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Interpretive and predictive tools are needed to assist in the understanding of cell invasion processes. Cell
invasion involves cell motility and proliferation, and is central to many biological processes including devel-
opmental morphogenesis and tumor invasion. Experimental data can be collected across a wide range of scales,
from the population scale to the individual cell scale. Standard continuum or discrete models used in isolation
are insufficient to capture this wide range of data. We develop a discrete cellular automata model of invasion
with experimentally motivated rules. The cellular automata algorithm is applied to a narrow two-dimensional
lattice and simulations reveal the formation of invasion waves moving with constant speed. The simulation
results are averaged in one dimension—these data are used to identify the time history of the leading edge to
characterize the population-scale wave speed. This allows the relationship between the population-scale wave
speed and the cell-scale parameters to be determined. This relationship is analogous to well-known continuum
results for Fisher’s equation. The cellular automata algorithm also produces individual cell trajectories within
the invasion wave that are analogous to cell trajectories obtained with new experimental techniques. Our
approach allows both the cell-scale and population-scale properties of invasion to be predicted in a way that is
consistent with multiscale experimental data. Furthermore we suggest that the cellular automata algorithm can
be used in conjunction with individual data to overcome limitations associated with identifying cell motility

mechanisms using continuum models alone.
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I. INTRODUCTION

Cell migration models have been typically constructed us-
ing either continuum [1-5] or discrete [1,6—13] approaches.
Continuum models describe population-scale properties
while discrete models describe cell-scale properties. We will
refer to a population-scale property as a property of a suffi-
ciently large group of cells. For example, the speed at which
a population of cells invades into unoccupied regions is a
population-scale property. We will refer to a cell-scale prop-
erty as a property attributed to a single cell. An example of a
cell-scale property is the trajectory of an individual cell
within a population of motile cells.

While some experimental observations of cell motility
and cell invasion are made exclusively at the population
scale [5], recent advances in microscopy such as the use of
confocal microscopy, time-lapse imaging, and magnetic reso-
nance imaging, mean that biological observations and mea-
surements can be made over a range of scales [14] including
individual cell-scale behavior [15-20]. Predictive tools rel-
evant to these kinds of multiscale observations cannot be
based on continuum or discrete models alone. What is re-
quired is an ability to simulate processes occurring over a
range of scales [14]. One way to achieve this is to understand
how individual interactions in a discrete model give rise to
emergent population-scale patterns [21].

Cell invasion is ubiquitous in many areas of cell biology,
including epidermal wound healing [2], tumor invasion [22],
and key events during developmental morphogenesis [4,5].
Cell invasion also occurs in vitro during a cell migration
wound healing assay [7] and in tissue engineering applica-
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tions [23]. Cell invasion involves a population of cells mov-
ing into previously unoccupied substrates or tissues and pro-
liferating to occupy these regions at a capacity density. This
requires two key cell functions: (i) cells are motile, and move
due to some mechanism such as an unbiased random walk,
and (ii) cells proliferate according to some carrying capacity-
limited proliferation mechanism, such as logistic prolifera-
tion. Carrying capacity-limited proliferation is sometimes
called contact-inhibited proliferation. The carrying capacity
density reflects cell crowding effects—cells proliferate when
the cell density is below carrying capacity but proliferation
ceases when the cell density reaches capacity density. The
domain on which the cells move and proliferate may itself
grow, for example, if the domain is a developing embryonic
tissue [24]. Carrying capacity-limited proliferation mecha-
nisms can also be used to simulate proliferation in this grow-
ing case. Here we focus on nongrowing domains. Continuum
models of cell invasion in nongrowing domains typically
support traveling wave solutions characterized by constant
shape, constant speed invasion waves [3].

During the last decade there has been increasing interest
in the use of discrete models for simulating cell motility in a
variety of contexts. Discrete models are formulated using a
number of approaches including the cellular Potts model
[10,12,13,25-29], individual or agent-based cellular au-
tomata (CA) [6,9,11,21,30-33], as well as transition prob-
ability rules that are related to, or extracted from, discretized
partial differential equations [1,8,34-36]. These approaches
have successfully replicated various cell motility phenomena
and some studies have included carrying capacity-limited
proliferation [7,37,38]. Less progress has been made toward
formulating and understanding discrete models of traveling
wave-type invasive systems and relating such discrete sys-
tems to their continuum analogs or relevant experimental
data.
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Our aim is to design, implement, and analyze a discrete
tool capable of replicating invasion phenomena. We will also
show how the discrete model can be used to overcome cer-
tain limitations associated with continuum invasion models,
and thereby illustrate how the discrete tool can be used to
contribute to biological knowledge. An archetypal example
of cell invasion occurs during the formation of the enteric
nervous system (ENS) during vertebrate embryogenesis. The
ENS formation is particularly attractive because of the large
amount of experimental data that has been collected for this
system. ENS development involves neural crest (NC) cells
invading the developing gut tissue as a unidirectional inva-
sion wave moving in a rostral-to-caudal (stomach-to-anus)
direction [17,18,20]. NC cells are motile and proliferate to a
carrying capacity density [39]. The cells differentiate into
neurons and glia to form the ENS which gives rise to normal
gut function and peristaltic contraction. Failure of the inva-
sion process results in Hirschsprung’s Disease, a relatively
common and potentially fatal human birth defect, where the
terminal intestine fails to produce peristalsis due to the ab-
sence of the ENS.

