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We study the effect of increasing the range of interactions on phonon relaxation in a chain of atoms with
quartic anharmonicity. The study is motivated by recent numerical studies, showing that the value of the
exponent « characterizing the divergence of conductivity with system size apparently depends on the presence
of second neighbor couplings. We perform a quantum calculation of the wave-vector (¢) dependent relaxation
rate I'(¢) in the second order perturbation theory. The nonanalytic dependence of I'(g) arises due to small-g
singularity of the collision integral. We find that I'(¢) < Ag>>+Bg. This gives rise to an asymptotic value a
=0.4, but the ¢* terms lead to a higher apparent value of « at small sizes of the chain.
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Anomalous behavior of thermal conductivity in one di-
mension has been studied quite intensively in recent years
[1]. Numerical studies on vibrational chains where nearest
neighbor atoms interact with cubic and quartic anharmonic
potentials [Fermi-Pasta-Ulam (FPU) chains] show that con-
ductivity « diverges with chain size N, the number of atoms,
as k~N%1,2]. In the early studies on chains with N of the
order of a few thousand, it was found that a=2/5, whereas
a recent study on a much larger (N~ 65 000) chain claims
a=1/3 [3]. The value of 1/3 is expected on the basis of a
renormalization group study due to Narayan and Ra-
maswamy [4], who considered a fluid system using hydrody-
namic equations. They found that for this system a=1/3, but
argued that the result applies generally to any system in
which conditions of local thermal equilibrium and momen-
tum conservation hold. Indeed, a numerical study on a gas of
hard spheres showed the divergence of x with a=1/3 [5].
However, conduction in a chain of coupled rotors [6] pre-
sents a counterexample: Conductivity approaches a finite
value in the large N limit as expected from the Fourier law.
The hydrodynamic consideration has been extended further
by Lee-Dadswell et al. [7], who argue for two classes of
behavior for the frequency-dependent conductivity x(w).
These classes are characterized by the low frequency behav-
ior of the longitudinal viscosity {(w). For systems in which
y=c,/c,#1,{(w)~w"* and then k(w)~w™? as 0—0.
This in turn leads to a=1/3. The other class of systems are
those for which y=1. Here {(w)— {, as w— 0 and this leads
to k(w) ~ w™"?, which in turn gives @=1/2. According to the
criteria given by Lee-Dadswell et al., vibrational chain with
cubic nonlinear potential belongs to the former class whereas
the chain with quartic nonlinear potential belongs to the lat-
ter class. In their own simulation of the quartic case, they
observed the predicted behavior for viscosity (w)— ¢, but
the conductivity did not show a single power law behavior.
Over a large range (w)~ 0 %8, which seems to become
o™ asymptotically as w— 0.

Numerical studies on other systems confuse the issues of
universality of the behavior further. For example, conductiv-
ity on the diatomic Toda lattice [8] yields a=0.4, while a
study that allows both transverse and longitudinal vibrations
[9] gives different exponents in different regimes of cou-
pling. In a recent work, we considered two variations of the
FPU problem [10]. In the first variation, we extended the
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couplings to the next-to-nearest neighbors (NNN) and found
that for a chain of a few thousand atoms « seems to depend
on the ratio 77 of NNN coupling to the nearest neighbor cou-
pling; as the value of # is increased, the value of « increase
from about 0.4 and seemingly saturates to a value =0.6 as 7
approaches unity. In the second variation, we considered a
ladder of two chains with interchain couplings and two-
dimensional vibrations of atoms and again found that «
~().6.

The analytic studies using classical dynamics for particles
have followed two routes. One is the mode-coupling proce-
dure in which one obtains a self-consistent equation for the
correlator G(g,7) of the normal mode of wave vector g
[11-13]. This approach shows that G(g,f) has a scaled form
which depends on the nature of the nonlinear potential in the
system [12,13]. For the cubic nonlinearity, G(q,?)
x ¢74'g(1g>?), whereas for the quartic nonlinearity G(g,1)
xe74'g,(1q%), where w, denotes the renormalized frequency
of vibration for the mode of wave vector ¢g. Thus, for the
cubic case, the relaxation rate I'(g) for the mode of wave
vector g goes as ¢'? implying a=1/3; whereas for the quar-
tic case I'(g) goes as ¢* implying a=1/2. These results
match with the analysis of Lee-Dadswell et al. [7].

