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We apply elastic continuum theory to model critical parameters influencing the free-energy equilibrium
configuration and the dynamic performance of a continuous and in-plane liquid crystal profile acting as a
polarization grating. We present analytical expressions for the threshold voltage, critical thickness, and the
dynamic switching times under strong anchoring conditions, negligible flow, and arbitrary splay, twist, and
bend constants. We also study the influence of weak anchoring, and derive expressions describing a dramatic
reduction of the critical thickness and voltage threshold, even for modest grating periods and surface anchoring
strengths. Good correlation exists with previously reported experimental data, except in the dynamic response;
we therefore show that flow effects �backflow and kickback� likely play an essential role in the fall times,
presumably due to the prominent splay-bend deformation of the zero-field configuration. We consider the
impact of surface pretilt, and validate our entire analysis with numerical simulations. The approximation
technique we employ is likely broadly useful for many problems which include nano- or micropatterned
surfaces.
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I. INTRODUCTION

Liquid crystal gratings �both bulk and polymer-dispersed�
have received significant attention due to their potential to
act as switchable diffractive optical elements. Recently, a
continuous and periodic configuration of a nematic liquid
crystal �LC�, shown in Fig. 1, was proposed �1,2� as a com-
pelling way to implement polarization gratings �PGs�. This
general class of diffractive optics �3–5� is embodied by pe-
riodic, spatially varying, optically anisotropic profiles, in-
cluding both birefringence and dichroism. Many unique and
useful diffractive properties have been identified and consid-
ered for applications in displays �6,7�, diffractive optics
�4,5�, optical storage �8,9�, and polarimetry �10,11�. One
structure in particular is the focus of this work �Fig. 1�, and
is known as a liquid crystal polarization grating �LCPG�. In
recent work �7,12–14�, we have shown that the LCPG struc-
ture may be experimentally realized with effectively ideal
optical properties using photoalignment materials in combi-
nation with polarization holography, completely overcoming
the LC defects and optical scattering prominent in initial
experimental efforts.

The nominal LCPG profile illustrated in Fig. 1�a� results
from boundaries that establish a nematic director n at the
surfaces �z= ±d /2� that follow

n�x� = cos��x/��x + sin��x/��y + 0z , �1�

where � is the effective optical grating period �note that the
true nematic grating period is 2��.

It was realized early that the stable director configuration
will not be uniformly in-plane for arbitrary cell gap thick-
nesses d or in the presence of a strong electric field. In fact,
a critical thickness dC was theoretically identified �2,15,16�
below which the director will match Eq. �1�, and above
which the director will spontaneously distort out-of-plane.

When an electric field is applied perpendicular to the sub-
strates, the nematic director is also expected to reorient out-
of-plane as illustrated in Fig. 1�b�. A Freedericksz voltage
threshold Vth was identified �1,16� with values similar to
other display modes. Previous analyses employ the one-
constant approximation �1,15�, which remains inaccurate,
and does not characterize realistic device behavior. More-
over, dynamics were completely overlooked even though it is
well understood for other LC modes �17,22�.

We seek to better understand the equilibrium and dynamic
behavior of the LCPG, with as few assumptions as possible
�arbitrary elastic constants�. We will arrive at a coupled
variational problem, unlike that predicted by the one-
constant approximation. To simplify and decouple this sys-
tem, we propose an equivalent model for the LCPG that is
general enough to accurately identify key device parameters,
yet simple enough to solve analytically. We then consider
pretilt and weak anchoring. Comparisons to numerical simu-
lations and published experimental work are included wher-
ever possible. This rigorous analysis addresses why experi-
mental realization of defect-free LCPGs has been
unexpectedly challenging, and predicts the material param-
eters and geometry that should optimize fabrication.

