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Theoretical investigation of finite size effects at DNA melting
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We investigated how the finiteness of the length of a sequence affects the phase transition that takes place at
the DNA melting temperature. For this purpose, we modified the transfer integral method to adapt it to the
calculation of both extensive (partition function, entropy, specific heat, etc.) and nonextensive (order parameter
and average separation between paired bases) thermodynamic quantities of finite sequences with open bound-
ary conditions, and applied the modified procedure to two different dynamical models. We characterized in
some detail the three effects that take place when the length of the sequence is decreased, namely, (i) the
decrease of the critical temperature, (ii) the decrease of the peak values of all quantities that diverge at the
thermodynamic limit but remain finite for finite sequences, like the specific heat and the correlation length, and
(iii) the broadening of the temperature range over which the transition affects the dynamics of the system. We
also performed a finite size scaling analysis of the two models and showed that the singular part of the free
energy can indeed be expressed in terms of a homogeneous function. However, Josephson’s identity is satisfied
for none of the investigated models, so that the derivation of the characteristic exponents which appear, for
example, in the expression of the specific heat requires some care.
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I. INTRODUCTION

According to Ehrenfest’s definition, small systems do not
exhibit phase transitions. Indeed, instead of a sharp peak or a
discontinuity at some well-defined temperature, systems with
finite size show a more or less smooth hump extending over
some finite range in the temperature evolution of the specific
heat. In some sense, this broader feature can be considered as
the finite system analog of a phase transition. This led
Proykova and Berry, for example, to interpret a structural
transition in TeFg clusters as a second-order phase transition
[1]. Of course, the study of the dependence of the thermody-
namic quantities on the size and/or the particle number of the
system is the most common way to decide whether a transi-
tion in a finite system is the actual precursor of a phase
transition in the corresponding infinite system [2]. However,
some authors have tried to provide more formal definitions
of phase transitions in finite systems, which are based on
either the inspection of the shape of the calorimetric curve
[3-5] or the density of complex zeros of the canonical parti-
tion function [6-9].

The melting of DNA sequences, that is, the separation of
the two strands upon heating, is a phenomenon which lends
itself quite naturally to the investigation of finite size effects
because sequences with very different lengths, ranging from
a few base pairs to tens of thousands of them, can be syn-
thesized on demand. Investigation of the melting of DNA
homopolymer pairs (i.e., of sequences whose strands are
composed of a single type of base) turns out to be particu-
larly enlightening, because it appears as a genuine first-order
phase transition [10], while that of natural (inhomogeneous)
sequences occurs in multiple steps and is highly sensitive to
the details of the sequence [11,12]. It was recognized very
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early that the broadening of the transition upon decrease of
the sequence length is accompanied by a decrease of the
melting temperature (see, for example, Fig. 5 of Ref. [13]).
Since that time, a similar behavior has also been observed in
the melting of more complex systems, like polylactides [14]
and hybrids of DNA and oxypeptide nucleic acids [15].
Semiempirical formulas, which are used, for example, by
online oligonucleotide property calculators, generally con-
sider that the melting temperature of a DNA sequence with N
base pairs varies as —820/N if 13=N=50 and as -500/N if
N>50. While slightly different relations are sometimes fitted
against experiments [16], the 1/N dependence at large N is
usually conserved.

The reasons that the evolution of the melting temperature
as a function of the sequence length has been so thoroughly
characterized are certainly that (i) the knowledge of the melt-
ing temperature is of practical and primary importance for
many investigations, and (ii) the melting temperature is eas-
ily determined with all methods that are currently used to
uncover the properties of DNA denaturation, like uv absorp-
tion spectroscopy around 260 nm, circular dichroism spec-
troscopy, differential scanning calorimetry [17,18], Raman
spectroscopy [18], and electrophoretic mobility assays
[19,20]. In addition, experimentalists also characterized the
evolution of thermodynamic parameters as a function of the
length of the sequence by differential calorimetry and uv
absorption spectroscopy (see, for example, Refs. [17,21,22]),
and investigated more specific points, like the persistency of
intermediate states (i.e., metastable states with large bubbles)
down to very short sequences with 13 =N=48 [23,24] (note
that the ability of the models used in this work to display
these metastable states is still subject to controversy [25,26]).