The other route involves a detailed consideration of the
specific modes in the system and their scattering properties
to calculate relaxation times. The first such study is due to
Pereverzev [14], who formulated a classical Boltzmann
equation for the mode distribution function and made a study
of the collision integral for quartic nonlinear interaction
among the harmonic modes. The relaxation time was seen to
be divergent as the wave vector g of the mode vanishes, with
nonanalytic relaxation, I'(g) = ¢>>. We have recently done a
detailed study of the above model using quantum dynamics
for obtaining the conductivity of the chain directly as well as
the relaxation rates of the modes [16]. The results obtained
for I'(g) agree with those of Pereverzev and show that even
at low temperatures I'(g) o« T?¢"".

In this paper, motivated by the numerical result [10] for
the chain with NNN coupling, which shows a change in the
value of « as a function of NNN coupling strength (7), we
extend our calculation for the relaxation rate to this case. The
physical idea here is to examine the effect on the singularity
of the collision integral due to a change in the dispersion of
the modes. Our analytical result is limited to the situation
where 7 is small.
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We consider the system described by the following
Hamiltonian

N

1
H=2, 2_P1+V(x1 X)) + V(X = x40 |, (1)
=1

where V(x)=(1/2)mwix*+(g/4!)x*,m is the mass of the
atom, and x; and p, are the position and the momentum of the
atom, whose equilibrium position is /a. The system is studied
with the periodic boundary conditions. In terms of the usual
creation and annihilation operators for the modes, the Hamil-
tonian is written as

H= 2 wk< +akak> +m > vk, qp,s)AZAj[ApAS, (2)
k,q.p,s

where the units used are such that A=wy=a=1, and

(3)
Akzak+afk, (4)

) ~2 ~
Wi = O+ Ny, W=

v(k.q.p.8) = (Ve v, Yp vl N o, 0,0,

w)A(k+q—p-s),
(5)

Yy=1- e, (6)

* *
+ Yo Yo Yo Vo N0,

Furthermore, g is the dimensionless coupling constant and
A(g)=1 if g is an integer multiple of 27; otherwise, it is
Zero.

The phonon Green’s function is defined as

D(q,7) == (T[A,(DA_(0)]), D(iw,) = JD(T)e “nTd T,

)

where w,=27mn/f are the Matsubara frequencies and S the
inverse of temperature measured in units of fwy/ky. We use
the standard perturbation theory formalism [15] to calculate
the relaxation time, where the unperturbed Hamiltonian is
taken as [16]

. & L PN
Hy= > w i, + Evkz v(k,q,k,q) (i +A_ + 1) (A, + 7,
q a

+1), (8)

where ﬁq:aj;aq is the number operator. H, includes the har-

monic term as well as the diagonal part of the anharmonic
terms. The unperturbed energies and occupation numbers,
within Hartree-Fock approximation, are taken as

g
eqzwq+§\]§ v(k,q.k,q)ny, 9)

n,=n(e,) = 1/[exp(Be,) - 1]. (10)

The self-energy 2(q,iw,) and the relaxation time 7(g,w)
=I""!(g, w) are related to the Green’s function as

D(q’iwn) = 1/[D61(q’lwn) - E(Cj,l(x)n)],
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FIG. 1. Diagram for the second order contribution to the self-

energy 2(q,iw,). Solid lines represent bare phonon Green’s func-
tions D,.

I'(g,w) = - Imlim3(q,iw, — © +i6), (11)
6—0

where Dy(q,iw,)=-2¢€,/ (6621+wi) is the unperturbed propa-
gator. The self-energy is calculated up to second order and
the contribution to I'(¢,w) up to second order comes from
the diagram in Fig. 1. This contribution is calculated as

3O(g.iw,) =~ EE 0(q,k.p,)*Do(p,iw,)Do(k,iw;)

22
N B pks jm

XDy(s,iw, - iw, —iw;). (12)

The imaginary part of this self-energy on-shell is seen to be

s 2 o
(g, €)= gzwq(eﬁeq - I)F Ek V(q.p.k,s) ®,w,5,n(€,)
pok,s

Xn(e)[1+n(e)]A(g+s—k—p)de, + €~¢,
- Ek)’ (13)

where we have written

lv(q.k,p.s)* = &,8,&,6,V(B,, 8, @, 3,),
V(@ &, @y, @)
ltp(l+p@-a)d-a)(4-a) 4= o)
b(@,)b(&,)b(&)b(8,)

. (14

where b(@,)={1+n(4-@,)}'".

