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The network formed by ridges in a straightened sheet of crumpled paper is studied using a laser profilometer.
Square sheets of paper were crumpled into balls, unfolded, and their height profile measured. From these
profiles the imposed ridges were extracted as networks. Nodes were defined as intersections between ridges,
and links as the various ridges connecting the nodes. Many network and spatial properties have been investi-
gated. The tail of the ridge length distribution was found to follow a power law, whereas the shorter ridges
followed a log-normal distribution. The degree distribution was found to have an exponentially decaying tail,
and the degree correlation was found to be disassortative. The facets created by the ridges and the Voronoi
diagram formed by the nodes have also been investigated.
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I. INTRODUCTION

The crumpling of paper is an everyday occurrence, yet it
is a surprisingly rich and complex process. Paper is an elas-
tic, flexible, and heterogeneous material, and many authors
have tried to describe its crumpling properties analytically
�1–3�, numerically �4,5�, and experimentally �6–11�. The
crumpling process of paper is also interesting because it is a
special case of the thin plate deformation problem that is
central in describing processes that occur, for example, in car
crashes and tank failures �12�. Earlier studies have tried to
describe the ridge network of crumpled paper �4,6,10� and
some results have been found; however, much is still unclear.
This work aims at describing the ridge network formed dur-
ing the common hand-crumpling process of ordinary printing
paper. The application of modern network theory �13–15�
has been specially emphasized.

This paper is organized as follows. In Sec. II the experi-
mental procedure is described, and in Sec. III the ridge de-
tection method is presented. The results are discussed in Sec.
IV; in particular the ridge length and the degree distribution
are discussed. Also, the degree-degree correlation, the clus-
tering, and the surface roughness are investigated, in addition
to the facet distribution and the angular ridge distribution.
Finally the main conclusions are summarized in Sec. V.

II. EXPERIMENTAL PROCEDURE

Ordinary printing paper was used for all the experiments,
and some of the properties of the paper are given in Table I.
All the samples were cut into square sheets of 21�21 cm2,
and crumpled by hand into small balls. The diameters of the
various balls produced are given in Table I. The hand-
crumpling procedure has been applied before �6,8,10�, and is

practical because it is easy to conduct and produces a com-
pact result. Unfortunately, the process in not repeatable and
poorly controlled. Several test crumplings were conducted
before the measured samples were crumpled in order to re-
duce the variance between the samples. Earlier studies �8� on
acoustic emissions from crumpling of various materials have
indicated that the emission spectra show a surprisingly low
sensitivity to the crumpling method. This may indicate that
the outcome of the crumpling is not highly sensitive to the
details of the process. Balankin et al. �10� discuss the scaling
behavior of the crumpling process for different paper thick-
nesses. They conclude that the impact of the variation of the
applied confinement force F on the ball radius R is small
since there is only a weak dependence R�F−0.25. For these
reasons, no special precautions, such as dents or initial fold-
ing, were taken to increase repeatability. After crumpling the
samples, they were carefully unfolded, taking care not to tear
the paper, introduce new ridges, or remove some of the origi-
nal ridges. When the paper ball was unfolded the paper was
stretched to a size of 20�20 cm2, and fastened to an alumi-
num plate. This ensured that the vertical heights of the
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TABLE I. List of samples investigated. x and y steps are the
numbers of measured points in the x and y directions, respectively.
Thickness is the thickness of the paper, and ball diameter is the
diameter of the ball produced during the crumpling process. All
samples were originally 21�21 cm2 and thereafter unfolding and
stretching to 20�20 cm2 producing a maximum height of 12 mm.
An area of 18�18 cm2 in the center of the samples was measured.

Sample x step y step
Thickness

��m�
Weight
�g/m2�

Ball diameter
�mm�

1 900 900 51±5 49.0±1.0 26±2

2 1800 1800 51±5 50.0±1.0 27±2

3 1000 1000 95±5 80.0±0.5 35±2

4 900 900 95±5 80.0±0.5 32±2

5 3600 3600 100±2 83.0±0.5 33±2

6 900 900 220±5 175.0±1.0 43±2
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samples were no more than 12 mm �the maximum range for
the instrument used�.

