional, external,
chirped frequency forcing applied to one of the oscillators. In
analyzing this phenomenon, we have divided the evolution
of the driven R3OI system into several stages, each charac-
terized by a different type of resonant interaction, and ap-
plied the adiabatic approximation in studying the driven
phase-locked evolution of the system.

�b� A simple quasi-steady-state of the driven R3OI sys-
tem, where the slow amplitudes of the interacting oscillators
increase in proportion to the deviation of the driving fre-
quency from the linear resonance, was found and analyzed.
The quasi-steady-state stage discontinues at a certain time �e
and the energy of the driven system saturates. By increasing
the driving amplitude �, one extends the duration of the au-
toresonant state, allowing excitation to higher energy.

�c� We have shown that, for weak excitations, when the
nonlinear frequency shifts due to the interaction between the

0 20 40 60 80 100
0

20

40

60

80

τ

B
2

FIG. 8. Autoresonance in a dissipative system. The numerical
solution of the adiabatic set �14�, �16�, �17�, and �69� �solid line� is
compared to that given by Eq. �71� �dashed line�. The dotted line
represents the asymptotic solution �39�.
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FIG. 9. Autoresonance threshold at different values of the linear
frequency mismatch parameter �.
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oscillators are small, the quasi-steady-state is characterized
by a double phase locking, where the phase mismatches �
=�3−�2−�1 between the interacting oscillators and �=�d
−�3 between the drive and the driven �third� oscillator are
locked at �	0 and �	const. We have also shown that this
double phase locking is linearly stable.

�d� We have studied the threshold �th in the amplitude of
the drive for successful excitation of the autoresonant state.
We have shown that the product 
� of the coupling and
driving parameters in the system must exceed 3/2 to have the
asymptotic autoresonant quasi-steady-state. We have seen
numerically that, for a sufficiently weak coupling, 
�2, �th
satisfies the relation 
�th	1.5. For stronger couplings,

�th�1.5.

�e� The addition of dissipation causes the escape from
autoresonance at some time �d, for which we have an esti-

mate. Beyond �d the slow amplitudes decay exponentially
with time.

�f� Finally, we have studied numerically the effect of lin-
ear frequencies mismatch ��=�3−�2−�1 on the autoreso-
nance in our system. We have observed that the product 
�th

is a monotonically increasing function of ����.
�g� It seems interesting to extend the present theory to

resonant three-wave interactions and generalize it to more
than one space and time dimension.
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