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League competition is investigated using random processes and scaling techniques. In our model, a weak
team can upset a strong team with a fixed probability. Teams play an equal number of head-to-head matches
and the team with the largest number of wins is declared to be the champion. The total number of games
needed for the best team to win the championship with high certainty T grows as the cube of the number of
teams N, i.e., T�N3. This number can be substantially reduced using preliminary rounds where teams play a
small number of games and subsequently, only the top teams advance to the next round. When there are k
rounds, the total number of games needed for the best team to emerge as champion, Tk, scales as follows,
Tk�N�k with �k= �1− �2/3�k+1�−1. For example, �k=9/5 ,27/19,81/65 for k=1,2 ,3. These results suggest an
algorithm for how to infer the best team using a schedule that is linear in N. We conclude that league format
is an ineffective method of determining the best team, and that sequential elimination from the bottom up is fair
and efficient.
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I. INTRODUCTION

Competition is ubiquitous in physical, biological, socio-
logical, and economical processes. Examples include order-
ing kinetics where large domains grow at the expense of
small ones �1,2�, evolution where fitter species thrive at the
expense of weaker species �3�, social stratification where hu-
mans vie for social status �4–6�, and the business world
where companies compete for market share �7,8�.

The world of sports provides an ideal laboratory for mod-
eling competition because game data are accurate, abundant,
and accessible. Moreover, since sports competitions are typi-
cally head-to-head, sports can be viewed as an interacting
particle system, enabling analogies with physical systems
that evolve via binary interactions �9–17�. For instance,
sports nicely demonstrate that the outcome of a single com-
petition is not predictable �18,19�. Over the past century the
lower seeded team had an astounding 44% chance of defeat-
ing a higher seeded team in baseball �19�. This inherent ran-
domness has profound consequences. Even after a long se-
ries of competitions, the best team does not always finish
first.

To understand how randomness affects the outcome of
multiple competitions, we study an idealized system. In our
model league, there are N teams ranked from best to worst,
so that in each match there is a well-defined favorite and
underdog. We assume that the weaker team can defeat the
stronger team with a fixed probability. Using random walk
properties and scaling techniques analogous to those used in
polymer physics �20,21�, we study the rank of the champion
as a function of the number of teams and the number of
games. We find that a huge number of games T�N3 is
needed to guarantee that the best team becomes the cham-
pion.

We suggest that a more efficient strategy to decide cham-
pions is to set up preliminary rounds where a small number
of games is played, and based on the outcome of these
games, only the top teams advance to the next round. In the

final championship round, M teams play a sufficient number
of M3 games to decide the champion. Using k carefully con-
structed preliminary rounds, the required number of games
Tk can be reduced significantly,

Tk � N�k with �k =
1

1 − �2/3�k+1 . �1�

Remarkably, it is possible to approach the optimal limit of
linear scaling using a large number of preliminary rounds.

II. LEAGUE COMPETITION

Our model league consists of N teams that compete in
head-to-head matches. We assume that each team has an in-
nate strength and that no two teams are equal. The teams are
ranked from 1 �the best team� to N �the worst team�. This
ranking is fixed and does not evolve with time. The teams
play a fixed number of head-to-head games, and each game
produces a winner and a loser. In our model, the stronger
�lower seed� team is considered to be the favorite and the
weaker �higher seed� team is considered to be the underdog.
The outcome of each match is stochastic: the underdog wins
with the upset probability 0�q�1/2 and the favorite wins
with the complementary probability p=1−q. The team with
the largest number of wins is the champion.

We comment that this competition model is based on ex-
tensive empirical studies of actual league competitions in the
major U.S. sports leagues. These investigations show that the
upset frequency is constant throughout the season and, more-
over, that the upset frequency has barely changed in over a
century �19�. This competition model quantitatively predicts
key statistical characteristics of actual sports data including,
for example, the distribution of win percentage in leagues
�19� as well as winning probabilities in tournaments �16,18�.

Since the better team does not necessarily win a game, the
best team does not necessarily win the championship. In this
study, we address the following questions: How many games
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are needed for the best team to finish first? What is the typi-
cal rank of a champion decided by a relatively small number
of games? What is the optimal way to choose a champion?

We answer these questions using scaling techniques. Con-
sider the nth ranked team with 1�n�N. This team is infe-
rior to a fraction n−1

N−1 of the N−1 remaining teams and supe-
rior to a fraction N−n

N−1 of the teams. Therefore, the probability
Pn that this team wins a game against a randomly chosen
opponent is a linear combination of the probabilities p and q,

Pn = p
N − n

N − 1
+ q

n − 1

N − 1
. �2�

Using p=1−q, the probability Pn can be rewritten as fol-
lows:

Pn = p − �2p − 1�
n − 1

N − 1
. �3�

The latter varies linearly with rank: it is largest for the best
team P1= p and smallest for the worst team PN=q.