The full �2+1�-dimensional height mapping was mea-
sured profile by profile using a laser profilometer over an
area of 18�18 cm2 in the center of the samples. The height
of each point was measured using a laser giving a voltage
output linearly proportional to the distance between the
probe and the paper surface. The voltage output was con-

verted to a floating point length measure using a 16-bit
analog-to-digital converter. The laser diameter used was
30 �m; however, accuracy considerably smaller than this
could be achieved. Each profile was acquired by sliding the
sample under the probe while measuring. Multiple profiles
were acquired by stepping the probe normal to the sliding
direction. A typical one-dimensional height profile and a
complete �2+1�-dimensional map are shown in Fig. 1. The
number of points per profile was kept equal to the number of
profiles, resulting in a square grid of measurements or “pix-
els.” The number of points used for the various samples is
given in Table I. The in-plane accuracy of each point was no
larger than 10 �m for any sample, and in the out-of-plane
direction it was 0.5 �m for all samples.

III. RIDGE DETECTION

A ridge stands out as a line of high curvature in an other-
wise smooth landscape. The curvature of any point in a
height profile ��x�� can be calculated as the field �2��x��,
where x� = �x ,y� are the planar coordinates. In the present
case, it proved necessary to smooth the height profile ��x��
with a short-range Gaussian filter before calculating �2��x��
in order to filter away small-scale features. A range of differ-
ent filters was tested, and the result did not seem sensitive to
the details of the filter. The main effect of the filtering was
the removal of single isolated high-curvature pixels, or small
groups of such, and a narrowing of the ridge lines. After
filtering, the curvature field was calculated and thresholded
so that all points over a given value were considered to have
a unit value and all other points to have a zero value. Any
isolated points above the threshold were filtered away. From
the remaining points, lines were detected as ridges. It is
throughout this paper assumed that all ridges are straight
lines. It proved difficult to automate the ridge extraction pro-
cess from the thresholded field; finally this step had to be
done manually. Some statistics of the produced networks are
listed in Table II. Figure 1 shows an example of a full ridge
network. In the middle plot of Fig. 1, a single one-
dimensional profile is given, and all points along this profile
giving rise to ridges are marked. It can be seen from this
figure that not all sections of the profile that have high cur-
vature give rise to a ridge, while some smooth sections do
give rise to a ridge. This may stem from the directionality of
the ridges relative to the profile shown. Ridges crossing the
profile at a small angle may seem smooth, but small local
dents crossing close to orthogonally may seem large.

Nodes are defined as intersections between ridges, and a
ridge therefore extends only from one node to another. All
the links are regarded as undirected since a paper ridge does
not have any preferred direction. The networks formed are
fully connected and have therefore only one component.

IV. NETWORK PROPERTIES

The different paper thicknesses used in the experiments
showed a clear trend that thinner paper crumple more than
thick paper, and therefore produce more nodes and links �see
Tables I and II�. Apart from the scale of the network created,
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FIG. 1. �Color online� Top: Gray-scale height plot of sample 6
as function of x and y positions. Gray-scale indicates elevation
�lighter is higher�; ridges are clearly visible. Middle: A single one-
dimensional profile from sample 6 �marked as a black line in the
bottom plot�. The points of the profile that give rise to ridges are
marked by squares. Bottom: Network extracted from sample 6 su-
perimposed on the gray-scale plot from the top figure.
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no significant differences in the various distributions referred
to below were detectable. As a consequence, most distribu-
tions are averaged over all samples after each of them have
been normalized appropriately. The lack of change in the
behavior due to sample thickness may arise from the small
amount of data available, and no correspondence between
paper thickness and other properties can be excluded. From a
scaling point of view, a qualitative change of behavior is not
expected since a large and thick sheet of paper is equivalent
to a thin and small sheet. Note that the needed confinement
also varies with the paper thickness, and all our experiments
are conducted at approximately the same confinement. Sul-
tan and Boudaoud �11� discuss two regimes for the crum-
pling process, depending on the confinement of the sample.
The transition confinement is partly dependent on the paper
thickness. Our experiments are as mentioned conducted at
approximately constant confinement �although it is poorly
controlled�, and it might therefore be that due to the varying
paper thickness our samples lie in different regimes. How-
ever, the uniform behavior of the samples indicates that they
are all in the same regime. Also the number of self-contacts
is very large for all the samples, and this indicates that they
are all in the highly confined regime.

It can be seen from Table I that samples 3 and 4 both have
the same paper thickness, although they have significantly
different numbers of links and nodes. This is most likely due
to the difference in confinement. Sample 3 had a larger ball
radius than sample 4, and was therefore less confined, and
also has fewer nodes and links than sample 4.

A. Ridge length

The length of a ridge between nodes a and b is defined as
the spatial length from node a to b, following the assumption
that all ridges are straight lines. Previous works have re-
ported log-normal, �, and exponential functions �3,6,10� to
give good fits for this distribution. However, we find that,
whereas the small-scale part of the distribution is well fitted
by a log-normal function, the tail of the distribution is not
well fitted by any of the above-mentioned functions. The

large-scale part of the distribution is better fitted by a power-
law function p�l�� �1− l / l0�� where l is the ridge length and
l0 is the maximum ridge length for a given sample. Both fits
can be seen in Fig. 2. We have found the tail to be best fitted
by an exponent �=0.81. To compare the fits of the different
functions they are plotted in Fig. 3 divided by the original
distribution in order to emphasize any discrepancies.