II. ELASTIC CONTINUUM MODEL

The general expression of the Frank-Oseen elastic energy
density ��17�, Chap. 2� for nonchiral nematic LCs in the
absence of electromagnetic fields is

�F =
1

2
K1�� · n�2 +

1

2
K2�n · � � n�2 +

1

2
K3�n � � � n�2

+
1

2
K2� · ��n · ��n − �� · n�n� , �2�

where K1, K2, and K3 are the elastic constants corresponding
to splay, twist, and bend deformations, respectively. When an*mjescuti@ncsu.edu
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applied electric field E is present, the electric energy density
can be expressed as

�elec = −
1

2
�0���n · E�2, �3�

where �0 is the vacuum permittivity and �� is the dielectric
anisotropy of the LC.

The local average orientation of LC molecules, defining
the nematic director n, can generically be written as a unit-
vector field using the geometry of Fig. 1�c�,

n��,�� = cos � cos �x + cos � sin �y + sin �z , �4�

where � and � are the tilt and azimuth angle, respectively. In
our case, ��x ,z�, ��x ,z�, and n�x ,z� are all independent of y
due to the geometry of our boundaries.

We can estimate equilibrium electro-optical properties by
finding the lowest-energy nematic director profile using
variational minimization given the spatial boundary condi-
tions and external electric field ��17�, Chap. 3�. We now refer
to the LCPG geometry shown in Fig. 1 and make the follow-
ing clarifying assumptions: �i� Strong anchoring conditions
exist ensuring that �=0 and �=�x /� at z= ±d /2. In Sec. V
we relax this condition and consider weak anchoring. �ii� We
define ����z� and ����x�. Since this holds for the ideal
zero-field configuration �Fig. 1�a��, we anticipate that it is
also valid for low fields. �iii� The electric field is along the z
axis and generated by an applied voltage such that E= �E �
=V /d. �iv� When V	Vth, we assume the tilt angle is sym-
metric about the center of the sample, ��z�=��−z�. �v� The

maximum tilt angle �m at any equilibrium state occurs at the
center of the sample, ��z=0�=�m and �� /�z�z=0=0.

Using these, the bulk elastic energy density ��=�F

+�elec� can be simplified to

� = f��,��� ��

�x
�2

+ g���� ��

�z
�2

+ h��,��� ��

�x
�� ��

�z
�

−
1

2
�0��E2 sin2� , �5a�

f��,�� =
cos2�

2
�K2 sin2� + K3 cos2� + e��,��� , �5b�

e��,�� = sin2��K1 − K2 sin2� − K3 cos2�� , �5c�

g��� =
1

2
�K1 cos2� + K3 sin2�� , �5d�

h��,�� = �K2 − K1�cos2� sin � . �5e�

Using the classic variational approach ��17�, Chap. 2�,
nematic director configurations with minimum free-energy
density must be solutions to

�

�x
� ��

��,x
� −

��

��
= 0, �6a�

�

�z
� ��

��,z
� −

��

��
= 0, �6b�

where “,x” and “,z” refer to partial derivatives with respect to
x and z, respectively. A system of coupled differential equa-
tions results:

�

�x
�2f��,��

��

�x
� −

� f��,��
��

� ��

�x
�2

= 0, �7a�

�

�z
�2g���

��

�z
� −

� f��,��
��

� ��

�x
�2

−
�g���

��
� ��

�z
�2

+ �0��E2 sin � cos � = 0. �7b�

These constitute a system of coupled nonlinear second
order differential equations. The coupling arises primarily
through the term f�� ,��, which generally has nonconstant
partial derivatives to both � and � variables. Solutions to
Eqs. �7� therefore necessarily lead to ��x ,z� and ��x ,z�,
functions that depend on both spatial variables. Because our
initial assumption used to derive Eqs. �7� was that � and �
were independent, this contradiction means that we ought to
rederive the total energy density �Eqs. �5��, leading to more
complicated expressions which cannot be solved analytically.
Note that the one-constant approximation completely ne-
glects this coupling.