An important aspect of the approach taken in this work is
that experimentally motivated cell-based rules are identified
and implemented in the CA algorithm. Although it is pos-
sible to formulate individual transition rules from a dis-
cretized partial differential equation [1,7,8,34-36], this ap-
proach may not always be feasible, especially in situations
when it is unclear what kind of partial differential equation is
relevant. We anticipate that, with the increasing use of time-
lapse imaging, analysts must become more reliant on inter-
preting experimental data to formulate discrete rules. These
rules may not correspond to any known partial differential
equation. Therefore it is of interest to develop experimentally
motivated discrete rules and to investigate whether or not the
emergent population-scale behavior corresponds to any
known continuum results.

In this paper we present a CA algorithm which replicates
traveling wavelike invasion profiles. Two stochastic cell-
scale rules are introduced: (i) cell motility, governed by a
probability of motility P,, and a carrying capacity density «;
and (ii) carrying capacity-limited proliferation, governed by
a probability of proliferation P, and a carrying capacity den-
sity «. The speed of the invasion wave, denoted by c, is
measured and related to the CA parameters. The cell-scale
parameters are also related to equivalent population-scale pa-
rameters relevant at the continuum scale. In particular, we
identify estimates for a diffusivity D and mitotic index .
The diffusivity characterizes the cell motility and the mitotic
index characterizes the proliferation rate which is related to
the doubling time of cells [4]. CA simulations are performed
on a square lattice with unit lattice spacings and time is dis-
cretized into unit increments. For an arbitrary lattice with
spacing Ax and time steps Af, the appropriate dimensional
diffusivity and mitotic index are given by DAx?/At and
N/At, where D and M\ are the quantities established for the
unit lattice system. This allows us to connect the individual-
scale CA parameters with population-scale observations
through an expression for the CA wave speed that is similar
to established expressions for continuum models [40]. Ob-
servations of individual cell-scale properties are made by
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FIG. 1. (Color online) A suite of multiscale experimental obser-
vations of NC cell invasion. Time-lapse imaging in (a) shows the
population-scale rostral to caudal (left to right) progression of the
NC cell population in a mouse embryo. Two panels are shown with
time increasing down the page, the wave speed is approximately
35 um/h. Scale 100 wm. (Reprinted from Ref. [20], with permis-
sion.) (b) Individual NC cell trajectories at different locations
within the invasion wave of a chick embryo are traced and shown.
Scale 20 um. (Reprinted from Ref. [18], with permission.)

tracking cell trajectories within the wave. Various properties
of these trajectories are statistically quantified.

Recent experimental results associated with NC cell inva-
sion of the developing intestine are shown in Fig. 1. The
population-scale data [Fig. 1(a)] show a large population of
cells invading from left to right in an embryonic mouse gut.
Detailed cell-scale data [Fig. 1(b)] show individual cell tra-
jectories located in different positions along the invasion
wave in an embryonic chick gut. The CA algorithm will be
used to replicate both the cell-scale and population-scale ex-
perimental observations.

II. CONTINUUM INVASION MODEL

The archetypal continuum invasion model is Fisher’s
equation [3,40]. This model assumes cells are diffusively
motile with diffusivity D and proliferate logistically with mi-
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FIG. 2. (Color online) Diagram showing the two CA rules. Empty lattice sites are black while cells are either red (dark gray) or blue (light
gray). If a cell is motile it can transition to any of the nearest four neighboring sites with equal probability provided that the site is empty
and that the local density around the cell in the new location is not above carrying capacity. If an uncrowded cell with M = k is proliferative,
the daughter cells move into one of four configurations so that the two daughter cells move in opposing directions. Proliferation is terminated

if either of the selected sites is occupied.

totic index N to reach a carrying capacity density K. Fisher’s
equation, with a generalized logistic source term, can be

written as

ou Fu u |"

—=D——S+Aull-|— s (1)
ot ox K

where u(x,1) is the cell density, x is the spatial coordinate, ¢
is time, and m is a positive parameter (m=1 in Fisher’s equa-
tion). Here we consider space and time to be scaled with Ax
and At, respectively, so that the continuum parameters D and
A\ match the discrete CA parameters. Solutions of Eq. (1) on
—0 < x<<oo, starting with u(x,0) having compact support,
evolve into invasion waves moving with constant speed c,
where

c=2\\D. 2)

Other wave speeds with ¢ > 2\\D are possible for different
u(x,0) [3].

The dependent variable u(x,7) in Fisher’s equation repre-
sents the number of cells per unit length (cell density). This
continuum description is valid only for large numbers of
cells so that an averaged property of the population, such as
cell density, can be defined (see Bear [41] for a comprehen-
sive discussion). Fisher’s equation can replicate the
population-scale properties of invasion, such as the invasion
speed [4,5], as well as cell-scale data by discretizing the
equation and extracting cell-scale transition rules [1,7,36].

