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Analytical approach to directed sandpile models on the Apollonian network
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We investigate a set of directed sandpile models on the Apollonian network, which are inspired by the work
of Dhar and Ramaswamy [Phys. Rev. Lett. 63, 1659 (1989)] on Euclidian lattices. They are characterized by
a single parameter ¢, which restricts the number of neighbors receiving grains from a toppling node. Due to the
geometry of the network, two- and three-point correlation functions are amenable to exact treatment, leading to
analytical results for avalanche distributions in the limit of an infinite system for g=1,2. The exact recurrence
expressions for the correlation functions are numerically iterated to obtain results for finite-size systems when
larger values of g are considered. Finally, a detailed description of the local flux properties is provided by a

multifractal scaling analysis.
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I. INTRODUCTION

The interaction networks of many real systems with a
large number of basic units are often found to display power-
law distributions of node degrees and small-world properties
[1,2]. Examples stem from many different areas, such as
electric power distribution, food webs in ecology, informa-
tion flow in the internet, interaction among financial institu-
tions, and so on [3,4]. In recent years, complex networks
have also attracted attention as alternative topological struc-
tures to ordered Euclidian lattices, on which many physical
models can be defined. These structures offer a suitable sce-
nario to mimic the effect of geometry in real systems and
have already been used in the investigation of the properties
of magnetic [5-7] and electron [8] systems.

Understanding the stability of complex networks becomes
of relevance for the management of natural and human-built
systems, as it can provide guidelines to avoid an irreversible
collapse and to enhance the robustness of their structure.
Another issue that deserves attention is the occurrence of
events that may cause permanent or temporary damage to the
network, which can be interpreted as avalanches within the
proposed self-organized criticality (SOC) scenario [9]. It is
well known that a typical signature of SOC systems is the
possibility of the occurrence of a very large avalanche that
can extend itself over the whole network, causing its break-
down. Specific sandpile models defined on complex net-
works have been recently investigated [10], as well as mod-
els where the network is not fixed, but the set of connections
evolves slowly with time [11]. In the first case, avalanches
refer to the motion of mass units from one node to its neigh-
bors, while in the last approach avalanches refer to bursts of
rewiring connections among the network nodes. Also note-
worthy are the recent attempts to use SOC concepts with
respect to brain activity, both in Euclidian and scale-free net-
works [12-14].
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It is well known that directed models, like the one pro-
posed by Dhar and Ramaswamy [15], constitute one of the
few classes of SOC models that can be exactly solved on
Euclidian lattices. This is essentially related to their Abelian
property, according to which the effect of two successive
grain additions on the lattice does not depend on their order.
In the context of complex networks, the Apollonian packing
problem [16] inspired the introduction of the so-called Apol-
lonian network [17,18]. Besides displaying both scale-free
and small-world features, the hierarchical geometry of this
network enables the derivation of tractable analytical expres-
sions for a variety of equilibrium and dynamical models
[19]. This leads either to exact results or to recurrence rela-
tions that can be numerically iterated.

In this work, we analyze the avalanches of directed sand-
pile models on the Apollonian network. We make use of the
properties of this specific network and model to first derive a
series of exact results for the distribution of avalanches.
Then, these results can be extended, with the help of the
numerical iteration of the obtained recurrence relations, to
illustrate more general situations. More precisely, we are able
to investigate the fine details of the local mass flux, deriving
the appropriate multifractal spectra that describe the scaling
properties of the flux.

This work is organized as follows: In Sec. II we introduce
our model, discussing the role played by the number of lev-
els, ¢, in the Apollonian hierarchy that limit which nodes can
receive mass from a toppling neighbor. We also derive the
basic expressions for the two- and three-point correlation
functions that allow for the derivation of the local and total
fluxes. Results for the total flux, obtained by numerical itera-
tion, are discussed in Sec. III, for 1 <g=<6. They are then
compared with analytical expressions derived for the g=1
and g=2. In Sec. IV, a multifractal approach is used to
present the scaling properties of the flux for the distinct val-
ues of ¢. Finally, Sec. V closes the paper with our concluding
remarks.
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FIG. 1. (Color online) Building process of the Apollonian
network.