The underlying reason for the shift in behavior may stem
from the fact that the distribution of short ridges is domi-
nated by remnants of originally long ridges. These ridges
have been intersected by “younger” ridges crossing them af-
ter their formation. As outlined by Blair and Kudrolli �6�,
this random sectioning of ridges will give rise to a log-
normal length distribution. The larger ridges, on the other
hand, have not been so heavily sectioned by younger ridges.
They are therefore not expected to follow the log-normal
distribution of the shorter ridges. Instead, we detect a power-
law dependency of the distribution of the difference between
the longest ridge l0 and the ridge length. It is reasonable to
assume that larger samples will produce larger maximum
ridges, and therefore l0 is a sample-size-dependent quantity.
Why this difference should exhibit a scale-free behavior is
not clear.

B. Degree distribution

The degree of a node is defined as the number of ridges
meeting at that node. The distribution has been found to have

TABLE II. List of extracted networks with their number of
nodes, number of links, clustering coefficient C, the clustering co-
efficient for the corresponding planar Delaunay network, CD, the
clustering coefficient for a nonplanar randomized network with the
same degree distribution, CR, and the maximum node degree for the
network. The clustering coefficients for the random networks were
calculated using an average over 1000 samples after each sample
had 10 000 random rewirings.

Sample Nodes Links C CD CR

Maximum
Degree

1 503 890 0.182 0.4371 0.0045 8

2 1211 2238 0.190 0.4315 0.0020 9

3 190 293 0.138 0.4458 0.0095 6

4 350 580 0.162 0.4394 0.0064 8

5 929 1829 0.231 0.4326 0.0029 10

6 286 501 0.199 0.4384 0.0083 8
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FIG. 2. �Color online� �a� Plot of the average noncumulative
ridge length distribution p�l� as a function of 1− l / l0, where l is the
ridge length and l0 is the maximum ridge length for any given
sample. The data are fitted by a log-normal distribution and a power
law p�l�� �1− l / l0�� with �=0.81. �b� Plot of the average noncumu-
lative ridge length distribution p�l� as a function of normalized
ridge length l / l0.
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a maximum probability at a median degree and produce a
Gaussian-like form that is plotted in Fig. 4. The tail of the
distribution is well fitted by a log-normal function of the
same form as in Eq. �4�. This is in strong contrast to many
naturally occurring networks, which show a power-law tail,
giving a larger portion of high-degree nodes than can be seen
in the acquired samples.

C. Degree-degree correlation

The correlation between the degree of connected nodes
has been studied using the procedure developed by Maslov
and Sneppen �15�. They have defined a correlation measure

C�k1,k2� =
P�k1,k2�
PR�k1,k2�

, �1�

where P�k1 ,k2� is the probability that a node of degree k1 is
linked to a node of degree k2. PR�k1 ,k2� is the same average
probability for a set of randomized networks. The random-

ized networks are assumed to have the same numbers of
nodes and links, and the same degree distribution as the
original network. A value C�k1 ,k2��1 indicates that there is
an over-representation of links between nodes with degree
k1 and k2, whereas C�k1 ,k2�	1 indicates an under-
representation. In order to look at the statistical signification
of the correlation, Maslov and Sneppen introduced another
correlation measure,

Z�k1,k2� =
P�k1,k2� − PR�k1,k2�


R�k1,k2�
, �2�

where 
R�k1 ,k2� is the standard deviation of the samples
used to generate PR�k1 ,k2�. For P�k1 ,k2� only the sample
data are available. If a given coupling P�k1 ,k2� is over-
represented �that is, P�k1 ,k2�� PR�k1 ,k2�� then Z�k1 ,k2��0
and if it is under-represented Z�k1 ,k2�	0. If the standard
deviation is small, the corresponding correlation coefficients
are large, thus emphasizing statistically significant results. In
all results presented here, 1000 randomized versions of
the various samples were used to produce PR�k1 ,k2� and

R�k1 ,k2�. Each randomization used 10 000 rewirings of the
original network.