III. CELLULAR AUTOMATA ALGORITHM

The CA algorithm is developed on a rectangular lattice in
the x-y plane. Each lattice site can be occupied by only one
cell. We take unit lattice spacing so the coordinates (x,y) of
a site are integers. The lattice has the dimensions L, X L, so
that 0=x=L, and O0=y=L, and the site corresponding to
(0,0) is located in the lower left-hand corner of the lattice.
Periodic boundary conditions are imposed at y=0 and y

=L, so that a cell located at (x,0) appears at (x,L,) after
moving in the negative y direction, and a cell located at
(x,L,) appears at (x,0) after moving in the positive y direc-
tion. We impose these periodic boundary conditions since
NC cells move on the closed surface of cylindrical gut tis-
sues. Reflecting (zero-flux) boundary conditions are imposed
at x=0 and x=L, to represent the physical boundary at the
longitudinal ends of the substrate or tissue domain. For our
initial conditions (discussed in Sec. IV), the formation of an
invasion wave is insensitive to the details of the boundary
condition at x=0. We also choose L, to be sufficiently large
so that the invasion wave does not interact with the boundary
at the far end during the time of the simulation.

The relationship between the computational time step and
the real time step is governed by the proliferation parameter
P,. We assume, in the absence of any further detailed infor-
mation, that the proliferative properties of all cells simulated
in the CA algorithm are uniform. If the real dimensional time
taken for a cell to proliferate (the cell cycle time) is ¢,, then
P,=At/t, [23], where At is the real dimensional step size.
Since the proliferation parameter must satisfy 0=P,=1, we
require 0= Ar=t,. This means that the real time step cannot
be larger than the cell cycle time.

At any particular time 7, the system contains N(z) cells.
During each time step, N(z) random selections of cells are
made and these cells are given the opportunity to move ac-
cording to a motility rule. Other N(r) random selections are
made and the selected cells are given the opportunity to pro-
liferate. Once the 2 X N(z) selections have been made, the
system has advanced through one time step to time #+ 1. The
number of cells N(z+1) is adjusted to reflect birth processes
during that time step. This algorithm can allow any particular
cell to undergo more than one movement or proliferation in
any particular time step. The details of both the motility and
proliferation rules, summarized in Fig. 2, will now be dis-
cussed.

A. Motility rule

Two parameters are introduced to describe cell motility:
P, and «. Here, P,, is the probability that a cell will be
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motile with cell movements restricted to the four nearest-
neighbor lattice sites. We assume that cells are able to detect
which of their nearest eight neighbor sites are occupied by
other cells. We introduce « as the (integer) carrying capacity
density of the lattice with 1 = x=8.

Cell motility is based on an unbiased nearest-neighbor
random walk. To be consistent with experimental observa-
tions, cell motility will be modulated by neighbor exclusion
and crowding effects. A cell at (x,y) is selected and a random
number R is chosen from a uniform distribution on [0,1]. If
R>P,,, the cell remains at (x,y). If R=P,, the cell can
move, with equal probability, to (x+1,y) or (x,yx1). If the
selected site is occupied the movement is aborted. To limit
overcrowding, the number of neighbors M surrounding the
cell in the new location is determined. If M > k the move-
ment is aborted, otherwise the movement is allowed.

B. Proliferation rule

A cell is selected at random. If this cell has already moved
during the current time step then proliferation is aborted.
This rule is chosen to be consistent with time-lapse data
which suggest that NC cells cease moving just prior to mi-
tosis [20]. If a cell is chosen that has not moved during that
time step, a random number R is chosen from a uniform
distribution on [0, 1]. If R> P, the cell does not proliferate,
whereas if R= P, the cell may proliferate depending upon
the local cell density. The number of neighbors M occupying
the eight neighboring sites surrounding the cell is counted; if
R=P, and M = k the cell divides into two daughter cells.

Once a proliferative cell is identified, the location of the
daughter cells must be specified. Time-lapse imaging sug-
gests that when cells divide both daughter cells move in
opposing directions away from the site of the mother cell
[20]. If a cell at (x,y) proliferates, the daughter cells are
allowed to occupy one of four configurations with equal
probability: (1) (xx1,y); (ii) (x,yx1); (iii)
(x=1,y=1), (x+1,y+1); or (iv) (x=1,y+1), (x+1,y—1). If
the chosen configuration contains an occupied site then pro-
liferation is aborted.

C. Crowding, cell removal, and cell-cell interactions

The cell crowding and cell-cell interaction principles de-
scribed in the motility and proliferation rules have been se-
lected to be consistent with properties thought to be relevant
to ENS development. A standard discretization of Fisher’s
equation implies that cells will be removed from the system
whenever the local density rises above the carrying capacity
density [7]. Removal of cells implies that cell death is
present [42]. Experimental observations of ENS develop-
ment reveals no evidence of cell death [43]. Therefore care
must be taken to ensure cell removal is not simulated with
the discrete rules. We note that the proliferation rule can
generate a local vicinity where the local density is greater
than « if k<8, but in this case further proliferation and
motility into this localized region is suppressed.

