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Molecular orientation fluctuations in ferroelectric smectic liquid crystals produce space charges, due to the
divergence of the spontaneous polarization. These space charges interact with mobile ions, so that one must
consider the coupled dynamics of the orientation and ionic degrees of freedom. Previous theory and light
scattering experiments on thin free-standing films of ferroelectric liquid crystals have not included this cou-
pling, possibly invalidating their quantitative conclusions. We consider the most important case of very slow
ionic dynamics, compared to rapid orientational fluctuations, and focus on the use of a short electric field pulse
to quench orientational fluctuations. We find that the resulting change in scattered light intensity must include
a term due to the quasistatic ionic configuration, which has previously been ignored. In addition to developing
the general theory, we present a simple model to demonstrate the role of this added term.
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I. INTRODUCTION

Quasielastic Rayleigh scattering is a powerful method for
studying the molecular orientational fluctuations in liquid
crystals �1,2�. The added technique of quenching fluctuations
by a short electric field pulse for ferroelectric smectic C*

�Sm C*� free-standing films was first applied for studying
two-dimensional phase transitions by Young et al. �3�. By
measuring the time correlation of thermal fluctuations of the
c director orientation, they determined the ratio of the bend
�Kb� or splay �Ks� elastic constant to the corresponding vis-
cous coefficients ��b ,�s� and the bend elastic constant to the
square of the spontaneous polarization �P0� in the free-
standing film of a ferroelectric liquid crystal, that is, Kb / P0

2,
Ks /�s, and Kb /�b. Refining the light scattering experiment,
Rosenblatt et al. �4,5� performed absolute measurements of
the elastic constants, spontaneous polarization, and viscosi-
ties, by monitoring the change of intensity of the scattered
light due to quenching of the director fluctuations by a strong
enough external electric field. As shown in Ref. �3� for the
director aligned along the x direction, the intensity of depo-
larized light scattered by fluctuations of wave vector q is
given by

I�q� �
1

Ksqy
2 + Kbqx

2 + 2�P0
2�qx� + P0E

, �1�

where qx and qy are the components of q in a bend and a
splay mode, respectively, and E is an external electric field.
The scattering geometry was arranged such that one wave-
vector mode can be probed at a time, i.e., qy =0 for a bend
mode and qx=0 for a splay mode in Eq. �1�.

However in the light scattering theory for the ferroelectric
free-standing liquid crystals the existence of the ionic impu-
rities dissolved in the materials was ignored. Pindak et al. �6�

reported the ionic impurity effect on the ferroelectric free-
standing film qualitatively, by analyzing the change of the
2� wall texture due to the external electric field. The relax-
ation time of the impurity ion fluctuations in a thin film is
given by �6,7�

� =
1

2��hq + Dq2 , �2�

where � is conductivity, h is the thickness of a film, q is a
wave vector, and D is a diffusion constant. Using the typical
values of liquid crystals, the conduction term in Eq. �2�,
2��hq can be estimated as 2�10−1 s−1 and the diffusion
term Dq2=9 s−1. The decay rate of the fluctuations of the
impurity ions is much slower than the orientation fluctuation
time of the director, around 1 ms �7�.

In a bend mode, the space charge due to divergence of the
spontaneous polarization is screened on very slow time
scales by impurity ions dissolved in ferroelectric liquid crys-
tals. Similarly, slow variation in the local charge concentra-
tion due to ionic diffusion is rapidly screened by reorienta-
tion of the spontaneous polarization field, which causes
reorientation of the director. In the bulk ferroelectric liquid
crystals, Lu et al. �8� reported a very slow relaxation mode
compared to a fast decay by autocorrelation measurements,
which is consistent with diffusion times associated with ionic
motions. In subsequent papers, they examined the coupling
between the director distortions and impurity ion motions in
a ferroelectric liquid crystal theoretically �9� and experimen-
tally �10�.

