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In this paper, we propose a cellular automata �CA� model for traffic flow in the framework of Kerner’s
three-phase traffic theory. We mainly consider the velocity-difference effect on the randomization of vehicles.
The presented model is equivalent to a combination of two CA models, i.e., the Kerner-Klenov-Wolf �KKW�
CA model and the Nagel-Schreckenberg �NS� CA model with slow-to-start effect. With a given probability,
vehicle dynamical rules are changed over time randomly between the rules of the NS model and the rules of
the KKW model. Due to the rules of the KKW model, the speed adaptation effect of three-phase traffic theory
is automatically taken into account and our model can show synchronized flow. Due to the rules of the NS
model, our model can show wide moving jams. The effect of “switching� from the rules of the KKW model to
the rules of the NS model provides equivalent effects to the “acceleration noise� in the KKW model. Numerical
simulations are performed for both periodic and open boundaries conditions. The results are consistent with the
well-known results of the three-phase traffic theory published before.
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I. INTRODUCTION

Traffic flow phenomena have attracted the interest of
physicists since the early 1990s. Many models and analysis
are carried out from the viewpoint of statistical physics by
various groups recent years, in order to explain the empirical
findings �1–12�. Among them, cellular automata �CA� mod-
els, as an important category, have become a well-established
method to model, analyze, understand, and even forecast the
behaviors of real road traffic since Nagel and Schreckenberg
proposed a “minimal� CA model in 1992 which has become
the basic model of this field and is called the Nagel-
Shreckenberg �NS� model �13�.

So far, most of these traffic models are due to the so-
called “fundamental diagram approach,” in which the steady
state solutions belong to a curve in the flow-density plane
�14–18�. Correspondingly, this curve going through the ori-
gin with at least one maximum is called “the fundamental
diagram” for traffic flow.

The fundamental diagram approach is successful in ex-
plaining several aspects of real traffic, such as the forming of
queue, the dissolution of jams, etc. The congested patterns
from the fundamental diagram approach are due to the insta-
bility of steady states of the fundamental diagram within
some range of vehicle densities. When perturbed, a transition
from metastable free flow to jam �F→J� occurs and the traf-
fic decays into a single or a sequence of wide moving jams.

Nevertheless, a more detailed analysis of empirical data
has been given by Kerner recently �8–12�. Based on these
empirical data, it was found out that in congested traffic two

different traffic phases should be distinguished: “synchro-
nized flow” and “wide moving jams.” Therefore, there are
three traffic phases: �1� free flow, �2� synchronized flow, �3�
wide moving jams. Wide moving jams do not emerge spon-
taneously in free flow. Instead, there is a sequence of two
first order phase transitions: first the transition from free flow
to synchronized flow occurs �F→S�, and later and usually at
a different location moving jams emerge in the synchronized
flow �S→J�.

It is also pointed out by Kerner that the dynamical behav-
ior near an on-ramp differs significantly in the fundamental
diagram approach and in empirical observations. For ex-
ample, in the diagram of congested states based on the fun-
damental diagram approach, at the highest values of on-ramp
flow rate, the homogeneous congested traffic �HCT� occurs
and no jam appears �15–18�. This is in contradiction with
empirical observations where wide moving jams always
emerge spontaneously in general pattern �GP� �4�. Moreover,
at the low values of on-ramp flow rate, jams always emerge
as a single moving local cluster �MLC� or triggered stop-
and-go traffic �TSG� in the fundamental diagram approach
�15–18�. However, synchronized patterns �SP� with high
speed and flow rate that is as great as in free flow appear in
empirical observations in which no wide moving jams
occur �4�.

