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Many complex systems may be described by not one but a number of complex networks mapped on each
other in a multi-layer structure. Because of the interactions and dependencies between these layers, the state of
a single layer does not necessarily reflect well the state of the entire system. In this paper we study the

robustness of five examples of two-layer complex systems: three real-life data sets in the fields of communi-
cation (the Internet), transportation (the European railway system), and biology (the human brain), and two
models based on random graphs. In order to cover the whole range of features specific to these systems, we
focus on two extreme policies of system’s response to failures, no rerouting and full rerouting. Our main
finding is that multi-layer systems are much more vulnerable to errors and intentional attacks than they appear

from a single layer perspective.
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I. INTRODUCTION

The robustness of a complex system can be defined by its
behavior under stress. There are two general categories of
such stress: errors—failures of randomly chosen components,
and attacks—failures of components that play a vital role in
the system. Recently, many complex systems have been suc-
cessfully described in terms of complex networks [1]. These
graphs may differ greatly in their response to failures. For
instance, “scale-free” networks (i.e., networks whose node
degree distribution is heavy-tailed [2]), such as the World
Wide Web, Internet, protein networks, ecological networks,
or cellular networks, exhibit remarkable robustness to errors
but, at the same time, they are very vulnerable to attacks
such as the removal of the most highly connected nodes
[3-6]. Subsequent studies of other attack strategies [7,8],
cascading failures [9,10], defensive strategies [9,11-14], and
vulnerability of weighted networks [15] gave us valuable
insight into the robustness of complex networks treated as
distinct objects. Many such networks, however, are only a
part of larger systems, where a number of coexisting topolo-
gies interact and depend on each other [16]. For example, in
the Internet, a graph formed by an application (such as
WWW or peer-to-peer) is mapped onto the IP network that
is, in turn, mapped onto a physical mesh of cables and opti-
cal fibers. The topology at each layer is different. Similarly, it
is convenient to view a transportation network as a two-layer
system, with a network of traffic demands mapped onto the
physical infrastructure. This layered view sheds new light on
the tolerance to errors and attacks of many complex systems.
In this paper we show that what is observed at a single layer
does not necessarily reflect well the state of the entire sys-
tem. On the contrary, a tiny, seemingly harmless (from one-
layer perspective) disruption of the lower layer graph may
destroy a substantial part of the upper layer graph making the
whole system useless in practice.

A framework for the analysis of layered complex net-
works was recently introduced in Ref. [16]. In a two-layer
case, the system consists of a weighted logical graph, G*
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=(VM,EM), and the underlying physical graph, G*=(V¢,E?).
The logical nodes, are a subset of physical nodes, V*C V.
Every logical edge, e*=(u*,v"), is mapped on the physical
graph as a physical path, M(e"), connecting the nodes u® and
v®, corresponding to u* and v*.

This layered framework allows us to study the robustness
of the entire system. Because logical edges are mapped as
physical paths that are usually longer than one hop, many
physical links serve more than one logical edge (see Fig. 1).
The failure of such a physical link affects all logical edges
that are mapped on it. In other words, failures at the physical
layer propagate to the logical layer and multiply. Moreover,
the resulting failures at the logical layer are strongly corre-
lated in time and space. These three features make the re-
sponse of a layered system to failures much more complex
than what is observed at a single layer.

II. DATA SETS

In order to gain more insight into the problem, we study
the behavior under stress of three examples of large layered
systems in fields as different as transportation, communica-
tion, and biology. In addition, we consider two artificial sys-
tems based on classic and power-law random graphs. Below
we present an overview of these five data sets in Table I and
describe each of them.

A. Railway

Our first data set, called Railway, is the European railway
system. It is extracted from timetables of 60 775 trains in
central Europe with the algorithm described in Ref. [17]. The
resulting physical graph reflects the real infrastructure that
consists of 4853 nodes (stations) and 5765 edges (rail
tracks). The logical graph contains 7038 edges, each con-
necting the first and the last station of a train. The logical
edge weight is the number of trains following the same route.
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FIG. 1. (Color online) (a) Illustration of failure propagation,
multiplication, and correlation in a two-layer system. A single fail-
ure in the physical graph results in three correlated failures in the
logical graph. (b) The system after a failure of ef’. The dashed lines
are valid only under the “full rerouting” scenario.

The route itself is the mapping of this edge on the physical
graph.

