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I. INTRODUCTION

Derivation of hydrodynamics from a microscopic descrip-
tion is the classical problem of physical kinetics. The
Chapman-Enskog �CE� method �1� derives the solution from
the Boltzmann equation in the form of a series in powers of
Knudsen number �, where � is the ratio between the mean
free path of a particle and the scale of variations of hydro-
dynamic fields. The CE solution leads to a formal expansion
of the stress tensor and heat flux vector in balance equations
for density, momentum, and energy. Retaining the first-order
term ��� in the latter expansions, we come to the Navier-
Stokes equations, while next-order corrections are known as
the Burnett ��2� and the super-Burnett ��3� corrections �1�.

However, as was first demonstrated by Bobylev for Max-
well’s molecules �2�, even in the simplest case �one-
dimensional linear deviation from global equilibrium� Bur-
nett and super-Burnett hydrodynamics violate the basic
physics behind the Boltzmann equation. Namely, sufficiently
short acoustic waves are increasing with time instead of de-
caying. This instability contradicts the H theorem, since all
near-equilibrium perturbations must decay. This creates dif-
ficulties for an extension of hydrodynamics, as derived from
a microscopic description, into a highly nonequilibrium do-
main where the Navier-Stokes approximation is inapplicable.

Recently, Bobylev suggested a different viewpoint of the
problem of Burnett’s hydrodynamics �3�. Namely, violation
of hyperbolicity can be seen as a source of instability. We
recall that Boltzmann’s and Grad’s equations are hyperbolic
and stable due to the corresponding H theorems. However,
the Burnett hydrodynamics is not hyperbolic which leads to
no H theorem. Bobylev �3� suggested to stipulate hyper-
bolization of Burnett’s equations which can also be consid-
ered as a change of variables. In this way hyperbolically
regularized Burnett’s equations admit the H theorem �in the
linear case, at least� and stability is restored.

Inspired by this study, in our recent paper �4� �referred to
as Colangeli, Karlin, and Kröger �CKK� hereafter�, we have
considered the simplest nontrivial example—a linearized
Grad’s moment equation in one spatial dimension—and

demonstrated that, upon a certain transformation, the exact
�to all orders in Knudsen number� hydrodynamic equations
are manifestly hyperbolic and stable. Thus, the first complete
answer to what is the structure of the extended hydrodynam-
ics was obtained.

In this paper, we extend the CKK result to three-
dimensional linearized Grad’s equations. In addition we
prove the existence of an H function. The paper is organized
as follows: In Sec. II, through a dynamic invariance principle
�6–8�, we derive equations of linear exact hydrodynamics. In
Sec. III we demonstrate that exact hydrodynamic equations
are manifestly hyperbolic and dissipative. Then, in Sec. IV
we stress explicitly how the stability of hydrodynamic equa-
tions, and therefore the existence of an H theorem, arises as
an interplay between these two basic ingredients of resulting
hydrodynamics: dissipativity and hyperbolicity. Finally, a
conclusion is given in Sec. V.

II. HYDRODYNAMICS FROM THE LINEARIZED GRAD
SYSTEM

A. Linearized Grad’s equations in k space

The 13-moment linear Grad system consists of 13 linear-
ized partial differential equations giving the time evolution
of the hydrodynamic fields �density �, velocity vector field u,
temperature T� and of higher-order distinguished moments:
five components of the symmetric traceless stress tensor �
and three components of the heat flux q �5�.

Point of departure is the Fourier transform of the linear-
ized three-dimensional Grad’s 13-moment system:

�t�k = − ik · uk, �1a�

�tuk = − ik�k − ikTk − ik · �k, �1b�

�tTk = −
2

3
ik · �uk + qk� , �1c�

�1d�

�tqk = −
5

2
ikTk − ik · �k −

2

3
q , �1e�
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�t�k = − ikuk
� ,

�tuk
� = − ik�k − ikTk − ik�k

� ,

�tTk = −
2

3
ik�uk

� + qk
� � ,

�t�k
� = −

4

3
ikuk

� −
8

15
ikqk

� − �k
� ,

�tqk
� = −

5

2
ikTk − ik�k

� −
2

3
qk

� �2�

and

�t�k
� = − ikekuk

� −
2

5
ikekqk

� − �k
�,

�tqk
� = − ikek · �k

� −
2

3
qk

�. �3�

Equations �2� and �3� are a convenient starting point to
derive closed equations for the hydrodynamic fields. To this
end, the CE method amounts to eliminating the time deriva-
tives of the stress tensor and of the heat flux in favor of
spatial derivatives of the hydrodynamic fields of progres-
sively higher order. It had already been noted earlier �8� that
we can express the stress tensor and the heat flux vector
linearly in terms of the locally conserved fields by introduc-
ing six, yet unknown, scalar functions A�k� , . . . ,Z�k� for the
longitudinal part,

�k
� = ikAuk

� − k2B�k − k2CTk, �4a�

qk
� = ikX�k + ikYTk − k2Zuk

� , �4b�

and, respectively, two functions D�k� and U�k� for the trans-
versal component,

�5a�

qk
� = − k2Uuk

�, �5b�

where the expressions for the longitudinal components share
their form with the one-dimensional CKK case. Note that the
functions introduced should be regarded as an exact summa-
tion of the CE expansion which amounts to expanding these
functions in powers of k2 and deriving expansion coefficients
from a recurrent �nonlinear� system; cf. CKK and �8�. We do
not dwell on this here since we shall use a more direct way to
evaluate functions A , . . . ,Z ,D ,U in the sequel.