Based on empirical observations, Kerner developed a
three-phase traffic theory �19–24�. The fundamental hypoth-
esis of this theory is that the steady states of synchronized
flow cover a two-dimensional �2D� region in the flow-
density plane �25,26�. That is to say, a fundamental diagram
of traffic flow in this theory does not exist. In a traffic model
based on this theory, moving jams do not spontaneously oc-
cur in free flow. Instead, the first-order phase transition to
synchronized flow beginning at some density in free flow is
realized. The moving jams emerge only in synchronized
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flow. As a result, the diagrams of traffic patterns both for a
homogeneous road without bottlenecks and at on-ramps are
qualitatively different from those found in the fundamental
diagram approach. Kerner believes that a model within the
framework of three-phase traffic theory should be able to �at
least qualitatively� reproduce the empirical observed spa-
tiotemporal patterns.

In 2002, Kerner and Klenov developed a microscopic
model of the three-phase traffic theory, which can reproduce
empirical spatiotemporal patterns �27�. Later, microscopic
models based on three phase traffic theory have been devel-
oped, such as the Kerner-Klenov-Wolf �KKW� CA model
�19,28�, the CA model introduced by Lee et al. �29�, which
considers the mechanical restriction versus human overreac-
tion, the model proposed by Davis �30�, the model of Jiang
and Wu �31,32�, and the deterministic models proposed by
Kerner and Klenov �33�. As in empirical observations, these
models exhibit the sequence of F→S→J transitions leading
to wide moving jams emergence beginning from free flow. In
addition, the models show all types of congested patterns
found in empirical observations.

In this paper, we are going to propose another CA model
on the basis of the existing models in the framework of
three-phase traffic theory. We mainly consider the velocity-
difference effect on the randomization of vehicles in this
model. It will be shown later that the presented model is
equivalent to a combination of two CA models, i.e., the
KKW model �19,28� and the NS model with slow-to-start
effect �34�. This model can show both synchronized flow and
wide moving jams, which will be exhibited in the latter part
of this paper.

The rest of this paper is organized as follows. In Sec. II,
we describe our model. In Sec. III, simulations on roads
under both periodic and open boundary conditions are pre-
sented. In Sec. IV, we conclude.

II. THE MODEL

In this section we present our model. The main mecha-
nisms associated with three-phase traffic theory in this model
are embodied in the randomization process of vehicles. The
parallel update rules are as follows.

�1� Determining the randomization probability pn�t+1�
and the deceleration extent �v.

pn�t + 1� = �p0 when tst,n � tc,

pd when tst,n � tc,
� �1�

�v = �
a when tst,n � tc

�b− if �vn�t� � vn−1�t��
b0 if �vn�t� = vn−1�t��
b+ if �vn�t� � vn−1�t��

� when tst,n � tc.�
�2�

�2� Accelerating:

vn�t + 1� = min�vn�t� + a,vmax� .

�3� Braking:

vn�t + 1� = min�vn�t + 1�,dn� .

�4� Randomization with probability pn�t+1�:

vn�t + 1� = max�vn�t + 1� − �v,0� .

�5� The determination of tst,n:

tst,n = �tst,n + 1 if �vn�t + 1� = 0�
0 if �vn�t + 1� � 0� .

� �3�

�6� Vehicle motion:

xn�t + 1� = xn�t� + vn�t + 1� .

Here xn�t� and vn�t� are the position and velocity of ve-
hicle n at time t �here vehicle n−1 precedes vehicle n�, dn is
the gap of vehicle n, i.e., the distance from the head of ve-
hicle n to the tail of vehicle n−1, tst,n denotes the time that
vehicle n stops, and tc is a slow-to-start parameter. The fol-
lowing rank of the acceleration and deceleration parameters
are required:

b+ � a � b−. �4�

In the rules above, Eqs. �1� and �3� represent the slow-to-
start effect. Following the work of Jiang and Wu, it is ful-
filled by considering the stop times of vehicles. In our view-
point, the driver’s attention will be kept concentrated when
encountering short-time halt in traffic, but distracted after a
long time waiting. �For example, someone may read a news-
paper or even go out of the car. This is simulated by large
randomization.� So the slow-to-start would happen only with
a long stop time. The threshold parameter tc is set for this.
We will discuss on the effect of tc later.