We instead suggest a different approximation to Eq. �5b�
which allows for analytical solutions to be found for its es-
sential equilibrium and dynamic properties that are nearly
identical to those of the original problem. We will test the
validity of the resulting analytic expressions using an inde-
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FIG. 1. �a� LCPG geometry. �b� Distorted LC configuration
when V	Vth. �c� Definition of nematic director n.
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pendent numerical approach to the original problem. The ap-
proximation is as follows: since sin2� is bounded by 0 and 1,
we introduce a parameter 
→0�
�1 so that f�� ,�� no
longer depends on �:

f��,�� → f̂��� =
cos2�

2
�K2 sin2� + K3 cos2�

+ 
�K1 − K2 sin2� − K3 cos2��� . �8�

Using this new expression, Eqs. �7� are now transformed to
equations that can now be solved analytically:

�2�

�x2 = 0, �9a�

�

��
	g���� ��

�z
�2
 −

� f̂���
��

� ��

�x
�2

+ �0��E2 sin � cos � = 0.

�9b�

Even though this model no longer completely describes
the original situation, as will be later shown, it is sufficient to
identify the critical device inflection points �voltage thresh-
old and critical thickness�. Since 
 replaces the term sin2�,
we expect 
=0 and 
=1 to give the bounds for these equi-
librium parameters. By comparing to numerical simulation
which models the original problem, we find this to be true
and furthermore find a particular value of 
 that accurately
estimates each of those parameters for all LC materials con-
sidered. The numerical simulation is performed with LC3D

�Liquid Crystal Display 3-D Director Simulator Software�, a
modeling package �19� which solves for nematic director
configurations given material parameters �including arbitrary
elastic constants� and boundary conditions, under the as-
sumptions of strong anchoring, no-flow, and a constant order
parameter.

Solutions to Eqs. �9� can be found by applying the clas-
sical reasoning used to find Freedericksz-type transitions.
Using the boundary condition �Eq. �1��, we can identify that
�=�x /� is the solution to Eq. �9a�. One obvious “undis-
torted” solution to Eq. �9b� is ��z�=0. We can furthermore
find “distorted” solutions ��17�, Chap. 3� to find the implicit
relationship between � and z, d, and E:

�

�
�z +

d

2
� = �

0

��z�

G��m,��d� , �10a�

G��m,�� = �K1 + �K3 − K1�sin2�m sin2��1/2�
K1 + �1 − 
�

��2K3 − K2 + sin2�m�1 + sin2���K2 − K3��

+ �0��E2��/��2
−1/2�1 − sin2�m sin2��−1/2,

�10b�

��z� = sin−1� sin ��z�
sin �m

� . �10c�

Solutions to Eq. �10� describe the equilibrium state of the
LCPG for any given grating geometry, elastic constants, and
electric field. We will use them to analyze the transition be-

tween the two configurations in Fig. 1, and derive the critical
thickness and voltage threshold in Secs. III A and III B, re-
spectively. Subsequently in Sec. III C, we will apply the
Ericksen-Leslie dynamic equations to model the switching
behavior.

III. STRONG ANCHORING CONDITIONS

A. Critical thickness

As with almost all LC pixel structures, the cell thickness d
is a key design parameter affecting both the optical and
electro-optical behavior of the device. In the LCPG, the
thickness takes on a unique role. If we solve Eqs. �10� for the
thicknesses that produce a maximum tilt angle �m when no
field is present �E=0�, we identify the distorted solutions.
These distorted angles and the undistorted solution are plot-
ted in Fig. 2�a� for the nematic MLC-6080 ���= +7.2,
�K1 ,K2 ,K3�= �14.4,7.1,19.1� pN, Ref. �20��. Note that the
thickness solution corresponding to �m=0 in Eqs. �10� leads
to the critical thickness

FIG. 2. �a� Calculated maximum tilt angle �m for nematic MLC-
6080 �and 
=0.4�, showing the critical thickness dC. �b� Total en-
ergy WTOT for both potential solutions. �c� Comparison of dC for
various LC materials �Merck �20,22�� analytically calculated using
Eq. �10� as a function of 
 and numerically calculated with LC3D

�bars�. The solution 
=0.4 gives the best match.
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dC�
� = �	
 + �1 − 
��2K3

K1
−

K2

K1
�
−1/2

, �11�

that identifies the point at which the distorted solution ap-
pears. In order to identify which configuration has the lower
total energy WTOT when d	dC, we solve Eq. �10� to find
��z� for each solution �m and then integrate the energy den-
sity �Eqs. �5�, with Eq. �8�� to find the total energy. As shown
in Fig. 2�b�, the distorted configuration clearly has a lower
total energy above the critical thickness, and is therefore the
preferred solution.