Now, suppose that the nth team plays t games, each
against a randomly chosen opponent. The number of wins it
accumulates, wn�t�, is a random quantity that grows as fol-
lows:

wn�t + 1� = �wn�t� + 1 with probability Pn

wn�t� with probability 1 − Pn.
� �4�

The initial condition is wn�0�=0. The number of wins per-
forms a biased random walk and as a result, when the num-
ber of games is large, the quantity wn�t� is well characterized
by its average Wn�t�= �wn�t�	 and its standard deviation �n�t�,
defined via �n

2�t�= �wn
2�t�	− �wn�t�	2. Here, the brackets de-

note averaging over infinitely many realizations of the ran-
dom process. Since the outcome of a game is completely
independent of all other games, the average number of wins
and the variance in the number of wins are both proportional
to the number of games played.

Wn�t� = Pnt , �5a�

�n
2�t� = Pn�1 − Pn�t . �5b�

Both of these quantities follow from the behavior after one
game: since wn�1�=1 with probability Pn and wn�1�=0 with
probability 1− Pn, then �wn�1�	= �wn

2�1�	= Pn. Moreover, the
distribution of the number of wins is binomial and for large t,
it approaches a Gaussian, fully characterized by the average
and the standard deviation �22�.

The quantities Wn and �n can be used to understand key
features of this system. Let us assume that each team plays t
games against randomly selected opponents and compare the
best team with the nth ranked team. Since P1� Pn, the best
team accumulates wins at a faster rate, and after playing
sufficiently many games, the best team should be ahead.
However, since there is a diffusivelike uncertainty in the
number of wins, �n�
t, it is possible that the nth ranked
team has more wins when t is small. The number of wins of
the nth team is comparable with that of the best team as long
as W1�t�−Wn�t���1�t�, or

�2p − 1�
n − 1

N − 1
t � 
t . �6�

Since the diffusion coefficient Dn= Pn�1− Pn� in Eq. �5b� var-
ies only weakly with n, pq�Dn�1/4, this dependence is
tacitly ignored. When these two teams have a comparable
number of wins, they have comparable chances to finish first.
Hence, Eq. �6� yields the characteristic rank of the champion
n* as a function of the number of teams N and the number of
games t,

n* �
N

t

. �7�

Since we are primarily interested in the behavior as a func-
tion of t and N, the dependence on the probability p is hence-
forth left implicit. As expected, the champion becomes stron-
ger as the number of games increases �recall that small n
represents a stronger team�. By substituting n*�1 into Eq.
�7�, we deduce that the total number of games t* needed for
the best team to win is t*�N2.

Since each of the N teams plays t*�N2 games, the total
number of games required for the best team to emerge as the
champion with high certainty grows as the cubic power of
the number of teams,

T � N3. �8�

This result has significant implications. In most sports
leagues, two teams face each other a fixed number of times,
usually once or twice. The corresponding total number of
�N2 games is much smaller than Eq. �8�. In this common
league format, the typical rank of the champion scales as
n*�
N. Such a season is much too short as it enables weak
teams to win championships. Indeed, it is not uncommon for
the top two teams to trade places until the very end of the
season or for two teams to tie for first, a clear indication that
the season length is too short.

We may also consider the probability distribution Qn�t�
for the nth ranked team to win after t games. We expect that
the scale n* characterizes the entire distribution function,

Qn �
1

n*
�� n

n*
� . �9�

Assuming ��0� is finite, the probability that the best team
wins scales as follows, Q1�1/n*. This quantity first grows,
Q1�t��
t /N when t	N2, and then, it saturates, Q1�t�
1
when t
N2.

The likelihood of major upsets is quantified by the tail of
the scaling function ��z�. Generally, the champion wins pt
games �we neglect the diffusive correction�. The probability
that the weakest team becomes champion by reaching that
many wins is QN�t��� t

pt
�qptpqt��q / p��p−q�t, where the

asymptotic behavior follows from the Stirling formula
t!� t ln t− t. We conclude that the probability of the weakest
team winning decays exponentially with the number of
games QN�t��exp�−const� t�. Yet, from Eqs. �9� and �7�,
QN�t����
t�, and therefore, the tail of the probability distri-
bution is Gaussian
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��z� � exp�− const � z2� �10�

as z→� thereby implying that upset champions are ex-
tremely improbable. We note that single-elimination tourna-
ments produce upset champions with a much higher prob-
ability because the corresponding distribution function has
an algebraic tail �16�. We conclude that leagues have a much
narrower range of outcomes and in this sense, leagues are
more fair than tournaments.