II. DIRECTED SANDPILE MODELS
ON THE APOLLONIAN NETWORK

The planar Apollonian network [17] is obtained from the
classical Apollonian space-filling packing of circles [20] by
associating nodes with the centers of the circles and drawing
edges between nodes corresponding to pairs of touching
circles. This iterative building process is illustrated in Fig. 1.

The directed sandpile model of Dhar and Ramaswamy
[15] associates with each site x of a hypercubic lattice a
height variable z(x), which is increased by one when a grain
is added to x. If z(x) exceeds a critical value z,, the site
topples and the height variables at all € nearest neighbors of
x along a preferred direction increase by 1, while z(x) de-
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FIG. 2. (Color online) Apollonian network with ¢g=2. Dotted
lines correspond to inactive connections and thick lines indicate
connections between sites in adjacent layers, while dashed lines
connect sites separated by two layers. Note that there are two types
of sites in layer n=3. If g=1, also dashed lines become inactive.

creases by €. In order to satisfy this requirement, we must
have z.=¢; without loss of generality, we assume that z,
={. Notice that, once a site x receives its first grain, its
height variable cannot return to the value z(x)=0. Configu-
rations of the lattice in which all height variables assume
values between 1 and z, are called stable.

The model is driven by the addition of grains to randomly
chosen sites. If the chosen site topples, an avalanche is ini-
tiated, stopping after no additional topplings can occur. Then,
a grain is added to another randomly chosen site. After a
sufficiently large number of grain additions, the system
reaches a SOC state, in which avalanches connect stable con-
figurations.

The existence of a preferred direction is essential to the
exact solvability of the model, not only in its original form
but also in generalized versions [21]. In the Apollonian net-
work, the building process offers an obvious choice of a
preferred direction. We define the nth layer of the network as
the set of sites added in the nth iteration of the process, and
we postulate that, when a site in a given layer topples, only
sites in subsequent layers can receive grains. However, the
Apollonian network has the peculiar property that each site
in a given layer is connected to at least one site in each
subsequent layer. Thus, in the thermodynamic limit, any site
has an infinite number of neighbors in subsequent layers,
leading to an infinite critical height. In order to obtain a finite
value of z., we impose the restriction that only neighbors in
the first g subsequent layers can receive grains when a site
topples, the remaining connections being inactive; see Fig. 2.
This leads to a g-dependent value of the critical height z,,
which is the same for all sites in the network, provided we
forbid the addition of grains to the sites in the original tri-
angle (layer n=0). (For g from 1 to 6, we have z,.=3, 9, 21,
45, 93, and 189.) Thus, all allowed sites have an equivalent
set of neighbors in their subsequent layers, and we can study

026111-2



ANALYTICAL APPROACH TO DIRECTED SANDPILE...

the properties of avalanches by choosing any reference site
x,. For convenience, we choose X, to be the site located at
the geometrical center of the network (layer n=1). As we
show later on, by working with finite values of ¢ it is pos-
sible to infer the behavior of the system in the g — ¢ limit.

As in the original directed sandpile model, we define a
two-point correlation function Gy(x;X,) which measures the
probability that a site x topples in the SOC state due to an
avalanche originated by adding a grain at x,. Due to the fact
that all stable configurations are equally probable in the SOC
state [15] and that all allowed sites have an equivalent set of
neighbors, the probability that a site topples, provided that r
of its backwards neighbors have toppled, is equal to r/z,.
Thus, G obeys the recursion equation

1

Go(x;Xg) = — E'Go(y;xo) + 5x,x0 > (1)
Ze|y

with the primed summation running over all sites from which

X can receive grains, according to the g-layer rule. Since

1
Go(xo3%0) = Z_, (2)
the existence of a preferred direction allows us to solve Eq.
(1) for all Gy(x;X,), at least numerically.

The flux through the nth layer is given by

@(n) = 2 Go(x;%g). (3)
Contrary to what is observed in hypercubic lattices, here
¢(n) generally depends on n, although it becomes asymptoti-
cally constant for n> 1, as we show below by numerical and
analytical calculations. If m(n) is the average number of sites
in the nth layer that topple when at least one of them does,
we can write

¢(n) =m(n)p(n), (4)

in which p(n) is the probability that, in the SOC state, an
avalanche started at x,, reaches layer n.
If we assume that

p(n) ~n*, (5)

with some exponent «, the asymptotic constancy of ¢(n)
allows us to conclude that
1

m(n) ~ —— ~

p(n) " (©)