In this paper, we study the dynamics of the ion-director
coupling in free-standing ferroelectric liquid crystal films in
the two-dimensional �2D� limit theoretically. We consider the
limit of slow ion dynamics, and electric field quenching of
the rapid orientation fluctuations, and find that the field-
induced change in light scattering intensity must include
terms due to the quasistatic distribution of ions during the
short applied field pulse. Without the added terms, the field
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quench technique produces invalid results. Additional experi-
ments are needed to take account of this term quantitatively.
They will be reported elsewhere.

This paper is organized as follows: in the next section we
present the free energy of the smectic film including Frank
elasticity, the coupling of the external electric field to the
space charge, the energy associated with fluctuations in the
ionic impurity concentration, and the electrostatic energy of
the space and ionic charges. In Sec. III we analyze the relax-
ational dynamics of the coupled director and ionic degrees of
freedom, and provide physical insight into the central result
of this analysis using a simple spring-based model. Conclud-
ing remarks including comments on the experimental impli-
cations of our work are offered in the final section.

II. FREE ENERGY

In the Sm C* phase, there exist both tilt angle and azi-
muthal fluctuations �11,12�. Here we consider temperatures
sufficiently below the Sm C*-A transition so that the tilt
angle fluctuations are small and we need only study fluctua-
tions in the azimuthal angle �. Therefore, the magnitude of
the c the director is constant in the film and the molecules
fluctuate azimuthally about ��0�, which is the average azi-
muthal orientation �see Fig. 1�.

We assume that the liquid-crystal film lies in the plane z
=0, surrounded by vacuum on both sides. Average alignment
of the molecules is achieved by an external electric field
small enough so as not to suppress the thermal fluctuations.
In a bend mode of the c director, the divergence of the trans-
verse dipoles gives rise to space charge. The variation of the
space charge due to the azimuthal fluctuations causes diffu-
sion of the free ions dissolved in the film. Hence the ionic
diffusion is observable in a light scattering experiment.
When the molecular orientation fluctuates by an angle �
from ��0�=0, the c director can be expressed by

c = „cos ��x,y�,sin ��x,y�… . �3�

The Frank elastic free-energy density of a 2D Sm C is
given by �3�

fel = 1
2Ks�� · c�2 + 1

2Kb�� � c�2,

which for small fluctuations can be approximated by

fel = 1
2Ks� ��

�y
	2

+ 1
2Kb� ��

�x
	2

. �4�

The splay and bend Frank elastic constants are denoted by Ks
and Kb, respectively. The Fourier transform of fel is given by

fel�q�� = 1
2Ksqy

2���q���2 + 1
2Kbqx

2���q���2, �5�

where

��q�� =
 ��r��exp�iq� · r��
d2r�

�2��2 . �6�

Here we denote the 2D position vector and wave vector by
r�= �x ,y� and q�= �qx ,qy�, respectively.

The total electrostatic free energy includes the interaction
energy FP of the polarization P with the external electric
field E and the electrostatic energy FE of the space and im-
purity charges. The Fourier transform of the free-energy den-
sity fP associated with FP is given by �3�

fP�q�� = 1
2 P0E���q���2, �7�

where we have again assumed small azimuthal fluctuations
and neglected the energy associated with the equilibrium
configuration. Note that this energy density is identical for
bend and splay modes.

If we consider n kinds of impurity ions, such that the
equilibrium concentration of the jth type of impurity is cj
and the local concentration fluctuation is �cj, then the free-
energy density f ion associated with fluctuations in the ionic
impurity concentration is given by �9�

f ion�r�� =
1

2
kBT�

j=1

n
��cj�r���2

cj
, �8�

where kB is the Boltzmann constant and T is the temperature.
The Fourier transform of this last equation is

f ion�q�� =
1

2
kBT�

j=1

n
��cj�q���2

cj
. �9�

The total charge density 	�r� for an infinitesimally thin
film is given by

	�r� = ��r����z� = ��ion�r�� + �P�r�����z� , �10�

where �P�r��=−� ·P is the space charge density due to the
divergence of the spontaneous polarization and the ionic
charge density �ion is given by