We now determine the best value of the so-far undeter-
mined 
. Since K2
K1
K3 in most LCs, the lower and
upper bound for dC occurs as 
=0 and 
=1:

�

�2K3

K1
−

K2

K1


 dC 
 � . �12�

In Fig. 2�c�, we use Eq. �11� to calculate dC as 
 is varied
from 0 to 1 for various nematic LC materials. We also use
LC3D to numerically calculate the critical thickness for these
same materials. When superimposed in Fig. 2�c�, it is clear
that 
=0.4 in the analytical equation predicts the numerical
data best. One explanation of 
 is that it averages out the x
dependence of � across the entire period of the grating. We
might then expect that �sin2��x /���=0.5 is the best value of

, but due to the nonlinear nature of the problem, it is dif-
ferent.

The dC reported using a completely different numerical
technique �15� also correspond well, supporting our assertion
that the analytical expression for dC in Eq. �11� is reasonable,
in spite of the approximation �Eq. �8��. Substituting K3=K1
in the lower bound for dC gives the two-constant approxima-
tion expression derived earlier �16�. The one-constant ap-
proximation gives the less accurate estimate dC=� calcu-
lated previously �2,15�.

Since the desired in-plane LC configuration of Fig. 1�a�
contains only splay and bend deformations, the critical thick-
ness may be intuitively understood as the point beyond
which the introduction of a twist deformation becomes ener-
getically favorable. It may also be thought of as maximum
thickness for which the interaction length of the two surfaces
dominate the behavior of the bulk.

B. Voltage threshold

The effect of an external electric field on the LCPG cell
�assuming d�dC� can be described as a Freederickz transi-
tion. Below a certain voltage threshold Vth �1,16�, the LC
configuration remains unaffected. Once the voltage exceeds
the threshold value, the lowest energy configuration is dis-
torted. Using the same process as with the critical thickness
�but now with E=V /d�0� we can identify the voltage
threshold as

Vth = �� K1

�0��
	1 − � d

dC
�2
1/2

, �13�

where �� is the dielectric anisotropy and dC is the critical
thickness identified in Eq. �11�. In Fig. 3 we compare Vth

analytically calculated for MLC-6080 to values numerically
simulated using LC3D. As expected, the numerically simu-
lated results fall between the analytical bounds, with 
=0.4
as the best fit.

Note that Vth approaches the value ��K1 /�0�� for small
d /�, indicating that this threshold approaches the well-
known value ��17�, Chap. 3� for a homogeneously aligned
cell. As previously identified �1�, the voltage threshold van-
ishes as d approaches dC. However, this should also be un-
derstood in light of the existence of the critical thickness
�which effectively means that when d�dC the grating is al-
ready switched�. The earlier one-constant approximation �1�
can also be verified.

C. Switching times

In order to estimate the dynamic response times resulting
from a step-input change in the electric field, we turn to the
Ericksen-Leslie dynamic equations ��17�, Chap. 4�. We will
assume a no-slip condition �i.e., local fluid velocity is zero
everywhere� in this discussion, even though we suspect a
priori that this is a rough approximation �since backflow and
kickback effects are usually prominent in the case of splay
and bend geometries �18��. It nevertheless allows us to find
no-flow analytic expressions that can be compared to nu-
merical results from LC3D as well as experimental results,
and be used to show that flow does in fact play a significant
role.

The dynamic director configuration must satisfy

�

�z
� ��

��,z
� −

��

��
− �1

��

�t
= 0, �14�

where �1 is the rotational viscosity. After applying the energy
density expressions derived in Sec. II �including Eq. �8� with
the parameter 
�, we find

�1
��

�t
=

�

��
	g���� ��

�z
�2

− f̂�����

�
�2
 + �0��E2 sin � cos � .