If a carrying capacity density is not incorporated into the
motility rule, all simulations lead to invasion waves where
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FIG. 3. (Color online) A single realization of the population-
scale dynamics of an invasion wave simulated with the CA algo-
rithm for P,=0.25, P,,=0.15, and k=4. Results in (a) and (b) show
two snapshots of the wave at t=400 and 800, respectively. These
diagrams show both the position of the individual cells on the lat-
tice and the distribution of N, the normalized number of cells per
column, plotted against the distance along the longitudinal axis of
invasion x. The direction of invasion is indicated by the arrows. A
space-time diagram is given in (¢) for 0=r=1000 with the color
bar representing the number of cells in each vertical column of the
CA lattice.

the invaded region is almost entirely occupied by cells. To
circumvent this, the cell motility rule only allows cell move-
ment where the new location of a motile cell is less than or
equal to a specified carrying capacity density. This rule al-
lows the CA algorithm to generate invasion waves of varying
density without the need for simulating cell removal. The
robustness of the CA algorithm to these details will be dis-
cussed in Sec. VI

IV. WAVE SPEED ANALYSIS

The CA rules were realized on a narrow two-dimensional
lattice with L,=500 and L,=10 with the net invasion direc-
tion in the positive x direction. A wide range of parameters
were considered with all parameter combinations resulting in
constant speed invasion waves such as the example shown in
Fig. 3. Simulations are initiated by randomly seeding the
region 0 =x=10 and 0=y =10 at carrying capacity density.
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The CA rules were allowed to evolve over 1500 time steps.
This amount of time was chosen because it was sufficient to
enable the formation of constant speed invasion waves. If a
specific biological example is considered, then the time steps
and lattice dimensions must be chosen according to the con-
text. The location of the wave front was determined by
counting the number of cells in each vertical grid column.
The wave front was defined as the x coordinate of the first
column, counting from the right, where the number of cells
per column equaled or exceeded H. Results are insensitive to
H; all results presented here correspond to H=3. Results are
also relatively insensitive to the height of the domain L.

The time evolution of the wave front was measured 40
times for each parameter combination to generate a suitable
set of wave speed data. The mean wave speed was deter-
mined in two ways. First, the wave speed was estimated for
each of the 40 realizations, and these estimates were aver-
aged to give the mean wave speed. Second, at each time
point, the average position of the leading edge of the 40
simulations was evaluated and these data were used to deter-
mine the mean wave speed. Both approaches gave similar
results. All results reported here were obtained using the first
method. The variability of the wave speed estimates among
the 40 simulations was measured using the standard devia-
tion, o, of the sample. Results are presented as a mean wave
speed c only. Values of the ratio o/c were small, with typical
values <15%. This variability is qualitatively consistent with
experimental observations of invasion speed data which also
show some variability [20].

General trends and quantitative relationships between the
mean wave speed ¢ and the CA parameters were investigated
using 125 different combinations of parameters (k=4, 5, 6,
7, and 8; Pp=0.05, 0.10, 0.15, 0.20, and 0.25; and P,
=0.05, 0.10, 0.15, 0.20, and 0.25). In all, 5000 simulations
were performed as each parameter combination was simu-
lated 40 times. A striking feature of the results is that the
wave speed is insensitive to «. Figure 4(a) shows the mean
wave speed plotted against P,. Three groups of data corre-
sponding to three different values of P,, are shown. Within
each of these groups, five profiles are shown corresponding
to different values «. Similar results are shown in Fig. 4(b)
where the data are plotted against P,, and the data grouped
by P, and . These data show that the wave speed is insen-
sitive to variations in « while depending strongly on P,, and
P,. Comparing the slope of the profiles in Figs. 4(a) and 4(b)
shows that ¢ is more sensitive to variations in P, than P,
These outcomes are consistent with some properties of the
analogous continuum result for Fisher’s equation [Eq. (2)],
namely the wave speed is independent of the capacity den-
sity and increases with the motility (D) and proliferation (\).
To confirm the apparent insensitivity to « the entire data set
was grouped by « and the observed distributions are shown
in Fig. 4(c) as box plots. The box plots indicate that the
median and interquartile range of the observed distributions
of ¢ are similar regardless of k. These data suggest that the
CA wave speed may be given by

c= anP,i. (3)

The coefficients are determined using nonlinear regression
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FIG. 4. (Color online) A summary of wave speed results from
the CA algorithm showing how the mean wave speed ¢ depends on
the three CA parameters P,, P,, and «. Results in (a) show the
mean wave speed plotted against P,,. The data are presented in three
groups of varying P,, with different colors corresponding to differ-
ent P,,. Within each of these groups, five profiles are shown for
different values of carrying capacity density k=4, 5, 6, 7, and 8.
Similarly, the results in (b) show the mean wave speed plotted
against P,,. The data are presented in three groups of varying P,
with different colors corresponding to different P,. Within each of
these groups, five profiles are shown for different values of carrying
capacity density k=4, 5, 6, 7, and 8. Box plots in (c) show that the
distribution of mean wave speed data is insensitive to .

algorithms in MATHEMATICA giving «=0.68, £=0.70, and
5=0.20 (R*=0.98).