III. PRELIMINARY ROUNDS

With such a large number of games, the ordinary league
format is highly inefficient. How can we devise a schedule
that produces the best team as the champion with the least
number of games? The answer involves preliminary rounds.
In a preliminary round, teams play a small number of games
and only the top teams advance to the next round �23�.

Let us consider a two-stage format. The first stage is a
preliminary round where teams play t1 games and then the
teams are ranked according to the outcome of these games.
The top M 	N teams advance to the final round �24�, and the
rest are eliminated. The final championship round proceeds
via a league format with plenty of games to guarantee that
the best team ends up at the top.

We assume that the number of teams advancing to the
second round grows sublinearly

M � N
1, �11�

with 
1�1. Of course, we better not eliminate the best team.
The number of games t1 required for the top team to finish no
worse than Mth place is obtained by substituting n*�M into
Eq. �7�, t1�N2 /M2. Since each of the N teams plays t1
games, the total number of games in the preliminary round is
of the order Nt1�N3 /M2�N3−2
1. Directly from Eq. �8�, the
number of games in the final round is M3�N3
1. Adding
these two contributions, the total number of games T1 is

T1 � N3−2
1 + N3
1. �12�

This quantity grows algebraically with the number of teams
T1�N�1 with �1=max�3−2
1 ,3
1� and this exponent is
minimal, �1=9/5, when


1 = 3/5. �13�

Consequently, t1�N4/5.
Thus, it is possible to significantly improve upon the or-

dinary league format using a two-stage procedure. The first
stage is a preliminary round in which each of the N teams
plays t1�N4/5 games and then the top M �N3/5 teams ad-
vance to the final round. The rest of the teams are eliminated.
The first preliminary round requires N9/5 games. In the final
round the remaining teams play in a league with each of the
possible � M

2
� pairs of teams playing each other M times.

Again the number of games is N9/5 so that in total,

T1 � N9/5 �14�

games are played. This is a substantial improvement over
ordinary N3 league play.

Multiple preliminary rounds further reduce the number of
games. Introducing an additional round, there are now three
stages: the first preliminary round, the second preliminary
round, and the championship round. Out of the first round
N
2 teams proceed to the second round and then, N
1
2 teams
proceed to the championship round. The total number of
games T2 is a straightforward generalization of Eq. �12�

T2 � N3−2
2 + N
2�3−2
1� + N3
1
2. �15�

These three terms account, respectively, for the first round,
the second round, and the final round. The first term is analo-
gous to the first term in Eq. �12�, and the last two terms are
obtained by replacing N with N
2 in Eq. �12�. The total num-
ber of games is minimal when all three terms are of the
same magnitude. Comparing the last two terms gives
3−2
1=3
1 and therefore, Eq. �13� is recovered. Comparing
the first two terms gives

3 − 2
2 = 
2�3 − 2
1� . �16�

Thus, 
2=15/19 and since 
2�
1, the first elimination is
less drastic than the second one. The total number of games
T2�N27/19 represents a further improvement.

These results indicate that it is possible to systematically
reduce the total number of games via successive preliminary
rounds that lead to the final championship round. In the most
general case, there are k preliminary rounds in addition to the
final round. The number of teams advancing to the second
round, Mk, grows as follows:

Mk � N
k. �17�

From Eq. �16�, the exponent 
k obeys the recursion relation
3−2
k+1=
k+1�3−2
k� or equivalently,


k+1 =
3

5 − 2
k
. �18�

By using 
1=3/5 we deduce the initial element in this series,

0=0. Introducing the transformation 
k=ak /ak+1 reduces
Eq. �18� to the Fibonacci-type recursion 3ak+2=5ak+1−2ak.
The general solution of this equation is ak=Ar1

k +Br2
k, where

r1=1 and r2=2/3 are the two roots of the quadratic equation
3r2=5r−2. The coefficients follow from the zeroth element:

0=0 implies a0=0 and consequently, ak=A�1− �2/3�k�.
Therefore,


k =
1 − �2/3�k

1 − �2/3�k+1 . �19�

The exponent 
k
1− 1
3

� 2
3

�k �for k
1� decreases exponen-
tially to one �Table I�. This means that the number of teams
advancing from the first to the second preliminary round is
increasing with the total number of preliminary rounds
played. Nonetheless, the fraction of teams that are eliminated
1−N
k−1 converges to one as N→�. Hence, nearly all of the
teams are eliminated.