�ion�r�� = �
j=1

n

ej�cj�r�� , �11�

where ej is the charge of ionic species j. Here r is the full
three-dimensional position vector r= �x ,y ,z�.
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FIG. 1. Top: Bend mode of the c director. Bottom: The trans-
verse dipole p alignment accompanying the bend mode of the c
director under a weak external electric field E. The arrows denote
the direction of the local dipole moment which is perpendicular to
the c director �7�. The impurity ions dissolved in the material are
coupled to the space charge �indicated by the plus and minus signs�.
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The electrostatic free energy of the film �excluding the
interaction with the external electric field� is given by

Fe =
1

2

 	�r�
�r�d3r , �12�

where 
 is the electrostatic potential of the charge density 	
in a dielectric medium with dielectric constant,

���z� = 1 + �� − 1�a��z� . �13�

Here we assume that the liquid-crystal film has uniform di-
electric constant � and is surrounded by vacuum on both
sides. Mathematically we treat the film as infinitesimally
thin, but introduce the film thickness a in an appropriate
dimensional fashion.

As shown in Ref. �13� the electrostatic free energy can be
expressed in Fourier space by

Fe =
 fe�q��
d2q�

�2��2 , �14�

where the free-energy density fe�q�� is given by

fe�q�� = ��q����− q��
2�

2q� + �� − 1�aq�
2 , �15�

which in the long-wavelength limit of experimental rel-
evance �q�a�1� simplifies to

fe�q�� � ��q����− q��
�

q�

. �16�

The spontaneous polarization P is given by P
= P0�sin �x̂−cos �ŷ� in the geometry of Fig. 1. The space
charge density �P is given for small fluctuations by

�P�x� � − P0
��

�x
, �17�

with Fourier transform

�P�q�� � iP0��q��qx. �18�

We note that only bend mode fluctuations contribute to the
space charge, and we henceforth consider q�= �q ,0�. The
total Fourier transformed charge density is given by

��q� = iP0��q�q + �
j=1

n

ej�cj�q� . �19�

Substituting Eq. �19� into Eq. �16�, we obtain

fe�q� =
�

q
�iP0��q�q + �

j=1

n

ej�cj�q�	
��− iP0�*�q�q + �

k=1

n

ek�ck
*�q�	 , �20�

fe�q� = �P0
2q���q��2 + �

j=1

n
�

q
ej

2��cj�q��2

+
�

2q
�
j�k

ejek�cj�q��ck
*�q� + i�P0�

j=1

n

ej���q��cj
*�q�

− �*�q��cj�q�� . �21�

Using Eqs. �5�, �7�, �9�, and �21� the Fourier transformed
free-energy density is then given by

f�q� = fel�q� + fP�q� + f ion�q� + fe�q� , �22�

f�q� = �1

2
Kbq2 +

1

2
PoE + �P0

2q	���q��2 + �
j=1

n ��

q
ej

2 +
1

2

kBT

cj
	

���cj�q��2 + i�P0�
j=1

n

ej���q��cj
*�q� − �*�q��cj�q��

+
�

2q
�
j�k

ejek�cj�q��ck
*�q� . �23�

III. DYNAMICS

We now consider the dynamics of the director and ionic
fluctuations following the approach of Ref. �9� where a bulk
system was considered. We model the dynamics of the film
with a relaxational equation, assuming a viscosity � associ-
ated with bend fluctuations,

�
���q,t�

�t
= −

� f�q,t�
��−q,t

+ g�t� = − �Kbq2 + P0E + 2�P0
2q���q,t�

+ 2�iP0�
j=1

n

ej�cj�q,t� + g�t� , �24�

where g�t� is a random noise source with zero mean and
autocorrelation function given by