On the other hand, Eqs. �2� and �4� describe the speed
adaptation effect. When the velocity is larger than the veloc-
ity of the leading vehicle, the driver will tend to overreact
when decelerating. The deceleration extent will be relatively
large, corresponding to the largest parameter b+. In order to
simulate the synchronized flow, Eq. �4� is sufficient and nec-
essary. As a result, when randomization occurs, the vehicle
will adjust its velocity close to the velocity of the leading
vehicle. This is consistent with the basic rules of the KKW
model �19,28�.

Actually, the presented model is equivalent to a combina-
tion of two existing CA models, i.e., the KKW model and the
NS model with slow-to-start effect. To show this, we con-
sider our model in the intermediate range of vehicle speed,
which are the most interesting for simulations of synchro-
nized flow. When vn�t�+a�vmax, vn�t�+a�dn, and tst,n� tc,
namely, there are no restrictions related to the maximum
speed vmax and the safe speed dn, respectively, and also no
slow-to-start rule, the updating rule of our model is

vn�t + 1� = vn�t� + �a − b− � 0 if �vn�t� � vn−1�t�� ,

a − b0 if �vn�t� = vn−1�t�� ,

a − b+ � 0 if �vn�t� � vn−1�t��
�

�5�

with probability pd or
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vn�t + 1� = vn�t� + a �6�

with probability 1− pd.
Equation �5� above is exactly the basic rule of the KKW

model when a=b0 and 	a−b−	= 	a−b+	. In this case, the
speed adaptation effect of three-phase traffic theory is auto-
matically taken into account. Synchronized flow could be
simulated due to these rules. It should be noted that the con-
dition a=b0 is not necessary for simulating synchronized
flow in our model �although we happen to adopt parameters
satisfying this condition when enumerating simulation re-
sults in the next part of this paper�.

On the other hand, Eq. �6�, also including the tst,n� tc
cases, corresponds to the NS model. Due to these rules, wide
moving jams can be simulated.

Thus in the presented model, the vehicle motion rules are
switched between the rules of the NS model and the rules of
the KKW model with probabilities. At a certain time, the
rules of the KKW model are adopted with probability pd, and
the rules of the NS model are adopted with probability 1
− pd. The “switching” of the rules from the KKW model to
the NS model can be regarded as an additional acceleration,
which provides equivalent effects as the “acceleration noise”
in the initial KKW model. On the other hand, the “decelera-
tion noise” in the KKW model can also be implemented by
setting the parameters as 	a−b+	� 	a−b−	. However, through
simulations we found it not absolutely necessary for repro-
ducing synchronized flow in our model.

The fundamental hypothesis of Kerner’s three-phase traf-
fic theory is that the equilibrium states �homogeneous and
stationary states, time-independent solutions in which all ve-
hicles move with the same constant speed� of synchronized
flow cover a two-dimensional region in the flow-density
plane �25,26�. In what follows, we will show the steady
states of this model cover a two-dimensional region in the
flow-density plane in a noiseless limit. Because the mecha-
nisms associated with the synchronized flow in this model

are all embodied in the randomization process, the noiseless
limit is taken as pd→1 rather than pd→0. In this case, the
updating rules of the KKW model are adopted. As shown in
Refs. �19,27�, the two-dimensional region of the equilibrium
states is restricted by three boundaries in the flow-density
plane: the upper �line U�, the lower �line L�, and the left �line
F� boundaries. Compared to the basic rule of the KKW
model, the only difference in the rules of our model is that
there does not exist such a parameter as the synchronization
distance D�v�, which describes the maximal distance at
which the vehicle takes into account the speed of the leading
vehicle when accelerating �19,27�. In other words, our model
can be regarded as a limit of the KKW model when D�v�
→�. As a result, the lower boundary L of the two-
dimensional region approaches the x axis.