In summary these results show that the motility and pro-
liferation rules in the CA algorithm give rise to constant
speed invasion profiles. This is consistent with known
population-scale patterns of invasion, such as the invasion
wave shown in Fig. 1(a). This relationship is Fisher-like in
the sense that the wave speed is independent of the carrying
capacity density. The CA wave speed is more sensitive to the
proliferation parameter than the motility parameter, whereas
the wave speed for Fisher’s equation is equally sensitive to
the motility and proliferation parameters.
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V. CONNECTING THE CELL-SCALE AND POPULATION-
SCALE PARAMETERS

Our results have shown that the population-scale mean
wave speed is reliably predicted by Eq. (3). This relationship
has similarities to the analogous result [Eq. (2)] for con-
tinuum invasion models. Further relationships between (i)
the individual motility rule and a nondimensional
population-scale diffusivity D, and (ii) the individual prolif-
eration rule and a nondimensional population-scale mitotic
index N will now be deduced.

A. Mitotic index

To relate the individual proliferation parameters to
equivalent population-scale parameters, a series of computa-
tional experiments was performed on a square lattice with
2500 lattice sites. All simulations are performed in the ab-
sence of motility (P,,=0) with a range of parameters (xk=4,
5, 6,7, and 8 and P,=0.05, 0.10, 0.15, 0.20, and 0.25). The
initial condition is a randomly seeded lattice with 1% of sites
occupied. The CA rules were allowed to evolve until the total
number of cells reached a steady value. The CA population
density is U(r)=N(r)/2500, where N(z) is the number of cells
at time step t.

In continuum invasion models, the most common form of
carrying capacity-limited proliferation is the logistic model.
A generalized logistic model is given by

duldt = u(1 = [w/K]"), u(0)=1u, (4)
which has the solution
I\ =In(ulug) + (1/m)In([K™ — ug J/[K" — u™]). (5)

The discrete proliferation rule will now be related to the
logistic model. CA simulations were performed 40 times for
each parameter combination and the results were used to
construct various density evolution profiles U(z). For each
parameter combination, the U(r) data were averaged to create

an ensemble density profile 0(1‘). The population-scale ca-

pacity density K was estimated as K=U(w). The U(z) profile
was fitted to Eq. (5); an example ensemble profile is given in
Fig. 5(a), showing that the CA data can be described by the
logistic equation. Four logistic curves are shown for varying
values of the power m. The shape was best captured with
m<1; in particular we found that m=1/5 provided a good fit
for all simulations. The population-scale parameter X was
estimated using the regression algorithms in MATHEMATICA.
Data for all parameters are summarized in Fig. 5(b) showing
a clear linear relationship between the individual prolifera-
tion rule and the equivalent population-scale parameter,

N=A(m)P,, (6)

where the proportionality constant A(m) is dependent on the
power m. The CA data show that A(1/5)=1.28, A(1/3)
=0.84, A(1/2)=0.63, and A(1)=0.52 with m=1/5 providing
the best fit to the data. This expression shows that the equiva-
lent population-scale description of the CA proliferation rule
is independent of the capacity density since results for vari-
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FIG. 5. (Color online) Establishing a relationship between the
cell-scale carrying capacity-limited proliferation rule and the
population-scale logistic model. An ensemble of CA results with
P,,=0 is given in (a) showing the time evolution of the averaged
CA density U(t) (solid line) and several fitted logistic models (dot-
ted lines). Four fits are given for m=1, 1/2, 1/3, and 1/5 with the
direction of decreasing m indicated by the arrows. A summary of all
results over a wide range of CA parameters is given in (b) showing
various relationships between P, and N for different values of m.
Four straight line fits are given for m=1, 1/2, 1/3, and 1/5 with the
direction of decreasing m indicated by the arrow. In each case vari-
ous results are superimposed for various CA carrying capacities;
k=4 (circles), k=5 (diamonds), k=6 (squares), k=7 (triangles),
and «=38 (stars). All results show a linear relationship between the
mitotic index N and the CA proliferation parameter P,. This rela-
tionship is independent of .

ous « follow Eq. (6), as illustrated in Fig. 5(b). We note that
a small value of m in Eq. (5) is required to obtain a good fit
to the CA data; however, certain difficulties were observed
using very small values m=1/10 since the values of du/dt
in Eq. (5) change very rapidly in time requiring high-quality
data. Nonetheless, our results with m=1/5 provide a good
match.

B. Diffusivity

The invasion simulations involve an unbiased random
walk of cells modulated by cell-cell interactions. We antici-
pate that this rule can be described and parametrized with a
nonlinear diffusivity. To estimate the diffusivity, simulations
were performed on a lattice with L,=L,=100 in the absence
of proliferation (P,=0). The lattice was randomly seeded
with various background densities of U=0, 0.2, 0.4, 0.6, and
0.8 and in each case the diffusivity was estimated for three
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FIG. 6. (Color online) Establishing a relationship between the cell-scale nearest neighbor random walk rule and a diffusivity. An example
trajectory is shown in (a) with a background density of U=0.4, carrying capacity k=6, P,,=0.15, and P,=0. The trajectory is shown over
5000 time steps with initial location (50, 50). The time evolution of x(z) (blue or dark gray) and y(z) (red or light gray) is given in (b). These
data correspond to the trajectory in (a). These trajectories behave as x(f)=y(r)=0.042¢ (R*=0.99), giving D=0.021. An ensemble of
simulations for varying background densities and P,, for k=8 and P,=0 are given in (c) with five profiles corresponding to different
background densities of 0, 0.2, 0.4, 0.6, and 0.8. The arrow shows the direction of increasing U. An ensemble of simulations for varying
background densities and P,, for k=4 are given in (d) with four profiles corresponding to different background densities of 0, 0.2, 0.4, and