Thus, the average mass of an avalanche reaching at least n
layers scales as

M(n) = m(t) ~ f ' dt t* ~ n®*!, (7)
=1 1

and the probability that the total mass of an avalanche ex-
ceeds M can be written as

PM) = p(n(M)) ~ M1+, (8)

Finally, we obtain for p(M), the probability distribution of
avalanches with size M,
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dp(M)

2o " M_(1+2a)/(l+0‘) =M. (9)

p(M) =

The exponent a can be calculated from the mean-square
flux

®(n) ~ [m(n)Pp(n) ~ n%, (10)

which is related to the three-point correlation function
G(x,,X,;X), defined as the probability that sites x; and X,
both in the same layer, topple due to an avalanche started by
adding a grain at site x,. Explicitly, we have

D)= X G(Xp,X:X). (11)

As in the case of G(x;X,), we can write for G(X;,X5;X)
a recursion equation

1
G(Xl’X2§X0)=_2E'G(YI,)’z;Xo), (12)
chm’z

with the primed summation running over all sites from which
X; Or X, can receive grains, according to the g-layer rule.
This last equation can be solved by the ansatz [22,23]

G(Xl’X2§X0)=Ef(Y§Xo)Go(X1;)’)Go(xz;)’), (13)
y

with the function f(y;x,) determined by the condition
G(x,x;X0) = Go(X;Xo), (14)

which leads to

Ef(y;XO)GO(X;Y)GO(X;y)=G0(X;XO)- (15)
y

Summing over all sites x in the same layer n, using Eq. (3)
and the fact that G(x;y)=G(x—y+X;;X,), We can rewrite
Eq. (15) as

> FK(n—1+1) = ¢(n), (16)
=1
in which
F()= 2 f(y), K1) =2 Go(x:%0)Go(x;X). (17)
yet Xet

Starting from n=1, Eq. (16) can be solved recursively for
F(n). By substituting Eq. (13) into Eq. (11), we can express
®(n) in terms of F(n),

D(n) =2 FO)[pn—1+ DI (18)
=1

The scaling behavior of ®(n) determines the exponent c.

The case g=1 is immediately solved. In this limit, the
Apollonian network (with the three original vertices re-
moved) reduces to a Cayley tree with coordination number
equal to 4, as shown in Fig. 2. The two-point correlation is
easily seen to satisfy
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1
Go(x;xq) = ?, X en, (19)

so that the average flux is ¢(n)=1/3, Vn, leading to

K(n) = F(1)=3, F(n)=2 m>1). (20)

3n+l’

Thus, the mean-square flux is given by
1 2
d(n)=—+—n, 21
(m)=3+gn (21)

corresponding to a=1 (7=3/2), characteristic of the mean-
field behavior associated with the directed model in Bravais
lattices with dimension d=4. For the purpose of compari-
son, the corresponding exact values in d=2 are a=1/2, 7
=4/3.

In the next two sections, we discuss the properties of the
model for g>1.

III. AVERAGE BEHAVIOR

For ¢ =2, sites in the same layer are no longer equivalent,
since we are preserving the underlying topology of the Apol-
lonian network as defined by the building rule. Instead, those
sites are naturally grouped in different classes, defined by the
structure of their connection to sites in previous layers. In
principle, this makes the model amenable to analytical treat-
ment. As we show in the Appendix, the analysis for g=2 is
already somewhat intricate, but it lends support to a series of
conclusions we obtain from numerical calculations. These
are performed by building an Apollonian network with up to
16 layers (corresponding to 21 523 363 sites), imposing the
g-layer rule, and solving recursively Egs. (1) and (16). From
this, we can calculate both the mean flux ¢(n) and the mean-
square flux ®(n) as functions of the layer index n. (In Sec.
IV we study the local properties of the flux.)

The first conclusion to emerge from our numerical analy-
sis is that the mean flux ¢(n) becomes asymptotically con-
stant for large n, as already mentioned in Sec. II. This is
evident in Fig. 3(a), where we plot, for several values of ¢,
the ratio between ¢(n) and the corresponding (constant) re-
sult for g=1. Notice the oscillations in ¢(n) for small values
of n. These are related to the fact that, as the number of
neighbors of a site in a given subsequent layer increases with
the layer index, so does the fraction of grains received by
each layer when the site topples. Owing to the g-layer rule,
for ¢g>1, the mean flux reaching layer n=2 drops in com-
parison with the total flux, then increases from n=2 to n
=g+ 1, dropping again for n=¢g+2. But this second drop is
smaller, because sites in that layer receive grains from all ¢
previous layers. As a result of this process, the oscillations
are smoothed out for sufficiently high values of n.