B. Gnutella

The second data set, called Gnutella, is an example of a
large peer-to-peer (P2P) application in the Internet. In a P2P
system, the links between users are virtual and are usually
created independently of the underlying Internet structure,
thus forming a very different topology. Due to its immense
size and dynamics, the existing maps of the Internet at the IP
level (i.e., where the nodes and IP routers are hosts) are very
incomplete. Therefore, we focus on its aggregated version,
where each node is an autonomous  system
(AS-usually an Internet service provider), and where edges
reflect the connections between the ASes. The topology of
the AS-level Internet is well known thanks to numerous In-
ternet mapping projects such as DIMES [18] and CAIDA
[19]. For our physical graph we take the 09/2004 topology
provided by CAIDA, which consists of 16911 nodes and
37 849 edges. For the logical graph we take a snapshot of the
Gnutella P2P network collected in September 2004 by the
crawler developed in Ref. [20]. It consists of around one
million users, connected by several million links. In order to
obtain the AS-level version of this network, we translated the
IP addresses of the users into the corresponding AS numbers.
All users with the same AS number are grouped in a single
node of the logical graph, and all links connecting the same
pair of ASes become one logical edge of weight equal to the
number of contributing links. As a result, we obtain an AS-
level logical graph of Gnutella with 1214 nodes and 31 193
edges. The mapping of each logical edge is defined by the
shortest path in the physical graph connecting its end-nodes.

C. Brain

Our third data set, called Brain, is a millimetric scale map
of the structural connectivity of the entire human brain. It
was inferred from a diffusion magnetic resonance imaging
(MRI) scan with the approach described in Ref. [21]. This
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methodology partitions the brain gray and white matter into a
set of compact regions of comparable size. There are 1013
regions in the gray matter and 3432 regions in the white
matter. Every region becomes a node in the physical graph
(i.e., |V?|=4445) and every gray matter region becomes a
node in the logical graph. The logical edges, E*, in this data
set reflect the fiber tracts (bundles of axons) connecting dif-
ferent gray matter regions. Each such tract, e, traverses the
white matter; the sequence of white matter regions on its
path defines the mapping, M(e*). At the physical layer, two
nodes are connected by a physical edge, e?, if they appear to
be directly connected (i.e., they are consecutive in the se-
quence of regions) in at least one mapping, M(e"). By this
procedure, we obtain a two-layer structure, where the logical
graph consists of the gray matter to gray matter connections
in the brain and is mapped on the physical layer that reflects
the axonal wiring used to establish these long-range
connections.

D. Two artificial models: ER on ER and BA on ER

As a reference point, we also study two artificial systems.
ER on ER is the classic unweighted Erdés-Rényi (ER) ran-
dom graph on top of another ER graph of the same number
of nodes. We consider only the largest connected compo-
nents of these graphs. The nodes in the logical and the physi-
cal layers are randomly paired. BA on ER is constructed in
the same way, except that the logical graph is now the
Barabdsi-Albert (BA) power-law random graph [2].

III. NO REROUTING VERSUS FULL REROUTING POLICY

Many real-life systems have mechanisms to partially or
fully recover from failures. For instance, the Internet consists
of several (seven) layers that are specified in the ISO/OSI
network model [22] (in practical implementations usually not
all the layers can be distinguished). Some of these layers,
e.g., the network layer with the IP protocol, attempt to find
an alternative path around a failing link or node. This re-
quires, among other things, the physical graph to be con-
nected. Finding an appropriate detour might be more difficult

TABLE 1. Two-layer systems analyzed in this article: Railway—
train traffic flows on top of the railway network of central Europe;
Gnutella—Gnutella P2P network on top of the AS level Internet;
Brain-long distance gray matter to gray matter axonal connections
in the human brain on top of the 3D lattice covering the white
matter; ER on ER—classic Erdos-Rényi (ER) random graph on top
of another ER graph; BA on ER-Barabdsi-Albert (BA) power-law
random graph on top of the ER graph. (/) is the average shortest
path length; (m) is the average mapping length.