0.6. The arrow shows the direction of increasing U.

carrying capacity densities k=4, 6, and 8. For each simula-
tion, a cell was placed at (50,50) and the CA rules were
evolved over 5000 time steps. This procedure was repeated
for a range of P,, (P,,=0.05, 0.10, 0.15, 0.20, and 0.25). The
evolution of the square of the displacements of the tagged
cell was recorded:

x(0)=2 (—xe): YO =2 =y (D)
k=1 k=1

where x; and y, are the coordinates of the tagged cell at time
k. In all simulations x(z) and y(z) evolved linearly in time.
The slopes of x(z) versus ¢ and y(r) versus ¢ correspond to
2D, where D is the diffusivity [7,44].

An example of a random walk used to extract the diffu-
sivity data is given in Fig. 6(a) where the simulation was
performed with a background density of U=0.40 with pa-
rameters k=6 and P,,=0.15. The time evolution of x(r) and
y(r) is given in Fig. 6(b). Results for a wide range of P, x,
and U are summarized in Figs. 6(c) and 6(d) showing that
the diffusivity is a decreasing function of the background
density. This is expected since the background cells impede
cell movement due to cell-cell interactions. Comparing Figs.
6(c) and 6(d) shows that the diffusivity increases with « for
U>0. This is physically consistent with the discrete rules

since transitions are less likely to occur for lower k owing to
cell-cell interactions and crowding effects. Note that results
are not provided for k=4 and U=0.8 since the tagged cell
did not move in these simulations. Overall these results in-
dicate that cells located at the extreme front of an invasion
wave will be more motile than their counterparts well behind
the wave front which have a larger number of neighbors and
a higher local cell density.

The diffusivity data can be summarized in the form of a
density-dependent relationship D=G(U, k) with dG/dU<0.
Continuum invasion models with nonlinear nondegenerate
decreasing diffusivity and a general logistic proliferation
term [Eq. (4)] give rise to invasion waves moving with a
minimum speed of ¢=2AD(0) [4], where D(0) is the diffu-
sivity at zero cell density. Accordingly, to describe the CA
wave speed we are interested in the estimates of D(0) that
are given by the top red curve in Figs. 6(c) and 6(d). Note
that the relationship between D(0) and P,, is the same re-
gardless of « since there are no cell-cell interactions in this
case. The relevant relationship between the CA proliferation
rule and the diffusivity is given by

D(0)=0.25P,,. (8)

This result is intuitive since transitions on a unit lattice in
uncrowded regions will occur with one-quarter the total
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probability of motility since the motility is unbiased. The
functional relationship between the individual parameters P,
and P, and a population-scale diffusivity and mitotic index
(6) and (8) can be substituted into the wave speed relation-
ship [Eq. (3)] to give an equivalent relationship between the
population-scale CA wave speed and the relevant population-
scale parameters. This procedure illustrates that it is possible
to identify how the individual rules in the CA algorithm in-
teract to emerge into a well-defined and predictable pattern at
the population level.

In summary, we have shown that the CA algorithm pre-
dicts well-known properties of invasion that are associated
with continuum invasion models. Namely, it is possible to
prescribe individual CA rules which emerge into constant
speed waves of invasion. The relationship between the wave
speed and the individual-scale parameters can be deduced
through computational experimentation. This procedure
demonstrates the ability of the CA algorithm to reproduce all
forms of data that can be extracted from a continuum inva-
sion model. We will now discuss certain limitations of con-
tinuum invasion models and show how we can make further
use of the CA algorithm by extracting finer cell-scale data
which are not available from continuum models. This addi-
tional data can assist in overcoming some of the difficulties
in using continuum models to describe invasion processes.

VI. POPULATION-SCALE REDUNDANCY

The CA algorithm is designed to simulate general inva-
sion processes, yet it can be easily modified to account for
certain application-specific features. For example, specific
crowding and cell-cell interactions (Secs. IIT A and III B)
were introduced to reflect known properties of the NC cell
invasion system. Additional simulations under modified con-
ditions, for example, allowing cell removal when the local
density rises above capacity density (that is, M > k), shows
that these details are unimportant with regard to the genera-
tion of constant speed invasion waves. We have found that
altering the motility mechanism by introducing various
forms of biased cell movements also leads to constant speed
invasion waves. This was achieved by making transitions in
the positive x direction more likely than transitions to the
negative x direction. In particular, we experimented by intro-
ducing both uniformly biased movements as well as various
forms of density-dependent bias rules. The wave speed for
these modified conditions can also be analyzed in terms of
the population-scale relationship given by Eq. (3) with dif-
ferent parameters «, 3, and 6.