The number of games played by a team in the first round,
tk, follows from Eq. �17�,
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tk � N�k, �k = 2�1 − �k� . �20�

Since �k→0 as k→�, only a small number of games is
played in the opening round. Using Tk�Ntk, we arrive at our
main result �1� where �k=3−2
k. Surprisingly, the total
number of games is roughly linear in the number of teams

T� � N , �21�

when a large number of preliminary rounds is used, i.e.,
k→� �25�. Clearly, this linear scaling is optimal since every
team must play at least once. The asymptotic behavior
�k
1+ � 2

3
�k+1 implies that in practice, a small number of pre-

liminary round suffices. For example, �4= 243
211 =1.151 65

�Table I�.
We emphasize that in a k-round format, the top N
k teams

proceed to the second round, out of which the top N
k−1
k

teams proceed to the third round, and so on. The number of
teams proceeding from the kth round to the championship
round is M �N
1
2¯
k. From Eq. �21� and T��M�

3 , the size
of the championship round approaches

M� � N1/3 �22�

as k→�. This is the optimal size of a playoff that produces
the best champion using the least number of games.

IV. NUMERICAL SIMULATIONS

Our scaling analysis is heuristic: we assumed that N is
very large and we ignored numerical constants. To verify the
applicability of our asymptotic results to moderately sized
leagues, we performed numerical simulations with N teams
that play an equal number of t games against randomly se-
lected opponents. The outcome of each game is stochastic:
with probability p the favorite wins and with probability
q=1− p, the underdog wins. We present simulation results
for q=1/4.

The most important theoretical prediction is the relation
�7� between the rank of the winner, the number of games,
and the size of the league. To test this prediction, we mea-
sured the average rank of the winner as a function of the
number of games t for leagues of various sizes. In the simu-
lations, it is convenient to shift the rank by one: the teams are

ranked from n=0 �the best team� to n=N−1 �the worst
team�. With this definition, the average rank decreases indefi-
nitely with t. The simulations show that n* /N1/2��t /N�−1/2,
thereby confirming the theoretical prediction �Fig. 1�.

To validate Eq. �8�, we simulated leagues with a large
enough number of games, so that the best team wins with
certainty. For every realization there is a number of games T
after which the champion takes the lead for good. The aver-
age of this random variable �T	 measured from the simula-
tions is in excellent agreement with the theoretical prediction
�Fig. 2�.

The simulations also confirm that the scale n* character-
izes the entire distribution as in Eq. �9�. Numerically, we find
that the tail of the scaling function is superexponential,
��z��exp�−z�� with ��1. The observed tail behavior is
consistent with �=2, although the numerical evidence is not
conclusive.

To verify our prediction that multiple elimination rounds,
following the format suggested above, reduce the number of
games, we simulated a single elimination round �k=1�. In the
first stage, a total of N9/5 games are played. All teams are
then ranked according to the number of wins and the top

TABLE I. The exponents 
k, �k, and �k characterizing Mk, the
number of teams advancing from the first round, tk, the number of
games played by a team in the first round, and Tk, the total number
of games, as a function of the number of preliminary rounds k.

k 0 1 2 3 4 5 �


k 0 3

5

15

19

57

65

195

211

633

665
1

�k 1 4

5

8

19

16

65

32

211

64

665
0

�k 3 9

5

27

19

81

65

243

211

729

665
1

10
0

10
1

10
2

10
3

t / N

10
-3

10
-2

10
-1

10
0

<
n *

>
/N

1/
2

slope = -1/2

N=10
4

N=10
3

N=10
2

FIG. 1. �Color online� The average rank of the champion �n*	 of
a league with N teams after t games. The simulation results repre-
sent and average over 103 independent realizations with N=102,
103, and 104. A straight line of slope −1/2, predicted by Eq. �7�, is
plotted as a reference.

10
0

10
1

10
2

10
3

N
10

0

10
2

10
4

10
6

10
8

<
T

>

slope=3
simulation

FIG. 2. �Color online� The average number of games �T	 needed
for the best team to emerge as the champion of a league with N
teams. The simulation results, representing an average over 103

independent realizations, are compared with the theoretical predic-
tion �8�.
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M =N3/5 teams proceed to the championship round. This final
round has an ordinary league format with a total of M3

games. We simulated three leagues of respective sizes
N=101, N=102, and N=103, and observed that the best team
wins with a frequency of 70% �Fig. 3�. The champion is
among the top three teams in 98% of the cases �these per-
centages are independent of N�. As a reference, in an ordi-
nary league with a total of N3 games, the best team also wins
with a likelihood of 70%. Remarkably, even for as little as
N=10 teams, the one preliminary round format reduces the
number of games by a factor �10. We conclude that the
scaling results are useful at moderate league size N.