Corresponding curves for the mean-square flux are shown
in Fig. 3(b). Again the curves oscillate for small values of the
layer index n, but approach a constant value for large n,
showing that ®(n) always satisfies the asymptotic scaling
form
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FIG. 3. (Color online) (a) Mean flux as a function of the layer
index n, for different values of ¢, divided by the mean flux for ¢
=1. (b) Corresponding curves for the mean-square flux.

d(n) ~ n. (22)

This means that, if we fix ¢ and let n— o0, the distribution of
avalanche sizes follows, asymptotically, a power law with
exponent a=1, irrespective of q.

On the other hand, the model behaves differently if we
consider the condition in which ¢— 2, corresponding to the
genuine Apollonian network model. To analyze this situa-
tion, let us observe what happens at smaller scales in the
finite-g-layer rule. As clearly shown in Fig. 3(a), ¢(n) de-
pends exponentially on n between n=2 and n=g+1,

d(n) =Ae™, (23)

with a g-dependent prefactor A, but a nearly constant value
of a=0.7. The prefactor A decreases exponentially with g,
since it is related to the inverse threshold height 1/z.. The
exponential (rather than linear) dependence of ¢(n) is a con-
sequence of the exponential increase in the number of neigh-
bors as a function of the layer separation. In the g— o0 limit,
the central site topples only after the addition of an enormous
number of grains, most of which are then received by sites in
very distant layers. As a consequence, all avalanches have
arbitrarily large range. In this case, the exponent « formally
takes an infinite value.
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FIG. 4. (Color online) (a) Flux distributions in a given layer,
rescaled by the corresponding maximum flux, for g=2 and n=22.
(b) Moments of the flux as a function of n, for g=3 and several
values of k, with the corresponding exponents y;.

We conclude this analysis with the observation that the
model offers different asymptotic behaviors, depending on
the finite or infinite character of ¢. If ¢g— %, the asymptotic
behavior does not fit into the usual SOC framework. If g is
finite, we observe the prevalence of a mean-field behavior,
which could be anticipated on the basis of the treelike topol-
ogy of the lattice obtained by imposing the g-layer rule. A
similar situation arises in other sandpile models on different
forms of decorated Cayley trees [23,24]; since the correlation
length is infinite in the SOC state, the mean-field behavior
characteristic of the ordinary Cayley tree (or more precisely
the Bethe lattice) is recovered.

IV. MULTIFRACTAL PROPERTIES OF THE FLUX

Although the average behavior of the flux reproduces that
of the mean-field limit for finite values of ¢, the local-flux
distribution reveals interesting properties already for g=2. In
Fig. 4(a) we plot histograms of the local flux ¢ for n=22
(plots for n=20 or n=21 give statistically equivalent results).
Owing to a precise identification of the distinct types of sites
for the ¢g=2 model, we were able to consider a much larger
number of nodes (>10'°) than for the results reported in the
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previous section. The fluxes are rescaled by the correspond-
ing maximum flux ¢, in that layer. The many discontinui-
ties in the histogram are due to the fact that the local fluxes
in a given layer assume only a set of discrete values, clus-
tered around powers of zzl. Note that there are very few sites
with large local fluxes, while the local flux through the vast
majority of sites is very small. This leads to an appreciable
difference between average and typical behavior.

In analogy with studies of the distribution of currents in
the incipient infinite cluster of a random-resistor network
[25], it is interesting to evaluate the moments of the flux in
order to better reveal the scaling properties hidden in Fig.
4(a). So we use the definition

k
M(n)= 2, (%) : (24)

in which the summation runs over all sites x in the nth layer
of the Apollonian network,

oy = Go(x:X), (25)

and ¢y is the initial flux. It turns out that, for all real values
of k, the moments satisfy scaling relations given by

M(n) ~ "', (26)

with well-defined coefficients u;, so that, in terms of the
system size

L~ 3™ 27)

we have

M(L) ~ L%, (28)

with y,=u,/In 3. For g=1, all sites in a given layer n have
the same flux 37", so that the exponents y, are given by y;
=1-k. For ¢g=2, on the other hand, we see from our numeri-
cal calculations that there is no simple linear relation be-
tween the exponents y,, suggesting that no single number
characterizes the current distribution. This is a signature of

multifractal behavior. A plot of My(n) for g=3 and several
values of k is shown in Fig. 4(b).