Figure 5 shows the C�k1 ,k2� matrix for all the samples.
There is a tendency of small-degree nodes not to link to other
small-degree nodes, but rather link to large-degree nodes.
Links between large-degree nodes are also under-
represented. This type of network is known as a disassorta-
tive network. Figure 6 shows the Z�k1 ,k2� matrices for the
same samples, and the same trends as in Fig. 5 can be ob-
served. There is a clear trend in nearly all examined net-
works �16� that technical and biological networks such as the
Internet and various protein interaction networks are disas-
sortative, and that social networks such as acquaintance net-
works are assortative. The underlying reason for this is still
not fully understood.
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FIG. 3. �Color online� For comparison, the results shown in Fig.
2 from fitting the ridge length distribution p�l� with �, log-normal,
and exponential functions divided by the data themselves are
shown, together with the same plot for the power-law fit as a func-
tion of normalized ridge length l / l0.
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FIG. 4. �Color online� Plot of the degree distribution p�k� as a
function of node degree k with a fitted log-normal tail. The inset
shows the same data plotted on log-log scale. This shows that the
distribution does not have a power-law-distributed tail.
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FIG. 5. �Color online� Correlation matrix C�k1 ,k2�
= P�k1 ,k2� / PR�k1 ,k2� for each sample. The plots indicate that the
networks are disassortative.
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D. Clustering

The cluster coefficients C for all the samples are given in
Table II, and they are all in the range 0.13–0.23. The defini-
tion used here is the standard

C =
1

N
�
i=1

i=N

Ci, �3a�

Ci =
2ENN

ki�ki − 1�
, �3b�

where N is the number of nodes in the network, ENN is the
number of links between nearest neighbors of node i, and ki
is the degree of node i �14�. A network embedded in two-
dimensional Euclidean space with no crossing links is called
a planar network, and has been described by West �17�. Gen-
erating a planar randomized network for comparing the clus-
ter coefficients is very hard since no links can cross and the
rewiring therefore must be local. However, the clustering can
be compared with the Delaunay network �18� for the same
spatial layout of nodes. For a given spatial node configura-
tion and degree distribution, the Delaunay network gives the
maximum possible clustering coefficient. The clustering co-
efficient for a Delaunay network made from nodes randomly
distributed in the plane and with a number of nodes compa-
rable to our samples is 0.44. Delaunay networks are closely
linked to Voronoi diagrams, and both are described below.
The cluster coefficient for a nonplanar random network,
where the links can cross, having the same number of nodes
and links and the same degree distribution is in the order of
0.001. The ridge networks have a much higher clustering
than the nonplanar networks. This is expected because any
node in a planar network has a low chance of being linked to
a faraway node. This will generally increase the local clus-
tering �17�. On the other hand the clustering is significantly

lower than in the Delaunay case. This indicates that the ridge
network does not form highly interconnected cliques.

V. GEOMETRICAL PROPERTIES

Various geometrical properties of crumpled thin sheets
have been investigated in the past �6,19,20�. Here we discuss
the size distribution of facets formed by the ridges and of the
Voronoi sections formed by the location of the nodes. The
angular distribution of the ridges and the three-cone struc-
tures is also investigated.

A. Facets

The nodes and links of the network form facets �also
called domains� of various sizes and shapes. A facet is de-
fined as an area of the crumpled paper confined by a closed
loop of ridges that is simply connected, meaning that it con-
tains no internal facets. The nodes bordering the facets are
the corners or vertices of the facet. The distribution of facet
areas and number of vertices for each sample have been cal-
culated. The vertex distribution for all the samples was av-
eraged, giving each sample equal weight. The number of
facets with three, four, five, and six vertices was 46%, 28%,
15%, and 8%, respectively, and the number of facets with
more than six vertices was 4%. The maximum number of
vertices was 14. In Fig. 7 the distribution of the facet vertex
number can be seen; the data are fitted with a log-normal
function

p�a� =
1

�2�a

e−�ln�a� − ��2/�2
�2

, �4�

where a is the vertex number, � is the logarithm of the
average number of vertices per facet, and 
 is the standard
deviation. The best fit was achieved with 
=0.42 and �
=1.13.

The areas of the facets have also been investigated. The
binned distribution of areas was normalized by the maximum
area for each sample, and the average over all samples cal-
culated. The resulting distribution can be seen in Fig. 8 to-
gether with a log-normal fit. The best fit parameters were

=1.17 and �=2.16 in arbitrary units.
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FIG. 6. �Color online� Z matrix Z�k1 ,k2�= �P�k1 ,k2�
− PR�k1 ,k2�� /
R�k1 ,k2� for each sample. As in the C�k1 ,k2� case of
Fig. 5, the plot indicates a disassortative trend.