The purpose of the present work is to complete these ex-
perimental results by proposing a theoretical description of
the melting transition of sequences with a finite number N of
base pairs. The shift in the melting temperature will, of
course, be discussed, but we also investigated the behavior
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with decreasing N of extensive thermodynamic quantities,
like the entropy and the specific heat, as well as the average
separation between paired bases and the correlation length.
These studies rely on two models which describe DNA se-
quences as one-dimensional chains. The first model is due to
Dauxois, Peyrard, and Bishop (DPB) [27]. These authors
showed that the introduction of an anharmonic contribution
in the interaction term between successive base pairs, the
effect of which is to lower this interaction at large separa-
tions of the paired bases, leads to a sharper and hence more
realistic denaturation of the sequence than the model origi-
nally suggested by Peyrard and Bishop [28]. Joyeux and
Buyukdagli (JB) [29] recently proposed an alternative
model, which takes into account the fact that stacking enthal-
pies between successive base pairs are necessarily finite [30],
and also displays a sharp first-order transition at the thermo-
dynamic limit of infinitely long chains. Note that both the
DPB and JB models can be extended to take into account
additional (torsional) degrees of freedom [31,32] but that the
simplest versions of the models have been considered in this
study.

In Ref. [33] we used the transfer integral (TT) method
[34,35] to investigate the critical properties of both the DPB
and JB models, that is, to calculate the critical exponents at
the thermodynamic limit and check the validity of the four
scaling laws which connect the six fundamental exponents
(see also Ref. [36] for an older attempt to evaluate the critical
exponents). We showed that the Rushbrooke and Widom
identities, which rely on the hypothesis that the free energy
can be described by a single homogeneous function, are sat-
isfied, while the Josephson and Fisher identities are not. We
argued that this is probably due to the divergence of the
average distance between paired bases at melting, which in-
validates the assumption that the correlation length is solely
responsible for singular contributions to thermodynamic
quantities [33].

In the present work, we again used the TI method to es-
timate the temperature evolution of the entropy, the specific
heat, the correlation length, and the average base pair sepa-
ration for decreasing values of N. This, however, required
substantial improvement of the procedure used in Ref. [33],
because the latter is valid only at the thermodynamic limit of
infinitely long chains. To this end, we extended the transfer
matrix approach for open chains developed by Zhang et al.
[35] to adapt it to the practical calculation of the correlation
length and the average separation between paired bases. To
get a better insight into the melting dynamics of finite se-
quences, we also checked to what extent these systems are
amenable to finite size scaling analysis. Finite size scaling
theory was developed by Fisher and Barber [37] in the early
1970s as a tool to analyze the volume dependence of critical
phenomena and in particular the associated rounding of criti-
cal singularities and the shift in the critical point. It has also
been used as an alternative way to determine the critical
exponents that characterize a phase transition. Among the
dozens of systems exhibiting first- or second-order phase
transitions that have been studied by finite size scaling
theory, let us mention the five- [38,39] and six-dimensional
[40] Ising models and percolation models [41,42]. Like the
derivation of the scaling laws, finite size scaling theory relies
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on some kind of homogeneity assumption. Since the validity
of such assumptions was shown to be questionable in the
case of infinitely long DNA sequences [33], it is necessary to
check thoroughly their validity for finite size sequences.

The remainder of this paper is organized as follows. The
DPB and JB models are briefly described in Sec. II, while the
derivation of the TI formulas we used to calculate the ther-
modynamic properties of finite chains is sketched in Sec. III
and the Appendix. Results dealing with the rounding of the
DNA melting transition and the applicability of finite size
scaling theory to this system are finally presented and dis-
cussed in Sec. IV.

II. NONLINEAR HAMILTONIAN MODELS FOR DNA

The Hamiltonians of the two DNA models whose critical
behavior is studied in this paper are of the form

N 2
H:E{&+VM(yn)+W(ynvyn—l)}v (1)

n=1 2m

where y, is the transverse stretching of the hydrogen bond
between the nth pair of bases, while the one-particle Morse
potential term

Vi () = D(1 = e mn)? (2)

models the binding energy of the hydrogen bond. The choice
of the nearest-neighbor interaction potential W(y,,y,_;) is
crucial, since the shape of the transition, which is a collective
effect, depends primarily on its form. The DPB model [27]
assumes that the stacking interaction between two successive
base pairs is of the form

K .
WO ynt) =5 0= Vo) 2(1 + pe=Ontyn-Dy - (3)

This nonlinear stacking interaction has the particularity of
having a coupling constant which drops from K(1+p) to K as
the paired bases separate. This decreases the rigidity of the
DNA chain close to the dissociation and yields a sharp, first-
order transition.

The JB model [29] instead assumes that

AH o 2
WOmynn) == (1 -e bOn =37 + Ky (v = vaot)?s ()

where the first term describes the finite stacking interaction
and the second one the stiffness of the phosphate-sugar back-
bone. Note that the constant K, that appears in Eq. (4) is
2000 times smaller than the harmonic coupling K of the DPB
model and that one just needs to plug into Eq. (4) the stack-
ing enthalpies AH determined from thermodynamic calcula-
tions [30] to describe inhomogeneous sequences.