�15�

This expression does not have an analytic solution in gen-
eral �to our best efforts�. Therefore we make the conjecture
that the term �g��� /����� /�z�2 is negligible, and subse-
quently check this with the full numerical solutions obtained

� ��� ��� ��� ��� �
�

���

�

���

d /Λ (-)

V th
(V

)

α 	 �

α 	 �

α 	 ���

FIG. 3. Threshold voltage Vth for the material MLC-6080 ana-
lytically calculated �curves� using Eq. �13� and numerically calcu-
lated �circles� using LC3D.
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from LC3D simulation. In fact, this is exactly true if K1=K3,
as was done in a previous work �16�. Therefore after neglect-
ing this term and using �sin ����, the tilt angle must follow

�1
��

�t
= K1

�2�

�z2 + �	K1� �

dC
�2

+ �0��E2
 . �16�

Using the ansatz ��17�, Chap. 5�

��z,t� = �
k=1

�

Ak cos� k�z

d
�exp�−

t

�k
� , �17�

we can identify the �k exponential time constants that de-
scribe the director response when a field is suddenly applied.
As with many display modes, the switch-ON time dynamics
are bounded by �on=−�k=1. In a similar manner, the switch-
OFF time constant �of f, when a field is suddenly removed,
can be identified when E=0 in Eq. �16�. These no-flow re-
sponse times are

�on =
�1d2

�0���V2 − Vth
2 � , �18a�

�of f =
�1d2

�0��Vth
2 , �18b�

where Vth was defined earlier. These are related to the
10–90 % rise time ton and 90–10 % fall time tof f measured
in experiments through ton=ln�9��on and tof f =ln�9��of f, re-
spectively.

As a representative case, in Fig. 4 we compare these ana-
lytic rise and fall times developed using the no-flow assump-
tion with those calculated numerically using LC3D for the
material MLC-6080 ��1=157 mPa s, Ref. �20��. Strong cor-
relation can be seen in this example �and with all other LC
parameters we simulated�, primarily because the LC3D also
neglects all flow effects �19�.

While these two simulations concur well with each other,
the fall times from experiment are five to six times faster
�12–14�. This suggests that backflow �and perhaps kickback�
effects are dominant in the LCPG due to the strong bend and
splay deformations, and should be theoretically included as
an effective viscosity �Ref. �17�, Chap. 5�. However, in the

case of the LCPG flow effects cannot be analyzed even with
the approximations made so far and hence is beyond our
present scope.

IV. EFFECT OF PRETILT

In the discussion thus far, a zero pretilt has been assumed
in order to simplify the analysis as much as possible. Now
we seek to understand if those results are still applicable
when a small, nonzero pretilt exists. Pretilts are usually es-
sential to LC devices because they provide a nondegenerate
reference that assists in avoiding disclinations and instabili-
ties arising from a zero-pretilt symmetry �21�. We show in
Fig. 5�a� the LCPG configuration found with LC3D when a
nonzero pretilt �0=5° is applied with strong anchoring con-
ditions �compare to Fig. 1�. By again applying the assump-
tions in Sec. II, we find that a modified Eq. �10a� can be used
to understand the dependence of dC and Vth on �0:

�

�

d

2
= �

�0

�/2

G��m,��d� , �19a�

�0 = sin−1� sin �0

sin �m
� . �19b�

As in the zero-pretilt case, the transition between undis-
torted and distorted solutions occurs when we set �m=�0 in
Eq. �19�. Since this leads to �0→� /2, the integral vanishes,
and both Freedericksz-type transitions occur when dC=0 and

�

�

10

� � � � ��
�		
��
 ��
���� ���

�
�
��
�
�
��
�
�
��

�
�
��

�
�

toff

ton

FIG. 4. No-flow rise �ton� and fall �tof f� times for MLC-6080
analytically calculated �curves� using Eq. �18� and numerically cal-
culated �circles� using LC3D �d=2 �m, �=11 �m�.