As in the KKW model, the upper boundary U is deter-
mined by the safe speed of vehicles, which is determined by
the headway distance �in equilibrium states, we assume all
the vehicles have a uniform speed and headway distance�.
Thus the line U is determined by

v = d =
1

�
− l ,

where � is the density of vehicles and l is the length of a
single vehicle. Therefore, in the flow-density plane, the flux

JU��� = v� = 1 − �l

and the left boundary F corresponds to the free flow speed
vfree=vmax, thus

JF��� = �vmax.

The two-dimensional region of equilibrium states is re-
stricted by these three boundaries, as shown in Fig. 1.

FIG. 1. �Color online� The two-dimensional region of the equi-
librium states of synchronized flow in a noiseless limit, in which
pd→1. Assuming the length of a single vehicle is 7.5 m and the
maximum velocity is 37.5 m/s.

FIG. 2. �Color online� The fundamental diagram of our model,
obtained on a circular road by starting from two different initial
states: completely jammed states �low branch� and homogeneous
states �upper branch�. The dashed line CF belongs to the simulation
results for extremely large tc. When tc increases, point C moves
rightward along CF, until the synchronized branch covers the whole
segment BCF when tc is large enough �see text�.
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In the following section, simulations are carried out on a
road of 10 000 cells. Both periodic and open boundary con-
ditions are used. Each cell corresponds to 1.5 m and a ve-
hicle has a length of five cells. One time step corresponds to
1 s. The parameters are set as tc=7, vmax=25, pd=0.3, p0
=0.6, a=2, b−=1, b0=2, and b+=5.

III. SIMULATION RESULTS

In this section, simulations are carried out. We first show
the simulation results on a circular road with periodic bound-
ary conditions. Figure 2 shows the fundamental diagram of
the new model. Branch �A-B-C� is obtained from homoge-
neous initial states; and branch �D-E-F� is obtained from
megajams. Each data point is an average over 20 individual
runs with 2000 time steps for each run after 10 000 time
steps’ evolution. Hysteresis effect occurs in the diagram.

Three different phases of traffic, i.e., free flow �branch AB�,
synchronized flow �branch BC�, and jams �branch DEF� are
distinguished, and the first order transition �C to E� from
synchronized flow to jams is exhibited �see the double
Z-shaped characteristics of traffic flow in Chaps. 6 and 17 in
Ref. �4��.

The corresponding spatial-temporal patterns are shown in
Fig. 3. Figures 3�a� and 3�b� show the spatial-temporal char-
acters of free flow and synchronized flow �SP, see Chap. 7 in
Ref. �4��, respectively, and Fig. 3�c� exhibits the spontaneous
transition from synchronized flow to jams �namely, the so-
called GP, see Chap. 18 in Ref. �4��.

We investigate the effect of tc on the fundamental dia-
gram. The value of tc will influence the length of the syn-
chronized branch in the flow-density plane �i.e., the location
of point C in Fig. 2�, and the probability for jams to sponta-
neously occur in synchronized flow. With the increase of tc,
point C moves rightward along the dashed line CF in Fig. 2,

FIG. 3. The spatial-temporal diagrams of our
model on a circular road, all starting from homo-
geneous initial states. �a� The free flow phase
when �=0.08. �b� The synchronized flow phase
when �=0.4. �c� The synchronized flow sponta-
neously evolves into the jam when �=0.55.
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and the rest part of the upper branch �ABC� remains unal-
tered approximately. When tc is large enough, C approaches
F. At the same time, it becomes more and more difficult for
wide moving jams to spontaneously emerge in a homoge-
neous traffic. On the other hand, with the decrease of tc, C
moves leftward, and finally approaches B. The model re-
duces to a model similar to the velocity-dependent random-
ization �VDR� model �34� when tc is small enough.