Numerical values of the parameters used in this work are
those of Refs. [29,36], that is, D=0.03 eV, A)=4.5 A™!,
@=0.35 A7, K=0.06 ¢V A2, and p=1 for the DPB model,
and D=004 eV, A,=445 A~l, AH=044 eV, K,
=107 eV A2, and »=0.10 A2 for the JB model.
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III. TRANSFER INTEGRAL METHOD FOR FINITE
CHAINS WITH OPEN BOUNDARY CONDITIONS

In order to correctly describe the DNA melting transition,
one should take into account, in addition to the nonlinear
Hamiltonians discussed in the previous section, the dissocia-
tion equilibrium S, «<»2S which properly governs the separa-
tion of the two complementary strands (S) when the last base
pair of double-stranded DNA (S,) opens [11,43]. The
S, 28 equilibrium is generally ignored when calculating
the partition function Z of all sequences except for “very
short” ones close to the melting transition. The reason is that
for sequences which are not too short the fraction of intact
hydrogen bonds between complementary bases goes from 1
to almost O at the denaturation temperature without the two
strands completely separating: the few remaining bonds in-
deed prevent the two strands from parting. In contrast, for
very short sequences the processes of single bond disruption
and strand dissociation take place in the same temperature
range, so that inclusion of the S, <« 2S equilibrium is essen-
tial to describe the melting transition correctly. The limit of
very short sequences appears to lie around N=100 or 200
[44,45]. As a consequence, calculations aimed at determining
nearest-neighbor stacking interactions from the melting tem-
peratures of large sets of sequences containing fewer than 20
base pairs should take this equilibrium into account [46]. The
S, 2S equilibrium will, however, be disregarded in the
present work, which focuses on sequences with N=100 at
temperatures smaller than the critical one.

The partition function Z of double-stranded DNA can be
expressed as

Z= J dyldyz"'dyNeXp<— BE[VM(ynHW(yn,yn_])]),

&)
where B=(kgT)~' is the inverse temperature. The transfer
integral method is a technique for efficiently computing Z.
For this purpose, one first defines the TI kernel

K(ymyn—l) = exp{— B[VM(yn)/z + VM(yn—l)/2 + W(ymyn—l)]}

(6)

and expands it in an orthonormal basis

K(pyn1) = 2 NP3 P(3-1). (7)

where the {®;} and {\;} are the eigenvalues and eigenvectors
of the integral operator and satisfy

J dx K(x,y)®;(x) = N ®@y(y). (8)

For sequences with N base pairs and periodic boundary con-
ditions (yy=y,), the partition function Z can be rewritten in
the form

N
Z=fdy1dyz'”dyNH Ky Yuo1)- 9)

n=1
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By substituting the kernel expansion of Eq. (7) into Eq.
(9), one gets

Z=2\V, (10)

which at the thermodynamic limit of infinitely long chains
(N — ) reduces to Z=)\11V , where \| is the largest eigenvalue
of the integral operator. This simple expression of the parti-
tion function was used in Ref. [33] to calculate the critical
exponents of infinitely long homogeneous DNA sequences at
denaturation and check the validity of the associated scaling
laws. For the sake of a safer comparison with real systems,
the analysis below, however, deals with sequences with open
boundary conditions, i.e., no special condition is imposed on
the first and last base pairs of the sequence. Instead of Eq.
(9), the partition function Z must be expressed in the form

Z= f dydy, -+ dyye PO V2K (y) y))

XK(y3sy2)'"K(yN9yN—1)e_'BVM('VN)/2~ (11)

To evaluate this expression, let us introduce, as in Ref.
[35],

a;= f dy e PR (y). (12)

By substituting the kernel expansion of Eq. (7) into Eq. (11),
one gets

Z:Ea?)\f\’_l, (13)

which is the counterpart of Eq. (10) for sequences with open
ends. At that point, one is able to calculate all extensive
thermodynamic quantities of finite sequences with open
boundary conditions. For example, the free energy F, the
entropy S, and the specific heat Cy, are straightforwardly ob-
tained from

F=-kgTIn(2),
oF
S=-——,
aT
FF
CV=—Tﬁ. (14)

Calculation of nonextensive quantities, like the average
base pair separation (y) and the correlation length &, is more
involved. (y) is the mean separation of the bases averaged
over the sites of the sequence, that is,

N
1
=— . 15
Y NEI V) (15)
In order to reduce (y,) to a form depending only on the

eigenvalues and eigenvectors of the TI operator, it is first
rewritten in the form
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1
on =" J dydy, -+ dyny,e PMOVK (y,, )

XK(y3,y) - K(yyyy)e PYmbow’2, (16)
Substituting Eq. (7) into Eq. (16) and defining

b= f dy e P2 (y)y,

Yy = J dy @,(y)y®,(y), (17)
one obtains
1 N-1
G =0w =2 ab] (18)
and
1 - —n
(yw) = EE aianz(]!))\? 17\9/ (19)
ij

for n#1,N. By evaluating the geometric summation that
appears in Eq. (15) when the (y,) are replaced by their ex-
pressions in Egs. (18) and (19), one finally gets

2 R TN i
(y)= ZTVEZ: ab,\; + Z_N,E, aa;Y ;'\ \; 1-r;

(20)

where r;;=\;/\;. Note that Eq. (19) was already obtained by
Zhang et al. [35]. Equation (20) is the counterpart for finite
sequences with open ends of the much simpler formula (y)
=Y(111), which was used in our preceding work [33] and ap-
plies only to infinitely long sequences.