To further investigate the multifractal properties of the
flux distribution, we evaluate the dependence of y, with re-
spect to k, as well as the multifractal spectrum f(a), defined
by a Legendre transform of the exponents yy,

d
a=- 2% (29)

@) =y, +ka,
fla) =y, +ka di

Figure 5 shows plots of y, versus k for different values of

k. These plots were obtained by calculating the moments M,
as functions of the layer index n for 300 values of k between
—10 and 10, and then extracting the exponents y, by least-

squares power-law fits of M, between n=n, and n=n,. For
q=2, the resulting curves show a very weak dependence on
the values of n; and n,; specifically, fixing n;=5 or n;=10
and varying n, between n=18 and n=22 leads to a relative
error of the order of 10~ around k=0. Notice that, for values
of k approximately between —1 and 1, an extended crossover
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FIG. 5. (Color online) Plots of the exponents y; versus k for g
=2, 3, and 5. Inset: plots of f(a) for g=2, 3, 5, and 6.

separating two distinct linear regimes is clear in Fig. 5. From
the log-log plot in Fig. 4(a), we conclude that one linear
regime corresponds to large negative values of k, in which

the moments M, are dominated by a huge number of sites
with very low fluxes, while the other regime is produced by

large positive values of k, in which M, is determined by a
tiny number of sites with large fluxes. This is a similar
mechanism to the one producing multifractality in the
square-lattice Abelian sandpile model [26], which is associ-
ated with the dominance of rare, very large avalanches.

Plots of f(a) for several values of ¢ are shown in the inset
of Fig. 5. Note that, according to Eq. (29), the maximum of
f(a) occurs for the value of a associated with k=0, for
which f(@—9) =y, Indeed, for g=1 (not shown in Fig. 5), the
curve consists of a single point (@, yo)=(1,1), correspond-
ing to a monofractal behavior. Within numerical errors, that
point is the maximum of all curves, in agreement with the
fact that yp=1 for all values of q.

For ¢=2, the left (right) end of the curves reflects the
scaling behavior of the set of points associated with the larg-
est (smallest) fluxes. Although not visible in the plots, the
density of points is much larger near the ends of the curves,
with intermediate points coming mostly from values of k
between —1 and 1. The width of the curves increases with g,
presumably diverging as g— . This is related to the fact
that larger values of ¢ lead to a larger range of values of the
flux in each layer of the lattice.

V. CONCLUSIONS

In this work we investigated directed sandpile models on
the Apollonian network, subject to a rule stating that, when a
site topples, only sites in the first g subsequent layers can
receive grains. Analytical results were obtained for the ava-
lanche probability distribution when g=1 and 2, while larger
values of g were studied by numerical evaluation of analyti-
cal expressions. For finite values of ¢, the avalanche distri-
butions follow asymptotic power-law scaling forms, with
typical mean-field exponents, since the g-layer rule effec-
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tively constrains the Appolonian network to a tree structure.
On the other hand, our results also show the emergence of
large oscillatory deviations due to finite-g effects, suggesting
that, in the g — % limit, corresponding to the genuine Apol-
lonian network, an exponential dependence of the average
flux with the layer index is obtained.

Investigation of the local properties of the fluxes through
each node showed that the network topology induces a large
degree of inhomogeneity in the sandpile model for ¢g=2,
giving rise to multifractal scaling. The origin of the multi-
fractality lies in the presence of a very small number of sites
experiencing a large fraction of the average flux. A similar
effect has been observed in simulations for the Abelian sand-
pile model in the square lattice [26], in which rare, large
avalanches dominate the statistics.