Finally, using expressions �4� and �5� in Eqs. �2� and �3�
and denoting as xk= ��k ,uk

� ,Tk ,uk
�� the vector of the hydro-

dynamical variables, the equations of hydrodynamics can be
written in a compact form using a block-diagonal matrix
Mk,

�txk = Mkxk, Mk = �Mk
� 0

0 Mk
�� , �6�

with

Mk
� =�

0 − ik 0

− ik�1 − k2B� k2A − ik�1 − k2C�
2

3
k2X −

2

3
ik�1 − k2Z�

2

3
k2Y 	

�7�

and

Mk
� = k2D�1 0

0 1
� , �8�

where the unit matrix is written in an �arbitrarily� fixed basis
in the two-dimensional subspace of vectors uk

�. As follows
from an immediate comparison with CKK and due to the
apparently useful notation, the matrix Mk

� providing the evo-
lution of the longitudinal modes is exactly identical with the
corresponding matrix �denoted as M in CKK� for the one-
dimensional case, where lateral modes are absent. The twice-
degenerated transversal �shear� mode is decoupled from the
longitudinal modes. As a direct consequence, also the invari-
ance equations to be discussed next, which will provide us
with a set of nonlinear algebraic equations for the unknown
functions A–Z, divide into two subblocks which can be
solved separately.

B. Invariance equations

In order to evaluate functions A , . . . ,Z ,D ,U, we make use
of the dynamic invariance principle �DIP� �6–8�. Making use
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of the DIP in just the same way as for the one-dimensional
�CKK� case leads to two independent sets of invariance
equations for the functions A�k�–Z�k�. We find that the first
set �six coupled quadratic equations for A ,B ,C and X ,Y ,Z�
is identical to the one already presented; cf. CKK, Eq. �17�.

For the transversal modes, the invariance condition reads

��k
�

�uk
� · �− ikek · �k

�� = �t�k
�,

�qk
�

�uk
� · �− ikek · �k

�� = �tqk
�, �9�

where the time derivative on the left-hand side is evaluated
by the chain rule using �tuk

�. Substituting the functions �5�
into Eqs. �9�, and requiring that the invariance condition is
valid for any uk

�, we derive two coupled quadratic equations
for the functions D and U which can be cast into the follow-
ing form:

15k4D3 + 25k2D2 + �10 + 21k2�D + 10 = 0,

U = −
3D

2 + 3k2D
. �10�

Solution of the cubic equation �10� with the initial condi-
tion D�0�=−1 matches the Navier-Stokes asymptotics and
was found analytically for all k. This solution is real valued
and is in the range D�k�� �−1.04,0�, whereas U�k�
� �0,2.72�. The functions corresponding to the longitudinal
part of the system have been obtained numerically in CKK.
Because D and U are real valued, we show in Fig. 1 the real
parts for all coefficients, while their nonvanishing imaginary
parts still coincide with those shown in CKK, Fig. 4.

The dispersion relations ��k� for the five hydrodynamic
modes are then calculated by inserting these coefficients into
the roots of characteristic equation det�Mk−�I�=0, where
I is a 5�5 unit matrix. Analogously, the dispersion relations
for the remaining nonhydrodynamic modes follow from
eight �remaining� eigenvalues of �2� and �3� with �4� and �5�.
All 13 modes are presented in Fig. 2. The resulting hydrody-

namic spectrum consist of five modes: the acoustic mode
�ac�k� represented by two complex-conjugated roots, the
real-valued thermal �diffusive� mode �both modes already
occurring in the one-dimensional case�, and a twice-
degenerated real-valued shear mode �cf. Fig. 2�. The occur-
rence of a real-valued shear mode confirms a more general
result: in the linear regime, the shear mode never undergoes
damped oscillations. Same as in the one-dimensional case, a
critical point in the hydrodynamic spectrum occurs at kc

0.303, where the thermal mode intersects a nonhydrody-
namical branch of the original Grad system. Hence, same
conclusions hold here: for k�kc, the CE method does not
recognize any longer the resulting diffusive branch as an
extension of a hydrodynamic branch. Figure 2 further shows
the eight �all degenerated� nonhydrodynamic modes, which
in opposite to the one-dimensional case �offering two nonhy-
drodynamic modes� also exhibit a critical k at kc�
0.2175.

To summarize, exact hydrodynamics as derived from in-
variance condition �or, equivalently, by the complete summa-
tion of the CE expansion as demonstrated in CKK �cf. also
�8��� extends up to a finite critical value kc, in full agreement
with the one-dimensional case. No stability violation occurs,
unlike in the finite-order truncations thereof. Next, we ad-
dress the question about hyperbolicity of exact hydrodynam-
ics in the present three-dimensional case.