d /Λ (-)
� ��� � ��� �

�

��

��

��

��

	�


�

θ m
(

)

��
������� ������� θ0
�� � ��� � � � � � � �
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(b)

z=0

0.5d

+0.5d

x=0 0.5Λ 1.0Λ 1.5Λ 2.0Λ

θm
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d
eg

FIG. 5. �a� LCPG nematic director with a nonzero pretilt �0

=5° and d /�=0.5, predicted by LC3D. �b� Maximum tilt angle �m

for MLC-6080 analytically calculated using Eq. �19� �curves� and
numerically calculated using LC3D �circles�.
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Vth=0. However, when the pretilt is small �0��0�1�, the
two solutions are not substantially different �i.e., �m remains
nearly �0� until the thickness approaches dC or the applied
voltage approaches Vth. Similar to the effect of pretilt in stan-
dard display modes �Ref. �17�, Chap. 3�, we can quantify this
distortion by defining �m=�0+�, where the deformation
�� � �1. By substituting this into Eq. �19� and rearranging,
we can find how � depends on thickness �when E=V /d=0�
and on applied voltage �with fixed d�dC�, respectively:

� � �0	sec��

2

d

dC
� − 1
 , �20a�

� � �0	sec��

2
�1 + �V2 − Vth

2 �
�0��

�2K1
� − 1
 , �20b�

where dC and Vth refer to the strong anchoring values derived
earlier. Note that both deformations are nearly zero until d
and V approach dC and Vth, respectively.

Figure 5�b� shows the maximum tilt angle analytically
determined using Eq. �19� and numerically calculated using
LC3D. Note the strong correspondence between the two, and
that both confirm our analytical reasoning that the thresholds
predicted for �0=0° sufficient to characterize the LCPG for
small pretilt values.

V. WEAK ANCHORING CONDITIONS

Weak anchoring conditions permit surface director reori-
entation in response to electromagnetic fields and/or pixel
geometry. Since weak anchoring strengths of photoalignment
materials are well known �21,23,24�, it is important to un-
derstand its effect on the critical thickness and voltage
threshold. This may also help explain the difficulty �1,25,26�
in experimental fabrication of LCPGs without defects until
recently �7,12–14�.

The surface anchoring energy density �27� applied to our
periodic geometry �and zero pretilt� is given by

�s = Wp sin2� + Wa cos2� sin2�� −
�x

�
� , �21�

which depends on a polar �or tilt� energy strength Wp and an
azimuthal energy strength Wa, and where � and � are the tilt
and azimuth angles at either surface �z= ±d /2�. The follow-
ing conditions �Ref. �17�, Chap. 2� must be satisfied at the
boundaries to minimize the total energy �in addition to bulk
equilibrium equations given by Eq. �6��:

���F + �elec�
��,z

±
��s

��
= 0, �22a�

��s

��
= 0, z = ± d/2. �22b�

The first case considered here is that of weak anchoring at
both surface boundaries, and the following equilibrium rela-
tion for � at z= ±d /2 results:

Wa cos2� sin�� −
�x

�
�cos�� −

�x

�
� = 0. �23�

If Wa�0, then �=�x /� minimizes this expression regard-
less of Wa, suggesting that azimuthal anchoring does not
have a strong influence. However, analytic expressions in-
cluding the polar anchoring strength can be found if we as-
sume a one-constant approximation and follow Secs. II and
III. The weak anchoring critical thickness dC� and voltage
threshold Vth� can be derived as

dC� = �	1 −
2

�
tan−1� K�

Wp�
�
 , �24�

Vth� = �� K

�0��
	�1 −

2

�
�0�2

− � d

�
�2
1/2

, �25a�

tan �0 =
K

Wp
	�Vth� �2�0��

d2K
+ ��

�
�2
1/2

. �25b�

The prime is used here to distinguish from the strong anchor-
ing case. The unprimed quantities are for the strong anchor-
ing �Wp= � �. Note that Eqs. �25� must be solved iteratively,
and that �0 here is the limit of Eq. �10c� evaluated at the
boundaries as the tilt angles go to zero.