�g�t�g�t��� = 2kBT���t − t�� . �25�

The dynamical equation for the concentration fluctuations
is governed by charge conservation, which in Fourier space
reads

��cj�q,t�
�t

= − iqJj�q,t�, j = 1, . . . ,n , �26�

where the current Jj is given by Jj�q , t�
=−iqmjcj��f�q , t� /��cj�−q , t��, and mj is the mobility of the
ion of type j. Thus, Eq. �26� can be written as

��cj�q,t�
�t

= − mjcjq
2 � f�q,t�
��cj�− q,t�

, j = 1, . . . ,n , �27�

��cj�q,t�
�t

= − mjkBTq2�cj�q,t�

− 2�mjcjejq��q,t�, j = 1, . . . ,n , �28�

where we have used Eq. �19�.
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We solve Eqs. �24� and �28� by Laplace transforming in
time. To simplify the calculation we assume that the ionic
mobility mj is independent of the ion type j; we denote this
common value by m. We introduce the Laplace transforms of
�, �cj, g�s�, and � as follows:

��q,s� = 

0

�

dte−st��q,t� , �29�

�c�q,s� = 

0

�

dte−st�c�q,t� , �30�

��q,s� = 

0

�

dte−st��q,t� , �31�

g�s� = 

0

�

dte−stg�t� . �32�

Using Eqs. �29�–�32�, we Laplace transform Eqs. �24� and
�28�, and find

�„s��q,s� − �o�q�… = − �Kbq2 + P0E + 2�P0
2q���q,s�

+ 2�iP0�
j=1

n

ej�cj�q,s� + g�s� , �33�

s�cj�q,s� − �cjo�q� = − mjkBTq2�cj�q,s�

− 2�mjcjejq��q,s�, j = 1, . . . ,n ,

�34�

where �o�q���q , t=0� and �cjo�q��cj�q , t=0�.
We eliminate the sum over ej�cj in Eq. �33� using Eq.

�19�

�„s��q,s� − �o�q�… = − �Kbq2 + P0E���q,s� + 2�iP0��q,s�

+ g�s� , �35�

and eliminate �cj�q ,s� from Eq. �34� by first multiplying the
latter equation by ej and then summing over j. Using Eq.
�19� we obtain

�s + mkBTq2�„��q,s� − iP0q��q,s�…

= �o�q� − iP0�o�q� − 2�mq��q,s��
j=1

n

ej
2cj , �36�

where �o�q���q , t=0�.
Finally, eliminating ��q ,s� from Eqs. �35� and �36� we

obtain the following solution for ��q ,s�:

��q,s� =

g�s� + ��o�q� + 2�iP0
�o�q� − iP0q�o�q�

s + mkBTq2 + 2�mq�
j

ej
2cj

�s + Kbq2 + P0E +
2�P0

2

2�m

s + mkBTq2�
j

ej
2cj +

1

q

.

�37�

This expression for ��q ,s� is of the form

��q,s� = A�s�g�s� + B�s� , �38�

where

A�s� =
1

�s + Kbq2 + P0E +
2�P0

2

2�m

s + mkBTq2�
j

ej
2cj +

1

q

,

�39�

B�s� =

��o�q� + 2�iP0
�o�q� − iP0q�o�q�

s + mkBTq2 + 2�mq�
j

ej
2cj

�s + Kbq2 + P0E +
2�P0

2

2�m

s + mkBTq2�
j

ej
2cj +

1

q

.

�40�

The convolution theorem for Laplace transforms then
yields the following solution for � as a function of time:

��q,t� = L−1�B�s�� + 

o

t

A�t − t��g�t��dt�, �41�

where the operator L−1 is the inverse Laplace transform, and
A�t�=L−1�A�s��.