The correlation length ¢ is defined as

£=— z;dzs(f) ’ (1)
S(q) dq” |40
where S(g) is the static form factor
N 2
S(g) = El (= ()" (22)

In this equation, a stands for the distance between successive
base pairs. For infinitely long chains, one simply obtains &
=al/ln(\,/\,), where \, is the second largest eigenvalue of
the integral operator [34]. The calculation for finite se-
quences with open boundary conditions is more tricky. In
order to separate explicitly the contributions of the base pairs
at the extremities, Eq. (22) is first rewritten in the form

N N
S(q) = 2 2 {8y, et (23)

n=1 m=1

where 8y,=y,—(y,). By isolating averages concerning ex-
tremity values, one gets
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S(q) =(8y7) + (Syy) + 2(dy, dyy)cos[ga(N - 1)]

+ 8,6 + Se™9 + Spe™N1t 4 §rem NI 4 S L

(24)
where
N-1
S = > (S, 8y,pe 1,
m=2
N-1
Sy= 2 (8, yne e,
m=2
N-1 N-1
Smid= 2 2 <5yn5ym>eiqa(n—m). (25)
m=2 n=2
Defining
¢i= J dy e P22 (y),
Yy = f dy ©(y)y*®;(y), (26)
one obtains the relations
1 _
(}’%> = <)’12v> = EE aici)\év l,
1 2y N-1
<y1yN> = _Z b,‘)\i s
z=
1 m=1y N-mv,(1)
GVym = EE ajbi)\i )\j Yij >
ij
1 m—1y N-my(1)
Omyn) = 22 ab\; N Y
ij
N n—1y N-n,(2)
<yn = EE aiaj)\i )\j Yzj >
ij
1 NN A m>n
_— Dy (1) i N Mk ’
) = a;a,Y;'Y; R .
ad Z% i fk{x;" NN <,
(27)

By evaluating analytically the geometric series which ap-
pear when Eq. (27) is substituted in Eqgs. (24) and (25), one
obtains after some tedious algebra the rather lengthy expres-
sion for S(g) which is reported in the Appendix. According to
Eq. (21), this expression must finally be differentiated twice
with respect to the wave vector ¢ in order to get the correla-
tion length.

From a practical point of view, we used the procedure
described in Appendix B of Ref. [34] to compute the eigen-
values and eigenvectors of the transfer integral operator in
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Eq. (8). This procedure is based on the diagonalization of a
matrix representation of the symmetric TI operator K(x,y)
defined on a grid of y values. For most calculations, we
chose a grid consisting of 4201 y values regularly spaced
between y,i,=—200/A,, and y,,,,=4000/A,,. Integrals were
numerically evaluated on the same grid. Recall that the
choice of a grid extending to very large values of y is crucial
to get converged values of the various thermodynamic quan-
tities [33,47]. In order to check the convergence of the results
presented below, we performed some calculations on a larger
grid consisting of 6201 y values regularly spaced between
Ymin=—200/A,; and y,,,,=6000/A,,. We will come back later
to this point.

Moreover, in the thermodynamic limit N— o the major
contribution to the partition function arises from the largest
eigenvalue \; and in this limit it is reasonable to drop eigen-
values \; with i=2. However, this work considers large
DNA molecules as well as smaller ones. Consequently, as
many eigenvalues as possible must be taken into account in
the practical evaluation of Egs. (13) and (20) and the expres-
sion for S(g) in the Appendix. Still, it was found that the
contribution of eigenvalues beyond the first 400 largest ones
is completely negligible.

In addition to the two caveats above, it should, of course,
be recalled that the results of the TI method become ques-
tionable when the last bound state disappears, that is, above
the melting temperature [35].

IV. FINITE SIZE EFFECTS NEAR THE CRITICAL POINT
A. Rounding of the melting transition of DNA

It is well known that a finite size system does not exhibit
any phase transition. At the critical point its free energy is
analytic and consequently all thermodynamic quantities are
regular. Let L be the size of a system having a critical be-
havior in the thermodynamic limit L — . For this system,
finite size effects manifest themselves as e~/¢, where £ is the
correlation length, by rounding the critical point singularity.
In other words, these effects become important over a region
for which &~ L. A simple description of the rounding phe-
nomena which take place in the Ising model can be found in
Ref. [48]. For an infinite size Ising system, the order param-
eter jumps discontinuously from —M . to +M, as the applied
magnetic field H is increased and crosses the critical value
H=0. On the other hand, if the system’s size is finite, this
transition occurs on a finite region of order AH
=kyT/(M LY with a large but finite slope ~M;L%/(kgT),
where d is the dimensionality and M; the most probable
value of the magnetization of the finite system.