V. IMPERFECT CHAMPIONS

Let us relax the condition that the best team must win and
implement a less rigorous championship round. Given a total
of T�Mc games with 1�c�3, each team plays t�Mc−1

games. From Eq. �7�, the typical rank of the winner scales as

n* � M�3−c�/2. �23�

Suppose that there are infinitely many preliminary rounds.
The analysis in Sec. III reveals that the total number of
games scales linearly, T�Mc�N, and consequently,
M �N1/c. Therefore, there is a scaling relation between the
rank of the winner and the number of teams n*�N�3−c�/2c.
Indeed, the value c=3 produces the best champion. The com-
mon league format �c=2� leads to n*�N1/4, an improvement
over the ordinary N1/2 behavior.

If there is one preliminary round, Eq. �12� becomes
T1�N3−2
1 +Nc
1 and therefore, 
1=3/ �2+c�. Generally for
k preliminary rounds, the exponent 
k satisfies the recursion
relation �18�, and the scaling relations �k=3−2
k and
�k=2�1−
k� remain valid. We quote the value

�k =
1

1 −
c − 1

c
�2

3
�k �24�

that characterizes the total number of games, T�N�k. From

T�Mc�N�k, we conclude M �N�k/c. Substituting this rela-
tion into Eq. �23� yields

n* � N�k, �k =
�k�3 − c�

2c
. �25�

Using ordinary league play �c=2� and one preliminary
round, N3/2 games are sufficient to produce an imperfect
champion of typical rank n*�N3/8. Finally, we note that if
each team plays a finite number of games �c=1�, all of
the teams have a comparable chance of winning because
�k=�k�1.

VI. CONCLUSIONS

In summary, we studied dynamics of league competition
with fixed team strength and a finite upset probability. We
demonstrated that ordinary league play where all teams play
an equal number of games requires a very large number of
games for the best team to win with certainty. We also
showed that a series of preliminary rounds with a small but
sufficient number of games to successively eliminate the
weakest teams is a fair and efficient way to identify the
champion. We obtained scaling laws for the number of ad-
vancing teams and the number of games in each preliminary
round. Interestingly, it is possible to determine the best team
by having teams play, on average, only a finite number of
games �independent of league size�. The optimal size of the
final championship round scales as the one-third power of
the number of teams.

Empirical validation of these results with real data may be
possible using sports leagues, for example. The challenge is
that the inherent strength of each team is not known. In pro-
fessional sports, a team’s budget can serve as a proxy for its
strength. With this definition, the average rank of the Ameri-
can baseball world series champion, over the past 30 years,
equals six. There are, however, huge fluctuations: while the
top team won seven times, a team ranked as low as 26 �2003
Florida Marlins� also won.

The results in this paper can be generalized in a number
of ways. For example, one can use competitions to sort all
teams by strength, not merely find the best one. We find that
Tsort, the time needed to sort all teams through ordinary
league play grows as Tsort�N3 ln N �26�. One may also in-
troduce upset frequencies that depend on the difference in
strengths between two teams. Empirical studies show that a
single effective upset frequency is adequate to capture key
characteristics of sports leagues such as the standard devia-
tion in win percentage. Of course, strength-dependent and
empirically based upset frequencies can be used as a more
realistic model. An interesting question to answer is under
what conditions, i.e., general pairwise �underdog-favorite�
assignments, can the teams be sorted by league play? Finally,
one can investigate the effects of evolving team strengths.
Clearly, the cubic growth law �8� provides a lower bound on
the number of games needed to choose the champion.

With wide ranging applications, including, for example,
evolution �27,28�, leadership statistics is a challenging

0 1 2 3

n / N
1/2

0

0.5

1

1.5

2

2.5

3

N
1/

2 Q
n(N

)
N=10

3

N=10
2

N=10
1

FIG. 3. �Color online� The rank distribution of the league win-
ner for ordinary league format �t=N�. Shown is the scaled distribu-
tion 
NQn�t=N� versus the scaling variable n /
N. The simulation
data were obtained using 106 independent Monte Carlo runs.
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extreme statistics problem because the record of one team
constrains the records of all other teams. Our scaling ap-
proach, based on the record of a fixed team, ignores such
correlations. While these correlations do not affect the scal-
ing laws, they do affect the distribution of outcomes such as
the distribution of the rank of the winner, and the distribution
of the number of games needed for the best team to take the
lead for good. Other interesting questions include the ex-

pected number of distinct leaders, and the number of lead
changes as a function of league size �29,30�.
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