We evaluate the inverse Laplace transforms appearing in
Eq. �41� using the Bromwich integral,

L−1�A�s�� = � residues of the poles of A�s�est. �42�

The functions A�s� and B�s� have identical simple poles at
s=s1 ,s2,

s1,2 =
−  ± �2 − 4��

2�
, �43�

where

 = 2�P0
2q + Kbq2 + P0E + 2��mq�

j

ej
2cj + �mkBTq2,

�44�

� = �Kbq2 + P0E��mkBTq2 + 2�mq�
j

ej
2cj	 + 2�P0

2mkBTq3.

�45�

It is instructive to examine some limiting cases of these
poles as was done in Ref. �9�.

�a� Static ions, m=0. In this case the locations of the poles
are given by

s1 = − �−1�Kbq2 + P0E + 2�P0
2q�, s2 = 0, �46�

i.e., s1 describes the director relaxation rate in the absence of
ions, while s2 corresponds to the infinite relaxation time of
the static ions.

�b� Static director, Kb= P0=0. Here the poles are given by
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s1 = 0, s2 = 2�mq�
j

ej
2cj + mkBTq2, �47�

where s2 is the relaxation rate of the ions, and s1 describes
the static director. These results agree with the corresponding
results found in Ref. �9� for the bulk ferroelectric liquid crys-
tal.

Returning to Eq. �41�, we evaluate ����q , t��2�, a quantity
proportional to the scattered light intensity. The angle brack-
ets refer to an average over the Boltzmann ensemble of �o
and �o �which appear in B�s��, and the random noise source
g�t�, whose variance is given by Eq. �25�. We find

����q,t��2� = ��B�q,t��2� + 2�kBT

o

t

A2�t − t��dt�. �48�

While the averages and integral in Eq. �48� can in prin-
ciple be evaluated for arbitrary values of the ionic mobility,
bend elastic constant, and polarization, the expressions ob-
tained are rather complicated, so we consider instead the
experimentally relevant case where the ionic mobility m
→0 and assume that the electric field is switched on at t
=0+. Using Eqs. �19�, �37�, �42�, and �46�, we find from Eq.
�48�,

lim
t→�

����q,t��2� =
�2�P0�2

�Kbq2 + P0E + 2�P0
2q�2���

j

ej�cj�2�
o

+
kBT

Kbq2 + P0E + 2�P0
2q

, �49�

where the thermal average is over the Boltzmann ensemble
at t=0 when E=0. Using Eq. �23� we find

���
j

ej�cj�2�
o

= kBT
Kbq + 2�P0

2

4��2D�Kbq + 2�P0
2� + 2�Kb

,

�50�

where �2D is the Debye screening length in 2D defined by

�2D 
kBT

4��
j

cjej
2

. �51�

The expression Eq. �49� for ����q , t��2� can be given a
simple physical interpretation. In the limit of static ions
where m=0, the director angle � has a mean value given by

���q,t�� = �B�t�� =

2�iP0�
j

ej�cj

Kbq2 + P0E + 2�P0
2q

, �52�

using Eqs. �40� and �41�, and recalling that the noise source
g�t� has zero mean. More simply, this result can be obtained
by averaging Eq. �24� over the noise and noting that
� ���q,t�

�t
�=0.

We now write � as

��q,t� = ���q,t�� + „��q,t� − ���q,t��… , �53�

and note that the fluctuation of � about its mean value, Eq.
�52�, has a mean-squared average,

����q,t� − ���q,t���2� =
kBT

Kbq2 + P0E + 2�P0
2q

, �54�

as can be seen using Eq. �23�.
Then, it can be readily seen that the mean-squared aver-

age of �,

����q,t��2� = ����q,t���2 + ����q,t� − ���q,t���2� , �55�

yields Eq. �49� in the long-time limit. Note that because the
ions are static, the application of the electric field at t=0 has
no effect on the value of ��� jej�cj�2�o which enters the first
term on the right-hand side of Eq. �55�.