For the two DNA models sketched in Sec. II, the size L of
the system is equal to the number N of base pairs in the
sequence times the distance between two successive base
pairs. This latter quantity plays no role in the dynamics of the
investigated models, so we will henceforth use N or L indis-
criminately to refer to the size of the sequence.

Given a sequence of length N, the first task consists in
determining its critical temperature, which we denote by
T.(N). Among the several methods listed, for example, in
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FIG. 1. (Color online) Log-log plots, as a function of the se-
quence length N, of the reduced critical temperature shift 1
—T.N)/T.() (top plot), the value of the correlation length & at
T.(N) (middle plot), and the value of the specific heat cy at T,.(N)
(bottom plot). £ is in units of the separation between two successive
base pairs, and cy in units of k. Squares and circles show the
results obtained with the TI method for the DPB and JB models,
respectively. Open symbols denote results obtained with grids of
4201 y values, while the few filled symbols denote results obtained
with larger grids of 6201 y values (see end of Sec. IV A). The solid
and dash-dotted lines show the results of the adjustment of power
laws against the calculated points.

Ref. [49], we found it rather simple and convenient to search
for the maximum of the specific heat Cy, which is more
pronounced than that of the correlation length & and therefore
allows for a more accurate localization of the temperature.
Two observations confirm a posteriori that the critical tem-
peratures thus obtained are correct. First, the shift in critical
temperature is found to vary as 1/N, as predicted by finite
size scaling theory and observed in experiments. The top plot
of Fig. 1 shows, for example, the evolution of 1 -T,(N)/T, as
a function of N, where T, stands for 7.(«) (for the grid
consisting of 4201 y values regularly spaced between y,;,=
—200/A,; and y,,,,=4000/A,, T. is equal to 281.40 K for the
DPB model and 367.63 K for the JB model). Open symbols
denote the results of TI calculations, while straight lines
show power laws adjusted against the TI results. The slopes
of these power laws, N~100 for the DPB model and N~'% for
the JB model, are in excellent agreement with the N~! depen-
dence predicted by finite size scaling theory and observed in
experiments. Note, however, that the absolute deviations are
too large by a factor of 4 for the DPB model and 6.5 for the
JB model, compared to the T.—T.(N)=500/N dependence
which is plugged into online oligonucleotide property calcu-
lators. One could probably adjust the parameters of each
model slightly to decrease the magnitude of the prefactors of
the power laws and get a better agreement between calcu-
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FIG. 2. (Color online) Entropy per site s as a function of the
rescaled temperature ¢(N) for an infinitely long chain (circles) and a
sequence with N=100 basepairs (squares), according to the DPB
(top plot) and the JB models (bottom plot). s is in units of kg.

lated and measured deviations of the critical temperature, but
we made no attempt in this direction. The validity of the
method we used to determine T,.(N) is further demonstrated,
as will be seen later in this section, by the fact that the curves
for the temperature evolution of Cy, & (y), etc., for se-
quences with different lengths N, all coincide sufficiently far
from the critical temperature when plotted as a function of
the reduced temperature

T- TC(N )
t(N) = ) (28)
In order to illustrate finite size effects on DNA melting,
we first computed the entropy per base, s=S/N, for an infi-
nite chain and a short DNA sequence for both the DPB and
the JB models. Results are shown in Fig. 2. At the thermo-
dynamic limit, the entropy s is clearly singular at the critical
temperature, as is expected for first-order phase transitions.
In contrast, smooth curves are observed over the whole tem-
perature range for a sequence with N=100. Note that the
singularities observed in Fig. 2 for infinitely long chains are
not steps but true divergences. s indeed diverges as (7.
—T7)'=% where «, the critical exponent of the specific heat
per base cy=Cy/N, is slightly but significantly larger than 1
for both models (« is equal to 1.45 for the DPB model and
1.13 for the JB model [33]). The reason that the singularities
look like steps instead of divergences is simply that the di-
vergences are quite slow, so that in the interval of #(N) values
where the TT method works s diverges by an amount sub-
stantially smaller than the gap between the two asymptotic
straight lines.
We next computed the specific heat per base cy for in-
creasing sequence length and temperature. The top and bot-
tom plots of Fig. 3 show the temperature evolution of ¢y for
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FIG. 3. (Color online) Log-log plots of the specific heat per site
cy as a function of the negative —#(N) of the rescaled temperature
for the DPB (top plot) and the JB models (bottom plot), and seven
values of the sequence length N ranging from 100 to %. ¢y is in
units of kg. Note that, at the thermodynamic limit of infinitely long
chains, ¢y becomes infinite at the critical temperature, but numerical
limitations of the TI method prevent the observation of such
divergence.