Data set [V |E?| {1y [VM |EM (m)
Railway 4853 5765 53.8 2509 7038 9.9
Gnutella 16911 37 849 3.7 1214 31193 2.8
Brain 4445 20 967 9.1 1013 15369 10.3
ER on ER 2000 4000 5.7 2000 10000 5.7
BA on ER 2000 4000 5.7 2000 10000 5.7
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FIG. 2. Edge load distribution in the five studied systems: Railway (a), Brain (b), Gnutella (c), ER on ER (d), and BA on ER (e). The
main plots are in log;g—log;o scale (log;(-binned); the insets present the same distributions in log;o-linear scale (linear-binned).

in railway networks because, for a train, its entire path is
important, not only the end-points. Although it is sometimes
possible to slightly change the itinerary of the train or to
organize alternative means of transportation (e.g., a bus)
around the failing section, the common practice is to halt all
the trains that use it. In order to keep our analysis general
and to cover the whole spectrum of possible situations, in
this paper we study two extreme policies: no rerouting and
full rerouting. In the former case we immediately delete all
logical edges affected by a physical failure. In the latter case,
we delete an affected logical edge, ¢, only when there is no
path in the physical graph, G, between the end-nodes of e*
(i.e., end-nodes of ¢" belong to different components of G¢).
Otherwise, the logical edge, e, remains in the graph, and its
mapping is updated by the shortest path in G%. Consider the
example in Fig. 1. Under the no rerouting golicy, three logi-
cal edges are removed after the failure of e{ but as the physi-
cal graph G? is still connected, under the full rerouting
policy these three logical links can be rerouted and thus re-
main in the logical graph.

By studying the two extreme policies, no rerouting and
full rerouting, we also capture the specific features of our
three real-life data sets. For instance, in the railway system
each rail track has a limited capacity that cannot be ex-
ceeded. Therefore, even if we allow for rerouting, some
routes will be forbidden due to a possible overload. In the
Gnutella data set, the AS graph routing depends on the inter-
nal policy of involved ASes and peering relationships estab-
lished between the ASes [23]. This results in routes that are
not necessarily the shortest possible and makes some of the
routes invalid. These additional constraints imposed on the
Railway and Gnutella paths naturally limit below the full
rerouting level of the performance of these systems. Finally,
the brain also has some ability to reroute around broken con-
nections by activating parallel pathways; this is called plas-
ticity. For example, after a stroke in primary or secondary
motor cortices, some limb functions can be recovered in the
animal as well as in the human by recruiting alternative path-
ways [24,25]. However, these processes take substantial
time. Therefore, the brain response can be described as mov-
ing from a no rerouting policy just after the insult to a partial
rerouting policy during the recovery process.

In other words, all responses of real systems to physical
failures are located somewhere between the no rerouting and
the full rerouting policy.

IV. EDGE LOAD DISTRIBUTION

Before we simulate the effect of failures on our systems
directly, we try to roughly predict what will happen by study-

ing related distributions. In a layered system, every physical
node or edge can be characterized by the load. The load, /, of
the physical node, v?, or edge, e, is the sum of weights of
all the logical edges whose paths traverse v? (respectively,
¢?) [16]. The load becomes a very important parameter when
we allow for failures in the system. Clearly, the higher the
load of a failing physical component, the more it perturbs the
logical layer. If the load is distributed evenly in the physical
graph, a random failure will not be very different from an
intentional attack. Conversely, if the load distribution is very
uneven, the highly loaded parts become an obvious target for
an efficient attack. In Fig. 2 we present the load distribution
in the layered systems we study. In each case the distribution
is broad and heavily right-skewed (except perhaps ER on
ER). This means that there is a significant number of physi-
cal links that carry much more traffic than the other links.
Consequently, we can anticipate that an attack targeted on
the most loaded links will harm the system much more effi-
ciently than a random error.

V. SIMULATION RESULTS

In this section we simulate the error and attack scenarios
on the five studied systems. The results are presented in Fig.
3. Although the system responses differ in all five cases, they
share a number of common features:

(1) Attacks are much more harmful than errors. For ex-
ample, in Gnutella with no rerouting, half of the logical mass
(total edge weight) is erased after 22% physical edges ran-
domly fail, or after only 0.04% most loaded edges are at-
tacked. Although under the full rerouting policy this differ-
ence is smaller, we still need about 60 times more random
failures than attacks to achieve the same goal.