III. HYPERBOLICITY OF EXACT HYDRODYNAMICS

Distinguishing between the real �Rk� and imaginary �Ik�
parts of matrix Mk, Eqs. �6�, we can write the equation of
hydrodynamics conveniently as

�txk = �Rk − iIk�xk, �11�
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FIG. 1. Real parts of coefficients A–Z solving the invariance
equations, CKK �Eq. �17�� supplemented with �10�.
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FIG. 2. Dispersion relations ��k� for the linearized Grad’s sys-
tem using projected variables, Eqs. �2� and �3�. The five hydrody-
namic modes �diffusive, twice-degenerated shear, and two complex-
conjugated acoustic modes�, as well as the eight nonhydrodynamic
modes are presented as a function of k. While the acoustic mode is
complex valued for all k, the remaining modes become complex
valued beyond the two visible bifurcation points �at kc�
0.2175 and
kc
0.303� For k�kc� the nonhydrodynamic �three-dimensional�
modes are degenerated 2 and 4 times, respectively, corresponding to
the two and four components of qk

� and �k
�.
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Rk = �Re�Mk
� � 0

0 Mk
��, − Ik = �Im�Mk

� � 0

0 0
� .

�12�

The system �11� is hyperbolic and stable if we can find a
transformation of the hydrodynamic fields, xk�=Tkxk, where
Tk is a real-valued matrix, such that, for the transformed
matrices Mk=TkMkTk

−1, it holds that �i� Rk�=Re�Mk�� and
Ik�=Im�Mk�� are symmetric and �ii� all eigenvalues of Rk� are
nonpositive.

Due to the block-diagonal structure of Eqs. �6� as well as
to the fact that CKK has solved the problem of finding a
transformation with the desired properties for the one-
dimensional case, the transformation exists also in the three-
dimensional case and has the following form:

Tk = �Tk
� 0

0 Tk
�� , �13�

where Tk
� is explicitly given by CKK, Eqs. �25�–�27�, in

terms of k, A–C and X–Z, and

Tk
� = �1 0

0 1
� . �14�

Thus, the transformation Tk, Eq. �13�, symmetrizes Mk
and renders the exact hydrodynamic equations manifestly
hyperbolic. Furthermore, the transform Tk contains only even
powers of k, because the same is true for the coefficients
A–Z.

The five eigenvalues 	1–5 of Rk� �or, equally, of Rk� are

	1 = 0, 	2 = k2A, 	3 =
2

3
k2Y, 	4,5 = k2D . �15�

From the analysis of the previous section, where we
solved for coefficients A, D, and Y appearing in �15� �cf. Fig.
1�, it follows that all the eigenvalues 	1–5 are nonpositive for
all k. Note that the matrix Rk� is diagonal with the diagonal
elements �15�.

IV. H THEOREM FOR EXACT HYDRODYNAMICS

Finally, the hyperbolic structure straightforwardly implies
an H theorem for the exact hydrodynamics �the same holds
for any lower-order approximation, if they are obtained ac-
cording to the method presented in CKK�. Note that, due to
linearity of the system �1�, the choice of a proper H func-
tional is not unique. We follow Bobylev �3� and consider an
H function—in terms of the transformed hydrodynamic
fields—defined as

H =
1

2
� ���2�r,t� + u�2�r,t� + T�2�r,t��d3r . �16�

Here, hydrodynamic fields x��r , t� are defined through in-
verse Fourier transform of the fields xk�. Note that x��r , t� are
real valued because the real-valued transformation Tk is an
even function of k, Tk=T−k. Therefore,

H =
1

2
� ��k��−k� + uk� · u−k� + Tk�T−k� �d3k , �17�

which we abbreviate as H= 1
2 �xk� ,x−k� 
. Thus,

�tH =
1

2
��xk�,�tx−k� 
 + ��txk�,x−k� 
� = −

1

2
i��xk�,I−k� x−k� 


+ �x−k� ,Ik�xk�
� +
1

2
��xk�,R−k� x−k� 
 + �x−k� ,Rk�xk�
� .

�18�

Since Ik� is an odd function of k, I−k� =−Ik�, terms contain-
ing I� cancel out, and we have, owing to the fact that R� is
even function of k �R−k� =Rk��,

�tH = �
s=1

5 � 	s�xs,k� �2d3k 
 0. �19�

Thus, we have proved the H theorem for the exact hydrody-
namics for k�kc �at k=kc, the eigenvalues 	2 and 	3 become
complex valued, as discussed above�.

V. CONCLUSIONS

In this paper, we have considered derivation of exact hy-
drodynamics from a linearized three-dimensional Grad’s sys-
tem. The main finding is that the exact hydrodynamic equa-
tions �summation of the Chapman-Enskog expansion to all
orders� are manifestly hyperbolic and stable, thereby extend-
ing the previous CKK result �4�. The study supports the re-
cent suggestion of Bobylev on the hyperbolic regularization
of Burnett’s approximation. We have also demonstrated, by a
direct computation, the H theorem for the quadratic entropy
function.
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