2 4 6 8 10 12 14
10

−4

10
−3

10
−2

10
−1

10
0

v

p(
v)

Vertex distribution
Log−normal fit

FIG. 7. �Color online� Average vertex distribution p�v� as a
function of the number of vertices v for the facets formed by the
ridges. The data are fitted to a log-normal function with 
=0.42 and
�=1.13.
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B. Voronoi networks

Given a set of nodes in space �or the plane� the Voronoi
diagram �18� is a sectioning into areas around each node
where each section contains all the points that are closest to
the node in its interior. This partitions space �the plane� into
sections filling the whole space �plane�. The Delaunay net-
work is a network where each node is linked to all the other
nodes that it shares a Voronoi section border with. A visual-
ization of this is given in Fig. 9, where the Voronoi diagrams
for four of the samples are plotted. The gray scale of a given
Voronoi section reflects the size of the section. Smaller sec-
tions have a lighter shade and larger sections have a darker
shade. It can be seen that the sections are grouped according
to size, making regions of the whole diagram that contains
mainly large or small sections. The distributions of the areas
of the various Voronoi sections have been calculated and
fitted with a log-normal function. As in the facet case, each
sample has been normalized by its maximum area. The dis-

tribution follows the same general shape as the facet distri-
bution, and they can both be seen in Fig. 8.

C. Angular distribution

The angular distribution of the ridges relative to the bor-
der of the sample has been studied in order to detect any
preferred ridge direction or ordering among the ridges with
regard to direction. No such preferred direction or ordering
was found, and the distribution of ridge angles was reason-
ably uniform, both for each sample and for the average. A
plot of the binned ridge angle distribution can be seen in Fig.
10.

The distribution of angles between ridges in a three-ridge
cone �a node where three ridges meet, and hence form a
conelike structure� has earlier been investigated both analyti-
cally and experimentally �6,19,20�. It has been reported that
there are indications of preferred opening angles for such
cones in the regions about 20°, 60°, and 110°, although all
acquired distributions have been broad. All k=3 nodes have
been investigated and the ridge separation angles show a
broad distribution with a maximum in the range between
100° and 150°. There are no significant peaks in the distri-
bution and this indicates a random ordering. However, 32%
of all the angles lies in the interval between 90° and 150°.
This suggests that the ridges tend to span out, trying to sepa-
rate themselves from each other. Recall that 120° is the angle
at which they are evenly separated. A plot of the distribution
for all the samples and their average can be seen in Fig. 10.
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FIG. 8. �Color online� Average area distribution p�a� as a func-
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FIG. 9. Voronoi diagrams for four samples. The gray shading of
the various sections represents the area of the sections. Lighter ar-
eas are smaller. There is a clear trend for sections of small �large�
size to group with other small- �large-�sized sections.
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FIG. 10. �Color online� �a� Distribution of ridge angles, p���, as
a function of angle � for all the samples and the average �elevated
for clarity�. No trend is visible in the plot. �b� Distribution of sepa-
ration angles, p���, as a function of opening angle � in three ridge
nodes. The average is elevated for clarity.
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VI. ROUGHNESS

The roughness of crumpled paper surfaces has been inves-
tigated before �4,6,10�. These investigations have reported
self-affine behavior; this means that the surface is statisti-
cally characterized by

h�x� = 
−Hh�
x� , �5�

where h�x� is the height of the profile at position x, 
 is a
rescaling factor, and H is the Hurst exponent. We have in-
vestigated the one-dimensional profiles produced by the pro-
filometer using the average wavelet coefficient �AWC�
method �21�, the power spectrum density �PSD� method
�22�, and the bridge method �23�. The results from all the
methods indicate that the crumpled paper forms a self-affine
surface. Earlier works have reported a small-scale region
with a Hurst exponent HS�1.0 and a large-scale region with
HL�0.7 �6,10� and HL�0.8 �4�. Our results follow the same
trend in that there is a crossover scale between two scaling
regimes. However, we found the small-scale exponent to be
HS=1.25±0.05, indicating that the surface is asymptotically
nonflat at these scales. Unfortunately, the data did not give a
robust value for HL because the sample size was too small
compared to the crossover scale. The data did, however, in-
dicate that HL	1.0 and in the range reported above. In Fig.
11, results from the PSD and AWC methods can be seen.

VII. CONCLUSION

The main points reported above are that the tail of the
ridge length distribution is found to be well reproduced by a
power-law distribution, and that the short ridges follow a
log-normal distribution as reported earlier. The degree distri-
bution has been shown not to have a power-law tail, but
rather an exponential decay, and the networks have been
found to be disassortative. The facet area distribution, the
corresponding Voronoi diagram area distribution, and the
Delaunay vertex distribution have all been found to fit log-
normal distributions.
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