seven values of N ranging from 100 to infinity for the DPB
and JB models, respectively. It is seen in this figure that
rounding manifests itself through a decrease in the maximum
of ¢y as N decreases, but also through the fact that the sharp
rise of ¢y takes place further and further from the critical
temperature, that is, at increasingly larger values of [¢(N)|.
This is particularly clear for the DPB model, which at the
thermodynamic limit undergoes a very sharp transition, i.e., a
transition that is noticeable only at very small values of |¢]
=|t(e0)| [33]. Quite interestingly, examination of Fig. 3 also
indicates that the two models consequently give very com-
parable results up to N==1000, while the narrower nature of
the phase transition for the DPB model becomes apparent for
longer sequences.

We also computed, for the JB model, the temperature evo-
lution of the correlation length £ [according to Eq. (21) and
the expression for S(g) in the Appendix] for increasing val-
ues of N. For a finite system, the value of & at T.(N) is
expected to be of the order of magnitude of the finite length
of the system and to increase as N. This behavior can be
checked in the middle plot of Fig. 1, which shows the evo-
lution of & at T.(N) (in units of the separation between suc-
cessive base pairs) as a function of N: £ is indeed of the same
order of magnitude as N and the curve scales as N*°7. An
exception, however, occurs for the last three points with N
=3000: we will come back to this point at the end of this
section. The bottom plot of Fig. 4 additionally shows the
temperature evolution of ¢ for seven values of N ranging
from 100 to infinity. One observes just the same rounding
effects as for the specific heat in Fig. 3.

We finally computed, for the JB model, the temperature
evolution of the average base pair separation (y) [according
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FIG. 4. (Color online) Log-log plots of the correlation length &
(bottom plot) and the average base pair separation (y) (top plot) as
a function of the negative —#(N) of the rescaled temperature for the
JB model and seven values of the sequence length N ranging from
100 to . ¢ is in units of the separation a between two successive
base pairs and (y) in units of the inverse 1/A,, of the Morse poten-
tial parameter. Note that, at the thermodynamic limit of infinitely
long chains, ¢ and (y) become infinite at the critical temperature,
but numerical limitations of the TI method prevent the observation
of such divergence.

to Eq. (20)] for increasing values of N. The result is shown in
the top plot of Fig. 4. Although the same rounding effect is
observed as for the specific heat ¢y, (Fig. 3) and the correla-
tion length & (bottom plot of Fig. 4), this latter plot displays
the remarkable feature that for very small #(N) all curves
seem to converge to the same limit, which is the approxima-
tion of infinity imposed by the numerical limitations of the
TI method.

Before concluding this section, let us have a closer look at
the precision of TI calculations. As already mentioned at the
end of Sec. III, this precision depends crucially on the size
and extension of the grid of y values that is used to diago-
nalize the TI kernel and compute the various integrals [33].
The TI method fails to give correct values of thermodynamic
observables too close to the phase transition discontinuity,
but the broader the extension of the grid, the closer one can
approach the discontinuity with TI calculations. While all
calculations presented so far were obtained with a grid con-
sisting of 4201 y values regularly spaced between ;.=
—200/A,, and y,,,,=4000/A,,, we performed some calcula-
tions with a larger grid consisting of 6201 y values regularly
spaced between y,;,=—200/A,; and y,,,,=6000/A,, in order
to check the precision of these results. The values obtained
with the broader grid are shown as filled symbols in the two
bottom plots of Fig. 1, which display the evolution with the
sequence length N of the values at T,.(N) of the correlation
length £ and the specific heat ¢y, [note that these are the two
quantities that are most sensitive to the convergence of TI
calculations because they are calculated at T.(N)]. It is seen
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that results appear to be already converged with the smallest
grid for the DPB model up to N=10 000, while for the JB
model convergence at T.(N) is still poor for N larger than a
few thousands. Note that this is rather reassuring, since this
is precisely the range of values of N for which values calcu-
lated with the JB model depart from the power laws indi-
cated by straight lines. This is also in excellent agreement
with Figs. 3 and 4, which show that sequences of length N
=10 000 are still rather far from the thermodynamic limit for
the DPB model, so that one need not worry about the effect
of the discontinuity on TI calculations, while in contrast se-
quences with a few thousands of base pairs are already close
to the thermodynamic limit for the JB model, so that the
perturbative effect of the discontinuity becomes noticeable in
TI calculations.