Next we study the microscopic statistical characteristics
of the simulated synchronized flow. Time series obtained
through a fixed virtual loop detector are analyzed. First we
consider the autocorrelation function

ax�	� =

x�t�x�t + 	�� − 
x�t��2


x�t�2� − 
x�t��2

of the aggregated quantities x�t� �35�. The brackets 
…� in-
dicate the average over the whole series of x. In Figs.
4�a�–4�c�, the autocorrelations of one-minute aggregates of

the density, average velocity, and flow flux of a synchronized
state are shown. We can see the autocorrelations are all close
to zero, which means no long-range correlations exist. More-
over, Fig. 4�d� shows that the cross-correlation function

cxy�	� =

x�t�y�t + 	�� − 
x�t��
y�t��

�
x�t�2� − 
x�t��2�
y�t�2� − 
y�t��2

between density and flux vanishes in large time scale �35�.
Both functions exhibit characteristics of synchronized flow
�see Ref. �35�; neither the free flow nor the jams have zero-
valued correlation functions characteristically�. Figure 4�e�
shows the one-minute averaged flow-density diagram cover-
ing a two-dimensional region in the flow-density plane,
which is consistent with the fundamental hypothesis of three-
phase traffic theory �25,26�.

Next we show the simulated features induced by an on-
ramp under open boundary conditions. The open boundary
conditions are applied as follows. Assuming the left-most
cell on the road corresponds to x=1 and the position of the
left-most vehicle is xlast, a new vehicle with velocity vmax
will be injected to the position minxlast−vmax,vmax� with
probability qin, if xlast�vmax. The stop time tst of the newly
injected vehicle is set to zero. At the right boundary, the
leading vehicle moves without any hindrance. When the po-
sition of the leading vehicle xlead�L, in which L corresponds
to the position of the exit, it will be removed and the second
vehicle becomes the leader.

At the on-ramp, we adopt a simple setup. At each time
step, we scan the region of the on-ramp �xon−Lramp,xon� and
find out the longest gap in this region. If this gap is long
enough for a vehicle, then a new vehicle will be injected into
the cells in the middle of the gap with probability qon. The
velocity of the newly injected vehicle is set to equal the
velocity of its preceding vehicle, and the stop time is set to
zero. In this paper, we set xon=0.8L and Lramp=30.

With such an isolated on-ramp, this model can simulate
the congested patterns predicted by three-phase traffic theory.
Figure 5 is the diagram of traffic patterns induced by the
on-ramp. The qon-qin plane is divided into six regions, corre-
sponding to six different traffic patterns, shown, respectively,
in the spatial-temporal diagrams in Fig. 6.

In region I in Fig. 5, free flow covers the whole road. In
region II, a congested pattern occurs where synchronized
flow appears upstream of the on-ramp and wide moving jams
spontaneously emerge in the synchronized flow. This pattern
is named the “general pattern” �GP� as it contains both
phases �synchronized flow and wide moving jams� of the
congested traffic �see Chap. 18 in Ref. �4��. In the GP, syn-
chronized flows are bounded by a sequence of wide moving
jams. The downstream fronts of the jams move upstream
with a constant speed. The region of GP is continuously wid-
ening upstream. Spatial-temporal features of GP are shown
in Fig. 6�a�.

When qon is not so large, wide moving jams do not
emerge in synchronized flow. There is only synchronized
flow upstream the on-ramp. These patterns are called the
“synchronized flow patterns” �SP� �see Chap. 7 in Ref. �4��,

FIG. 4. �Color online� �a�–�c� Autocorrelation functions of one-
minute aggregates of local density, average velocity, and flow flux
of synchronized flow, respectively. �d� Cross-correlation function
between density and flux of the synchronized flow. �e� One-minute
averaged flux-density diagram corresponding to the synchronized
flow in �a�–�d�. The global density is �=0.14.
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consisting of three patterns corresponding to regions III, IV,
V in Fig. 5.