(2) When the system is attacked, the logical graph is usu-
ally affected much faster than the physical graph. For in-
stance, in Gnutella, an attack (with or without rerouting) on
5% of the physical edges hardly affects the physical graph—
the largest connected physical component covers almost the
entire original graph. At the same time, this seemingly un-
harmful attack deletes more than 95% of logical edges! We
obtain similar results when we consider the size of the largest
connected component in the logical graph as the measure of
robustness. (These results are not shown in Fig. 3 for better
readability.)

(3) The attack under the full rerouting policy affects the
physical graph more than under no rerouting. When rerout-
ing is allowed, the logical edges are deleted only when the
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FIG. 3. (Color online) Error and attack tolerance of five layered systems (rows). The first three are real-life data sets; the last two are
based on classic ER and power-law BA graphs. At each iteration we remove one physical edge, eg‘;l, either at random (error tolerance, left
column), or by choosing the most loaded one (attack tolerance, right column). In both cases we observe the size of the largest connected
component in the physical graph, G (triangles), and the total weight of the remaining logical edges, (circles). Every logical edge, e*, whose
mapping contains eg;l is deleted either directly (no rerouting, unfilled symbols), or only when there is no path in G% between the end-nodes
of e* (full rerouting, filled symbols). The results for ER on ER and BA on ER are averaged over ten realizations. Note that, in the case of
random errors, the largest connected physical component is not affected by the adopted policy (no-rerouting or full-rerouting). Therefore the
filled- and empty-triangle curves coincide for all figures in the left column. We draw only the empty-triangle curves for clarity.

physical graph gets partitioned. This, in turn, effectively re-
duces the size of the largest connected physical component.
This behavior can be explained by the example in Fig. 1.
Initially, the physical edge e? is used by three logical links. It
is the most loaded edge in the physical graph and, hence, it is
the first one removed by our attack. Now, under the no re-
routing policy, three logical edges are deleted. In what re-

mains, the most loaded physical edge is egl’. This edge is
removed in the second round of the attack, keeping the
physical graph connected. In contrast, under the full rerout-
ing policy, after the removal of e‘f’ the three affected logical
links are rerouted [see Fig. 1(b)]. Assuming that the new
routes follow shortest paths, the physical edge e? becomes
the most loaded and is removed in the second round of the
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attack. This efficiently splits the physical graph into two
components of three nodes each [27].

(4) Rerouting does not always help much. This is ex-
pressed by the proximity of the filled and unfilled circles
under attack in Fig. 3 (see, e.g., Railway and Gnutella). As
any real-life failure recovery policy falls between these two
extremes (no rerouting and full rerouting), such systems are
especially vulnerable to attacks.

(5) A heterogeneous logical topology makes the system
more vulnerable to attacks. This can be observed in the two
random-graph-based examples. As the node degree distribu-
tion of the BA graph follows a power-law, there is no typical
node (or ‘scale’) and, hence, BA on ER is a system with a
heterogeneous logical topology. In other words, there is a
non-negligible probability of existence of hubs (nodes of a
very high degree) in the BA graph. As we assume no corre-
lation between the logical and physical node degrees, in the
vicinity of such logical hubs the load of physical edges is
usually high. This makes the BA on ER system vulnerable to
attacks, which is reflected by the fast initial drop of both
circle curves in the last subfigure in Fig. 3. In contrast, the
degree distribution of the ER graph is concentrated around
the average value making it much more homogeneous. So
there are no hubs in the logical graph of ER on ER and the
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load is distributed more evenly. This can be observed in Fig.
2—with the same number of nodes and edges, the maximal
load in BA on ER is roughly three times higher than in ER
on ER. Consequently, ER on ER is more robust to attacks
than BA on ER.

To conclude, the response of a multi-layer system to fail-
ures is much more complex than what is observed at a single
layer. In particular, the logical layer is affected by physical
attacks much faster than the physical layer is. This is very
important because what ultimately counts in a multi-layer
system is the upper-most (i.e., logical) layer; it directly re-
flects the service provided by the system to its users, such as
trains, P2P application, and the long distance connections in
the brain.

This work is only the first step towards understanding the
behavior of layered systems under stress. There are numer-
ous aspects that require further investigation: What is the
effect of traffic locality, weight and load distribution, failure
correlation, or topological properties at the two layers on the
robustness of the system? Do there exist attacks even more
efficient than the one proposed in this paper? Is it possible to
significantly improve the resilience of a system, e.g., by add-
ing a relatively small number of physical or logical edges?
We are planning to address these issues in our future work.
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