B. Finite size scaling analysis

The basic idea of finite size scaling is that the correlation
length £ is the only length that matters close to the critical
temperature and that one just needs to compare the linear
dimension L of the system to & rounding and shifting indeed
set in as soon as L/&~ 1. By definition of the critical expo-
nent v, £ grows as |7 in the limit of large L values. In this
limit, (L/§&) is therefore proportional to [¢|L, that is, to a
power of |f|L” or equivalently of |¢{|{N"". In the absence of
an external field, it is therefore natural to write the singular
part of the free energy of the finite size system in the form

Faing=N"Y([t|]N""), (29)

where Y is some homogeneous function. Differentiating Eq.
(29) twice with respect to 7, one obtains that cy is equal to

cy=NPG(|t|N7), (30)
where
2
p="- d’
v
1
o=, (31)
v

and G is a homogeneous function that is proportional to the
second derivative of Y. By using Josephson’s identity 2—a
=vd, where «a is the critical exponent for ¢y (cy|t|7®), the
coefficients p and o can be recast in the forms

a
p=—,
v
1
o=—. (32)
v

Note that Eq. (32) is often preferred to Eq. (31) in general
presentations of finite size scaling theory [see, for example,
Eq. (1.7) of Ref. [50]].

In order to tackle the more complex case where several
lengths diverge at the critical point, as is the case for DNA
melting, Binder et al. [51] derived a method that is based on
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TABLE 1. Values of the coefficients p and o of Eq. (30) for the DPB and JB models. The first three lines
show the values calculated from the critical exponents reported in Table I of Ref. [33] and Egs. (31), (32), and
(34). The last line shows the values adjusted by hand in order that the plots of cy/NP as a function of tN” are
superposed over an interval of values of N as large as possible (see bottom plots of Figs. 5 and 6). The
confidence intervals shown in parentheses were obtained, for calculated values of p and o, by assuming
additive 5% uncertainties in the values of the critical exponents reported in Ref. [33]. The confidence
intervals for the adjusted values are more subjective. They were deduced from visual inspection of ¢y /NP

versus tN7 plots.

JB model

p

(o

DPB model
p T
Eq. (31) 0.79 (0.70-0.88) 0.89 (0.85-0.94)
Eq. (32) 1.29 (1.17-1.43) 0.89 (0.85-0.94)
Eq. (34) 1.78 (1.04-3.25) 1.39 (1.03-2.11)
Adjusted 0.85 (0.80-0.90) 1.00 (0.98-1.02)

0.63 (0.55-0.71)
0.92 (0.83-1.02)
1.82 (0.98-3.84)
0.45 (0.35-0.55)

0.81 (0.77-0.85)
0.81 (0.77-0.85)
1.41 (0.99-2.42)
0.90 (0.85-0.95)

the use of an irrelevant variable # and an expression of the
form

feing=N"'F(IN",ulN"v). (33)

After several approximations and a little bit of algebra, these
authors obtain cy in the form of Eq. (30) with, however,

2d
= -d
2B+y

d
g= N
2B+

where 8 and v are the critical exponents for the order param-
eter m (m~|¢|#) and its derivative with respect to the applied
external field (dm/dh~ |t|77), respectively.

Table I shows the values of p and o calculated from the
characteristic exponents reported in Table I of Ref. [33] and
Egs (31), (32), and (34), as well as adjusted values. These
latter were obtained by varying p and o by hand in order that
the plots of cy,/NP as a function of tN“ are superposed for an
interval of values of N as large as possible. By setting =0 in
Eq. (30), one sees that the value of ¢y at T.(N) scales as N”.
p was therefore adjusted in the neighborhood of the slope of
the plot of the value of ¢y at T.(N) as a function of N (bottom
plot of Fig. 1). On the other hand, o was adjusted in the
neighborhood of 1/». The confidence intervals shown in pa-
rentheses in Table I were obtained, for calculated values of p
and o, by assuming additive 5% uncertainties in the values
of the critical exponents reported in Table I of Ref. [33]. The
confidence intervals for the adjusted values are more subjec-
tive. They were deduced from visual inspection of cy/N"
versus tN“ plots. Examination of Table I indicates that the
values of p and o obtained from Eq. (31) compare well with
the adjusted ones, while this is certainly not the case for the
values obtained from Egs. (32) and (34). Figures 5 and 6
further show plots of ¢/NP as a function of tN? for, respec-
tively, the DPB and JB models, and values of p and o ob-
tained from Eq. (32) (top plots) and adjusted ones (bottom
plots). It is seen in the top plots that the curves with different
values of N are far from being superposed for the values of p

p

(34)

and o obtained from Eq. (32), and the situation is still worse
with Eq. (34). In contrast, the various curves are fairly well
superposed for the adjusted values of p and o (see bottom
plots of Figs. 5 and 6), as well as those obtained with Eq.
(31). For the JB model, an exception occurs for the curve
corresponding to N=10 000 (bottom plot of Fig. 6). As dis-
cussed in some detail in the last paragraph of Sec. IV A, TI
calculations applied to the JB model are not sufficiently con-
verged for sequences with more than a few thousand base
pairs, which could explain why the curve for N=10 000 does
not align with the other ones.