Additional physical insight into Eq. �49� can be obtained
by considering the toy model shown in Fig. 2. We represent
the director mode by a single variable x1 and the ionic dis-
placement mode by the single variable x2. The spring con-
stants k1 and k2 represent the corresponding restoring forces
for these modes. A third spring constant k3 represents the
coupling of the director and ion fluctuations. The energy of
director fluctuations for fixed ionic positions in this model in
the absence of an external electric field is given by

F = 1
2k1x1

2 + 1
2k3�x2 − x1�2 = 1

2 �k1 + k3�x1
2 − k3x1x2 + 1

2k3x2
2.

�56�

The equilibrium value of x1 which we denote by x̄1 is given
by solving �F /�x1=0 with the result

x̄1 =
k3

k1 + k3
x2. �57�

Defining the variation y=x1− x̄1 of x1 about its equilibrium

position x1̄, the spring free energy in Eq. �56� can be rewrit-
ten as

F = 1
2 �k1 + k3�y2 + const. �58�

Using the equipartition theorem the thermal average of the
square of y is given by

�y2� =
kBT

k1 + k3
�59�

and the corresponding quantity for x1 is given by

�x1
2� = ��x̄1 + y�2� = �x̄1

2� + 2�x̄1y� + �y2� �60�

=
k3

2

�k1 + k3�2 �x2
2� +

kBT

k1 + k3
�61�

where �x̄1y�=0 because x1 and y are statistically independent
in our model. This equation is analogous to Eq. �55� above.

Director

Ion

x1

x2

k1

k2
k3

FIG. 2. A toy model for the coupling between director and ionic
degrees of freedom.
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Now, imagine a sudden application of the external electric
field E which leads to the replacement of the spring constant
k1 by k1+E. If we assume that the free ions have a very long
decay time then x2 can be considered a constant during the
electric field pulse. Hence with the application of the electric
field, �x1

2� is given by

�x1
2�E � 0�� =

k3
2

�k1 + E + k3�2 �x2
2� +

kBT

k1 + E + k3
. �62�

This expression is analogous to our central result Eq. �49�
above. The second term on the right-hand side of Eq. �62�
corresponds to �y2�, the fluctuation of x1, the director mode,
about its mean value x̄1, while the first term corresponds to
�x̄1

2�, which in turn depends on the ionic degree of freedom
x2, as indicated in Eq. �57�.

IV. CONCLUSIONS

In this paper we have considered the coupled dynamics of
the orientational and ionic degrees of freedom in thin freely
suspended smectic liquid crystal films. Our central result
shown in Eqs. �49� and �50� describes the fluctuations in the
azimuthal angle of the c director, which is proportional to the
scattered light intensity. As illustrated in our toy model at the
end of the preceding section, the fluctuations can be under-
stood as arising from two contributions: the director fluctua-
tions measured relative to their mean value �the second terms
on the right-hand sides of Eqs. �49� and �62�� and the change
in this mean value due to coupling to the ions �the first terms

on the right-hand sides of �49� and �62��. Previous theoretical
and experimental work on smectic films which ignored the
existence of ionic impurities thus ignored the second contri-
bution to the light scattering intensity. While we have shown
that in principle the ionic impurities will modify the light
scattering intensity, the effect might in practice be negligible.
Upon using Eq. �50� the ionic contribution to the director
fluctuations �the first term on the right-hand side of Eq. �49��
is given by

�2�P0�2

�Kbq2 + P0E + 2�P0
2q�2� kBT�Kbq + 2�P0

2�
4��2D�Kbq + 2�P0

2� + 2�Kb
	 .

�63�

If the screening length �2D is shorter than a few microns at
wave vectors in the range 2000–5000 cm−1, the ionic contri-
bution is not small compared to the second term in Eq. �49�.
However, if �2D�10 �m, then the ionic contribution, Eq.
�63�, contributes less than 10% to the expression �49� for the
director fluctuations. Therefore for any particular experiment
one must evaluate the relative importance of the ionic con-
tribution shown in Eq. �63�.
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