For the evaluation of Eq. (13) we work within the Bril-
louin zone (0,27r). The calculation requires finding the roots
of the argument of the & function making use of the A func-
tion. These two represent the energy and momentum conser-
vation in phonon collisions. For a general value of 7, it is not
possible to find an analytic solution. But for small 7, we can
obtain the solution to linear order in 7. We first make the
approximation on w,, as

w,= a1 +27cos*(g/2)]. (15)

When 7 is small, €, is proportional to w, at high tempera-
ture. This proportionality factor which scales I, is absorbed
into g. So the energy conservation can be satisfied as o,
+0,=0,+ w;. The momentum conservation within this Bril-
louin zone requires s=p+k—g+2mm with m=0,+1. For m
=0, the normal processes, energy conservation leads to s
=k,p=q or s=p,g=k which are diagonal terms that were
taken out to be included in the unperturbed Hamiltonian. So
the contribution from the normal processes is zero. For m
==+1, the Umklapp processes, energy conservation becomes
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sin(g/2) — sin(p/2) — sin(k/2) —sin[(p + k — q)/2]
=2 7{cos?(p/2)sin(p/2) + cos*(k/2)sin(k/2) — cos’[(p + k
—q)2]sin[(p + k—q)/2]}. (16)

The zero order solution obtained by putting 7=0 is
sin[ko/2—(g—p)/4]=cos[(qg+p)/4]tan[(g—p)/4]. To first or-

2

d
F(2>(q,eq) =20, (P - l)f z—pV(Gq,
T

0

where
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der in # solutions for k are obtained by putting k=k, in the
right-hand side (RHS) of Eq. (16) and is

sin[k/2 = (q — p)/4] = cos[(q + p)/4]tan[(q - p)/41{(q.p).

§(q,p)=l—6nsin<%)sin(§>[l—tanz(q;p)] (17)

Substituting this solution in Eq. (13), one obtains

51’az)n(wp)apn(wl)(;jl[n(w2) + 1]52, (18)

” J(q.p)
@, =2 sin[(g—p)/4]1{1-tan*[(g—p)/4]cos*[(g+p)/41*(q.p)} "> £cos[(q+p)/41L(q.p)),

with w1’2=51,2b(61,2).

J(gq,p) is the Jacobian of the argument of the & function, and is given by
J(g.p) = [3{cos(q/2) + cos(p/2)}? + sin(q/2)sin(p/2) + 7S1(q.p) + 7S2(q.p)]"*[2 + nS3(q.p)].
Si(g.p) =12 sin’[(q — p)/4]cos’[(q + p)/4]sin(g/2)sin(p/2){1 - tan’[ (g — p)/41},
S>(g,p) == 36 sin’[(q — p)/4]cos’[(q + p)/41sin*(q/2)sin*(p/2){1 - tan’[ (g — p)/4]}7,
S3(q.p) =1+3{1 =4 sin’[(q - p)/AJH{1 - 4 tan’[(q — p)/4]cos’[(q + p)/4]1{*(q.p)}.

The expression under the square root is non-negative for small 7. Consistent with the approximation of Eq. (15), we keep only
the leading order term of 7 in J. Then, in the high temperature limit, the ¢ dependence of I' is given by I'(g,€,) Gq(eﬁfq

-1)I(g), where

dp

2
f@= Jo [H{cos(q/2) + cos(p/2)} + sin(g/2)sin(p/2) + 7S, (q.p)]">

(19)

Note that the integral diverges at ¢=0. To study this divergence [14], it is convenient to make the substitution x=tan(p/2) in

Eq. (19). Thus

V1 + x%[cos(g/4) + x sin(g/4)]

I(g) = f“ dx
0

where

P(g,x)

VP(q,x)

: (20)

={[1 - cos(g/2)Px* + 8 sin(g/2)x> — 2 sin®*(g/2)x* + 8 sin(g/2)x + [ 1 + cos(q/2) *}[x*sin*(g/4) + 2x sin(g/2) + cos>(g/4)]

X[1 4 x%] + 24 7 sin(g/2){x*sin?(g/2) — 4x7sin(g/2) + [4 + 2 sin®(g/2) ]x* — 4x sin(g/2) + sin*(g/2) - x*cos(g/2)

+ 2x sin(g/2) + cos(g/2)].