A similar redundancy is observed in continuum invasion
models. Recent numerical and perturbation analyses of a
range of continuum invasion models with different motility
mechanisms concluded that the formation of constant speed
invasion waves is insensitive to the particular motility
mechanism and that it is the carrying capacity-limited prolif-
eration mechanism which largely controls this aspect of the
system [4]. Several plausible models with different motility
mechanisms can all be parametrized to fit experimental wave
speed data. For example, Fisher’s equation assumes that cells
move according to a linear diffusion motility rule and yield
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traveling wave solutions moving with speed ¢« D%3, where
D is the diffusivity. A chemotaxis continuum model also
yields traveling wave solutions, which move with speed
coc "3 [45], where x is the chemotactic sensitivity. There-
fore it is possible to apply both models and calibrate values
of the motility coefficients by fitting data to the expression
for the wave speed c. While it is possible to calibrate a range
of continuum models to match experimental wave-speed data
[2,4,23], this does not necessarily provide a comprehensive
understanding of the details of the motility mechanisms in
the invasion system.

Population-scale properties such as the traveling wave
speed do not provide sufficient information to identify the
details of the motility mechanism in an invasion system.
These limitations can be overcome if additional cell-scale
data can be extracted from mathematical models. Discretiz-
ing continuum partial differential equations introduces mul-
tiple cells on lattice sites—this is inappropriate if the lattice
spacing corresponds to the dimensions of a cell, or alterna-
tively means that an intermediate-scale and not a cell-scale
approach is being used. Furthermore, standard continuum in-
vasion models implicitly permit cell death [7], which may be
inappropriate for some applications. Discrete CA models do
not have these limitations, since they do not have to corre-
spond to any partial differential equation. CA models can be
used to identify additional cell-scale properties of the system
which can be sensitive to the choice of cell motility rules.
Additional information, such as tracking individual cell tra-
jectories, is available from a cell-based CA model, and al-
lows a more detailed probing of active mechanisms and in-
teractions inside the invasion wave.

VII. USING THE CA ALGORITHM TO LOOK INSIDE
AN INVASION WAVE

Recent experimental analyses of NC cell invasion have
involved labeling either a subset of NC cells within the wave
[17,18] or labeling the entire NC cell population [20] and
performing time-lapse imaging of the system as the invasion
proceeds. These experiments were used to extract cell-scale
data and in particular to track individual NC cell trajectories
within the invasion wave. The most recent results, presented
by Druckenbrod and Epstein [18], give details of the indi-
vidual NC cell trajectories as a function of position within
the invasion wave. This level of detail cannot be captured by
standard continuum models. The ability of the CA algorithm
to replicate this kind of cell-scale phenomena will now be
demonstrated.

To track individual trajectories within the CA algorithm, a
series of computational experiments, demonstrated in Fig. 7,
were performed. Results were generated for a dense (xk=38)
and less dense (k=4) invasion wave. These waves were
given sufficient time to establish a constant speed invasion
profile. The algorithm was halted and two cells within the
wave were tagged. To be consistent with experimental re-
sults, we tagged the most advanced cell (trajectory 1) and a
second cell close behind the wave front (trajectory 2), as
shown in Fig. 7. The tagged cells follow the same rules as
the background cells. The system was allowed to evolve and
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FIG. 7. (Color online) The cell-scale dynamics are demonstrated with a single realization of the CA algorithm with P,=0.15, P,
=0.15, and x=4. A profile of the invasion wave is given in (a) showing the left to right progression of the population. The simulation was
halted at this particular time and two cells were tagged with green (trajectory 1) and blue (trajectory 2) dots which have been enlarged for
ease of visualization. Trajectory 1 is associated with the most advanced cell, while trajectory 2 is slightly behind. The CA simulation
progressed for 200 time steps to produce the profile in (b). The trajectories of the tagged cells over the 200 time steps are given in (c).

the trajectories of the tagged cells were tracked.

The individual trajectory simulations were repeated 40
times with the same initial condition to generate a suite of
trajectory data from which ensemble properties can be mea-
sured. Results are presented for k=4 only, as there were no
major differences between these results and those with «
=8. Displacement vectors, given in row (a) of Fig. 8, repre-
sent the total displacement for each of the 40 simulations
over 200 time steps. This time interval was chosen to ensure
that the position of the wave front relative to the tagged cells
did not change dramatically over the time period. For ex-
ample, a cell at the leading edge should remain relatively
close to the leading edge during the time interval. Total dis-
placement is the difference between the final and initial po-

sitions of the tagged cells. Statistical information about the
direction of displacement is given in row (b) as a histogram
of directions showing the frequency of movements in a par-
ticular direction. The CA data are presented in this way to be
consistent with the experimental direction frequency data of
Young er al. [20] (although this experimental work recorded
the position of the leading cell rather than the position of a
uniquely tagged cell). Note that there are not 40 unique dis-
placement vectors shown in each diagram in row (a) of Fig.
8. There are two reasons for this: (i) in some realizations
there is no net cell movement, and (ii) the displacement vec-
tors for some realizations are identical to the displacement
vectors in other realizations meaning that some displacement
vectors are indistinguishable.