Finally, the comparison with results found for another
sandpile model on scale-free networks [10] shows similari-
ties in the mean-field behavior when all nodes share the same
critical height or the critical height depends locally on the
node degree.
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APPENDIX: ANALYTICAL TREATMENT FOR g=2

For g=2, the sites in each layer of the Apollonian net-
work can be grouped into types according to how they are
connected to their backwards neighbors. This feature can be
exploited in order to obtain analytical results for the behavior
of the directed sandpile model. Here we deal with the case
g=2, which allows us to check our numerical results in a
reasonably simple way. It is clear that the treatment can be
extended to higher values of ¢, with basically the same re-
sults, but a considerably larger amount of work.

Layer n=1 of the network contains only one site, while
the three sites in layer n=2 are all equivalent. However, al-
ready for n=3 two types of sites are present: sites of type 1
receive grains from sites in the two previous layers, while
sites of type 2 receive grains only from the latter layer; see
Fig. 2. For n=4, two additional types of sites would appear,
since it is possible that a site receives grains from sites of
type 1 or 2, in one or two of the previous layers. It is easy to
convince oneself that the number of site types doubles for
each additional layer (starting at n=2) and that the types can
be labeled so that each site of type s has as nearest neighbors
in the next layer two sites of type 2s—1 and one site of type
2s.

Denoting by g, , the value of Gy(x;X,) for a site x of type
s in layer n and by v, the number of such sites, the flux
through layer n can be written as

2;1—2

¢(”) = 2 Vn.s8n.s+ (Al)
s=1

In order to estimate ¢(n), we must investigate the asymptotic
behavior of both v, and g, ;.
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Our choice of labels allows us to write, for s=2j—1 (j
=1,2,3,...),

1
8n2j-1= §(gn—l,j + gn—2,[(j+l)/2j)’ Vy2jo1 =2V 1 s

(A2)

in which |w] denotes the integer part of the number w and,
for s=2j,

1

gn,Zj= §gn—l,j7 (A3)

Vn,Zj = n—1,j+

Equations (A2) and (A3), being recursive expressions,
can be solved numerically to yield all g, ; and v, ; in terms of
g1 and v, ;. However, analytical results can be derived from
the observation that g, ; behaves as

8n1 ™ gn’ (A4)

with ¢=(1 +v’§)/ 18=0.393 being determined from the so-
lution of the equation

1
g=5E+). (A5)
Consequently, g, ; satisfies
&ns =AL", (A6)

with constant prefactors A;. Moreover, the multiplicities v,
are such that v,;=3X2"2 (n=2) and the ratios f,
=v, /v, satisfy

_ vn,2{—l _ 2Vn,{' _
f2j—1 - - 2
Vn,l Vn,l

B

f2j=%jl=2%:i=%fj. (A7)
We can rewrite Eq. (A1) as

22 n-2
Gn) =1 2 fi8= Va2 Do (A8)

s=1 m=0

with
o
Fio=gnie Dun= 2 figns (m=1. (A9)
s=142m"

Making use of the definition of I',,,, and of Eqgs. (A2), (A3),
and (A7), we can obtain the recursion equation
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1
1—‘n,m = g(rn—Z,m—Z + 1-‘n—l,m—l) . (AIO)

Keeping in mind Eq. (A6), we expect that I',,, takes the
asymptotic form

1—‘n,m = 7m§n~ (Al 1)

Substituting this last expression into Eq. (A10), we con-
clude that the constants v, satisfy the equation

1 1
Ynl® =~ Y1l = = VY2 =0, (A12)

6 6

which can be solved by v,,= v,6", with 8=(2£)"'. We then
have

1
I‘n,m -~ amgn = z_mgn—m’ (AIS)
and the flux ¢(n) scales with the layer index as
n-2 31_1 _
Bn) ~2"- ' 0= (20" — (A14)
m=0 -
Since 6> 1, this is equivalent to
$(n) ~ (2£0)" =1, (A15)

so that the flux becomes asymptotically constant for n> 1.
The function K(n), defined by

2n—2

K(n)= 2 Go(x;%0)Gy(x;%) = 2 vn,sgﬁ’s, (A16)
s=1

Xen

scales as K(n)~ ¢" and thus vanishes exponentially for large
n. In the same limit, the function F(n), related to K(n) and
¢(n) through the equation

> FOK(n—rt+1) = ¢(n),

=1

(A17)

tends to a constant value. As a consequence, the mean-square
flux must scale as

d(n)= Fn)d(n—t+ 1) ~n, (A18)
=1

yielding the mean-field exponent a=1.
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