To derive the nature of divergence at small g, we need to
retain only terms with the lowest power of ¢ in the coeffi-
cients of each power of x. Thus, for small g,

o] . .
1) J V1 +x7[1 + (¢/4)x + higher order terms in ¢]
q oC
0

VPy(q,x)
=1,(q) +qh(q), (22)
where
Po(q,x) = (¢°/1024)x® + (i -3¢’ x" + (2 +2479)g*xs
+ (4= 487)gx® + (§ +487)g>x* + (10 + 48 ) g
+4x% + 6gx + 4. (23)

It is easily seen that both ;(¢) and I,(¢q) diverge as ¢—0.

21

The divergence of I,(g) can be extracted by using the trans-
formation y=xg' [14]. Then
\"] + y

I(q) = 1/3f W
0(¢.y)

Po(q,y) = (g*1024)y® + (3 = 37)g*y" + (2 + 247)¢**°
+(4-487)y° + (2 +487)¢*y* + (10

+487)¢73y + 4y* + 6¢*3y + 4473, (24)
Now setting ¢=0 inside the integral,
1 [~ y
I(q)“—f dy—; (25)
PRy V- 48y 4 4y

and the integrand on the RHS is finite for <<1/12. Note that
this divergence is the same as for the nearest neighbor case,
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FIG. 2. Behavior of C(z). (a) For B/A=0, C(1)
decreases as %% (b) For B/A=1, at smaller

times C(f) ~r %% and at large values of r,C(r)
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even though the Jacobians involved are different. This leads
to rather different forms for the polynomials Py(g,x); for the
n+0 case, it is of four orders higher, but its ¢ dependence
and the numerator lead to the same exponent.

For I,(g), the divergence can be obtained using the trans-
formation y=xgq. Setting g=0 inside the integrand in a simi-
lar way, one finds

(" 1
I x—| d ’
24) qfo Y VE =39y  + (2 +249)y% + (4 - 487)y
(26)

The integral is again finite. Thus, as ¢— 0, the relaxation rate
behaves as

F(z)(q) =Aq”? + Bg*. (27)

In a strict power-law behavior one would expect I'(g) to be
proportional to ¢** multiplied by an analytic function. The
fact that it is different here suggests different relaxation be-
havior in different regimes of time. To understand the effect
on the divergence of conductivity qualitatively, we take
I'(g) to be the transport relaxation rate 7;1 in the following
formula for conductivity [17]:

d d *

K= f SoviCy f S, fo dtexp(-t/7), (28)
where C, is the mode specific heat and v, is the group ve-
locity of the mode with wave number g. Following the pre-
vious works [2,14], the N dependence of conductivity is ob-
tained by limiting the time integral to N/v, the time taken
by the mode with the largest relaxation time to traverse the

chain. Since the integral is dominated by the ¢g— 0 modes,
we may use constant values for specific heat and group ve-
locity in the integral. This leads to

NA/lv
K f dt C(1),
0

2
C(r) = f dq exp{-{¢°" + (BIA)q°]}. (29)
0

The behavior of C(7) is obtained numerically and is shown in
Fig. 2. For B/A=1, one notices that initially C(¢) decreases
with an exponent =0.573. Only at very large times does the
exponent become 0.6, the value obtained for B=0. So for
finite chains, as the integral for conductivity is limited by
NA/v,, the effective exponent o may depend on the value of
B/A. It is also noted that, for not so large times, the exponent
is =0.57 close to the asymptotic value of 0.6. So in the 7
—0 limit that we are working, we expect « to be close to
0.4, even for finite chains. In the numerical results [10], one
finds that for n<< 1, «a is close to 0.4. The calculation here
suggests that for small values of 7 the asymptotic value of «
is 0.4, but there are crossover effects which are important at
small sizes of chain. At larger values of 7, whether there is a
true change in the asymptotic value of « or the numerical
results reflect stronger size-dependent crossover effect is not
established by our calculation due to its limitation to small
values of 7.
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