The fact that Eq. (31) leads to a correct superposition of
the curves for different values of the sequence length N is the
proof that the basic hypothesis of finite size scaling theory is
satisfied. On the other hand, the fact that curves with differ-
ent N are no longer superposed when Eq. (32) is used to
calculate p and o simply reflects the fact that Josephson’s

—T T T T T T T T T
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FIG. 5. (Color online) cy/NP, for six values of the sequence
length N ranging from 100 to 10 000, as a function of —tN? for the
DPB model and values of p and o obtained from Eq. (32) (top plot)
or adjusted by hand (bottom plot).
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FIG. 6. (Color online) ¢y /NP, for six values of the sequence
length N ranging from 100 to 10 000, as a function of —tN? for the
JB model and values of p and o obtained from Eq. (32) (top plot) or
adjusted by hand (bottom plot).

identity 2—a=wd is not valid for these two models of DNA
melting, as clearly shown in Table II of Ref. [33]. Finally, the
fact that the curves also do not superpose when Eq. (34) is
used indicates that one of the several hypotheses made by the
authors of Ref. [51] to arrive at these expressions is not
satisfied for the DNA models, although it is not an easy task
to tell which one(s) is (are) invalidated. Alternatively, Eq.
(34) can be straightforwardly derived from Eq. (31) by using
the Rushbrooke identity (a+28+y=2) as well as the Jo-
sephson one. Since this latter identity is not valid, it comes as
no surprise that Eq. (34) leads to as poor a result as Eq. (32).

V. CONCLUSION

To summarize, we modified the transfer integral method
to adapt it to the calculation of thermodynamic quantities of

f,/(2) _fij(N) n E
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finite sequences with open boundary conditions. Nonexten-
sive quantities, like the average separation of paired bases
(y) and the correlation length £, turned out to be the trickiest
ones to evaluate. We then applied this modified procedure to
the DPB and JB dynamical models, in order to clarify how
the finiteness of the length of the sequence affects the phase
transition that takes place at the DNA melting temperature.
We showed that the rounding of the transition that occurs
when the size of the sequence decreases is clearly reflected in
the temperature evolution of most quantities, including the
specific heat cy, the correlation length & and the average
separation of paired bases (y). We next performed a finite
size scaling analysis of the two systems and showed that the
singular part of the free energy can indeed be expressed in
terms of a homogeneous function. However, Josephson’s
identity is satisfied for none of the investigated systems, so
that the derivation of the characteristic exponents p and o,
which appear in the asymptotic expression of the specific
heat cy, requires some care.

The transfer integral method appears to be the only effi-
cient numerical tool to study the thermodynamics of DNA
melting in detail. In the formulation used here, however, it
applies only to homogeneous chains, while it is well estab-
lished that the heterogeneity of real DNA molecules may
smear out the discontinuity of the melting transition, just as
the finiteness of the sequence does. Our next goal is therefore
to overcome the technical difficulty associated with the ap-
plication of the TT method to inhomogeneous chains and in-
vestigate the effect of heterogeneities on the phase transition
at DNA melting.

APPENDIX: EXPRESSION FOR THE STATIC FORM
FACTOR

The expression we obtained for the static form factor S(g)
is

S(q) = (Y1) + (i) + 23y, Syy)cos[ga(N - 1)] + Ej B0 2 coshlay) - costga) L2V + Cif M)
Xcos[(N = 2)ga] = D;;fi(N = 1) = C;;fi(2)= [D;f1,(2) + Cif ii(N = 1) Jcos[ (N — 1)ga] + [D;f;(N) + C;;fi,(1)]
2Mijk
xeolaal) + 2% H T 7,) 27 Deostgal T+ F4@)~ 2 eostgar] < 8+~ 8l =24

+g(N,N)+g(NNN+2)+g(N+1,N+1)+[g(2,3)—g(N\N+1)+2¢(3,4) —g(N+ 1,N+2) + g(4,3) —g(N+ 1,N)
—g(N,N+1)]cos(ga) + [g(N+ 1,N+ 1) — g(3,3)]cos(2qa) + [g(2,N+ 1) — g(3,N + 2)]cos[(N = 3)ga] + [g(4,N + 2)

— g(2,N)Jeos[ (N - 2)ga] + [g(3,N) - g(4,N + 1)]cos[ (N — 1)gal} + | 2 M;;

eZ(iqa—a--) N(iqa—aij) 2

iga—a; ’
ij 1-e ij
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where

Qi =— ln(rij),

1
M= Ex;‘xyaiay@

Jy

1 -1y N 2
Hy= N 'Naa Yy,

1 -1\ N 1
Ty= N Nbayy),
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1
Gy= NNy,

Cl;/:T“—<y1>Mij,

)

Diszij—<)’1>Mij,

ﬁj(n) = e_naij’

g(nm) = e,
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