As Fig. 6�b� shows, in region III, the downstream front of
the synchronized flow is fixed at the on-ramp and the up-
stream front is continuously widening upstream. This pattern
is named the “widening synchronized flow pattern” �WSP�.
When the values of qon are within the intergrade between
WSP and GP, as in region IV in Fig. 5, another pattern called
the “dissolving general pattern” �DGP� occurs. In this pat-
tern, the transition from synchronized flow to jams occurs
inside the WSP. But it could not induce wide moving jams
sequences, but only a jamming area dissolving over time, as
Fig. 6�c� shows. As the outflow rate of the jam is smaller
than the capacity of the on-ramp system, free flow occurs
between the on-ramp and the downstream front of the jam.
The boundary between regions II and IV is a vertical line
which intersects x axis at the point pon,c. Upon this boundary,
the capacity of the on-ramp system equals to the outflow rate
of the jams.

A fourth congested pattern occurs in region V. As shown
in Fig. 6�d�, the downstream front of the synchronized flow
is also fixed at the on-ramp and no jams emerge in the syn-
chronized flow. However, in contrast to the WSP, the up-
stream front of this synchronized flow is not continuously
widening over time, but limited somewhere upstream of the
on-ramp. The whole synchronized region is localized near
the on-ramp. So this pattern is called the “localized synchro-
nized flow pattern” �LSP�. Figure 6�d� also shows that the
width of LSP, or say, the position of the upstream front of
LSP, depends on time and exhibits complex fluctuations with
large amplitude.

When qin is large and qon is small, a fifth congested pat-
tern occurs in region iv. Free flow emerges inside the syn-
chronized region. A spatially mixture of free flow and syn-
chronized flow covers the road �Fig. 6�e��. At a fixed position
on the road, one will observe alternative regions of free flow

and synchronized flow. Therefore, it is called “SP with alter-
nations of free and synchronized flow� �ASP�.

It should be noted that the boundaries in Fig. 5 are not
absolutely rigorous. In fact, near the boundaries, both pat-
terns could exist. Especially near the boundary between re-

FIG. 5. Diagram of traffic patterns induced by an isolated
on-ramp. Free: Free flow; GP: General pattern; WSP: Widening
synchronized flow pattern; DGP: Dissolving general pattern; LSP:
Localized synchronized flow pattern; ASP: Synchronized flow pat-
tern with alternations of free and synchronized flow.

FIG. 6. The spatial-temporal diagram of the congested patterns.
�a� GP, �b� WSP, �c� DGP, �d� LSP, �e� ASP. The parameter is �a�
qin=0.50, qon=0.30, �b� qin=0.50, qon=0.12, �c� qin=0.60, qon

=0.10, �d� qin=0.30, qon=0.20, �e� qin=0.60, qon=0.04.
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gions III and IV, both WSP and DGP could occur under the
same set of parameters. Different random seeds could exhibit
different patterns �i.e., WSP and/or DGP occur with certain
probability at given parameters near the boundary between
regions III and IV�.

Compared with the well-known results of the three-phase
traffic theory published before, the pattern diagram in Fig. 5
and the spatial-temporal patterns in Fig. 6 are all qualita-
tively consistent with the theory �4�. So we believe this
model is efficient and reliable in the framework of three-
phase traffic theory.

IV. CONCLUSIONS

In this paper, we have proposed a cellular automaton
model for traffic flow within the framework of three-phase
traffic theory. The velocity-difference effect on the random-
ization of vehicles is the most essential part of this model.
This model is found to be equivalent to a combination of two
CA models, i.e., the KKW model and the Nagel-
Schreckenberg model with slow-to-start effect. Due to the
rules of the KKW model, our model can show synchronized
flow. Due to the rules of the Nagel-Schreckenberg model,
our model can show

wide moving jams. With a certain probability, this model
switches between the rules of the KKW model and the
Nagel-Schreckenberg model, which provides equivalent ef-
fects as the “acceleration noise” in the initial KKW CA
model.

This model can reproduce synchronized flow, and mul-
tiple congested patterns induced by an isolated on-ramp. The
results are well consistent with the well-known results of the
three-phase traffic theory published before.

However, some other important features of traffic have
not been exhibited by this simple model. For example, the
first order transition from free flow to synchronized flow is
not reproduced. These features need to be investigated in
future work.
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