Trajectory 2

/2

(a) —ﬁ/z

Trajectory 1

/2

—T/2

FIG. 8. Trajectories 1 and 2
correspond to the most advanced
cell and a cell in the wave front,
respectively (see Fig. 7). All re-
0 sults are generated with P,=0.15,
P,=0.15, and k=4, a suite of 40
simulations was performed. Re-
sults in row (a) show the displace-
ment vectors of the tagged cells
indicating both the displacement
and direction of the cell trajectory

6=0.01r p=0.27

§=-0.07x

over 200 time steps. Note that the
polar diagrams have different

p=0.41

12 12

scales. Results in row (b) show
= the frequency of movement in
various directions for the 40 real-
izations. The mean direction # and
polarization p are given to quan-
tify directional trends.

021918-9



SIMPSON et al.

Certain properties of the trajectory data can be described

statistically. The mean angle of the sample 6, as defined by
Fisher [46], is evaluated for each data set. It is convenient to

define the mean angle to be in the interval —7 << 6= with

6=0 parallel to the positive x axis. Highly aligned data will
have the directions of the individual trajectories clustered

around the @ direction. If the data are not highly aligned the
directions of the individual trajectories will not be clustered

around 6. A measure of alignment about the mean angle is
given by the polarization p, which can be written as [46,47]

1 N
= 21" 9)

where x; are the individual unit direction vectors, |-| is the
vector magnitude, and A is the sample size. This measure
lies in the range 0 =p=1 with p=1 corresponding to a per-
fectly aligned group with all vectors pointing in the direction
of 6, and p=0 is a group with a large distribution of angles.
As noted by Fisher [46] the quantity (1—p) is similar to the
variance of univariate data.

The individual trajectory data show that trajectory 2 un-
dergoes much smaller displacements than trajectory 1. This
is because the movement of cells behind the wave front is
impeded by cell-cell contact. This is consistent with the pre-
vious measurements of diffusivity where our experiments
showed that cell motility decreased with increasing cell den-
sity. Although individual isolated cells make unbiased tran-
sitions, it is not clear whether the cell-cell interactions might
bias the movement of cells within the wave or whether the
bias might depend on the position of a cell within the wave.
The data show that the cell associated with trajectory 1 is

more likely to move in the 6 direction as the polarization
values indicate that the data for trajectory 1 are more aligned
with the mean direction compared with the data for trajectory
2. This indicates that the CA rules predict that cells at or near
the wave front follow trajectories which are biased in the
direction of the net invasion. This outcome is qualitatively
consistent with experimental observations made by Drucken-
brod and Epstein [18]. The degree of polarization observed
in this kind of computational experiment can be modified by
using different variations on the motility rule.

VIII. CONCLUSION

We present and investigate a computational tool to repli-
cate both the population-scale and cell-scale properties of
invasive cell populations. The CA algorithm combines an
individual cell motility rule with a carrying capacity-limited
proliferation rule devised according to biologically plausible
observations of cell invasion.

The CA algorithm predicts a wave of invasion moving
with constant speed, which is consistent with well-known
continuum results and experimental observations. The rela-
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tionship between the population-scale pattern of invasion and
the CA parameters is deduced to give an expression for the
wave speed analogous to that associated with continuum
models. Both the discrete and continuum relationships for
the wave speed increase with the motility and proliferation
rate of cells while being independent of the carrying capacity
density. Therefore we have made a connection between the
cell-scale and population-scale processes replicated by the
CA algorithm. Subtle differences between the continuum and
discrete wave speed expressions are observed. The analyti-
cally derived wave speed for Fisher’s equation is equally
sensitive to the motility and proliferation parameters since
cx\'2D'2_ while the discrete fitted wave speed is more sen-
sitive to the proliferation parameter than the motility since
cx\""1D'5 The exponents in the latter expression are em-
pirical values derived from our simulations. The values of
these exponents depend on the choice of rules in the CA
algorithm.

Similar to continuum invasion models, we find that the
carrying capacity-limited (contact-inhibited) proliferation
rule in the CA algorithm largely controls traveling wavelike
behavior of the system since the invasion waves are rela-
tively insensitive to the details of the cell motility mecha-
nism. This redundancy poses a major limitation on the use of
population-scale properties alone to deduce mechanisms
from experimental data. Continuum models only produce
population-scale properties and therefore always suffer from
this limitation. The CA algorithm has the advantage that ad-
ditional cell-scale data can be collected and compared with
experimental data to assist in deducing the mechanisms driv-
ing invasion. Our CA algorithm permits individual cell tra-
jectories to be tracked and the properties of these trajectories
to be quantified. Consequently the CA algorithm replicates
both population level and cell-scale experimental data, pro-
viding an opportunity to match multiscale experimental data.

Our approach of devising experimentally motivated indi-
vidual CA rules is advantageous over extracting individual
rules from a discretized partial differential equation. We rely
solely on experimental observations and avoid making un-
derlying assumptions about a partial differential equation de-
scription of the invasion process. This approach is broadly
applicable to various applications including wound healing,
tissue engineering, and tumor invasion. We anticipate that
with the increasing use of time-lapse data in cell biology,
theoreticians must embrace the idea of extracting relevant
cell-scale rules to build predictive and interpretive models of
biological processes.
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