The predicted thresholds dC� and Vth� are plotted in Fig. 6
for various grating periods, using the representative values
d=2 �m, K=10 pN, and ��=7.2. To clarify the effect of a
finite Wp, normalized values have been plotted to show their
deviation from the strong anchoring case. Two trends are
important to note. First, the normalized quantities approach
unity for high anchoring strengths ��Wp�10−4 J /m2�, as
expected. Second, both dC� and Vth� are reduced dramatically

Wp (J/m2)
�� �� �� �� ��

�

���

�

�

���

�

(a)

d C
/d

C
(-

)

(b)

V
th

/V
th

(-
)

����	
���� Λ 
µ��

���� �� ��� ��� ���

FIG. 6. �a� Weak-anchoring critical thickness dC� and �b� voltage
threshold Vth� dependence on polar anchoring strength Wp predicted
by Eqs. �24� and �25�, for various periods �. The plots are normal-
ized to unprimed quantities dC and Vth �the strong anchoring thresh-
olds�. The solid circles in �a� show the point on each curve where
dC=2 �m, the thickness used for the calculation in �b�.
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�ultimately to zero� even for modest anchoring strengths
�10−7
Wp
10−4 J /m2� depending on the grating period.
These trends therefore suggest the thresholds will always be
lower than those in the strong anchoring case and are most
sensitive to the polar anchoring strength. The anchoring
strength itself arises from the interaction between the align-
ment layer and LC �28� �influenced by both chemistry and
processing�, and measurements have shown that photoalign-
ment �23,29� and rubbed polyimide �21� materials can have
values within the entire range from weak ��10−4 J /m2� to
strong ��10−3 J /m2�.

An important implication from this weak anchoring
analysis is now apparent. Since the actual thickness d for a
device is usually determined by optical considerations �7�
�e.g. d=� /2 /�n�2–3 �m for visible wavelengths�, it is a
fixed design constraint. This design value for d will ulti-
mately determine the minimum grating period possible, since
LCPG devices must be constructed such that d�dC in order
to have in-plane anchoring, a nonzero voltage threshold, and
noninfinite switching times. From Fig. 6�b�, it is apparent
that Vth goes to zero exactly when d=dC �as indicated in Fig.
6�a� by the solid circles�. Therefore a minimum value of Wp

must be implemented in order to obtain a well-aligned LCPG
for a given d, and this minimum required Wp becomes more
stringent as the ratio d /� approaches unity. The end result is
that larger grating periods �	10 �m� are easier to fabricate
than smaller periods precisely because photoalignment mate-
rials often have modest anchoring strengths.

The second case of interest is that of weak anchoring on
one substrate and strong anchoring at the other. This may be
the best description of spin-cast reactive mesogen LCPG
films �10,25�, and certain switchable LCPG configurations.
Since only one of the signs in the ± terms of Eqs. �22�
applies, it is possible to show that dC� and Vth� for this case
have the same form as before, with the change that 2 /�
→1/� in Eqs. �24� and �25a�. Notice that the mixed weak or
strong anchoring again reduces both parameters, but in this
case dC� converges to � /2 as Wp→0. It is important to note
that if we had assumed degenerate planar anchoring �Wa

=0� �27�, we arrive at this same behavior.
From the analysis in this section, we see that the best

photoalignment material for use in LCPG devices will pro-
vide strong polar anchoring. At smaller grating periods, weak
anchoring effects are more pronounced and hence the choice
of alignment materials becomes crucial.

VI. COMPARISON WITH EXPERIMENT

It is now clear that the electro-optic properties of the
LCPG are strongly influenced by both material properties
and pixel geometry. In the strong anchoring case, the critical
thickness is always less than the grating period �due to non-
equal elastic constants� and the voltage threshold approaches
zero as d approaches dC �and not � as previously estimated�.

It is also clear that weak anchoring can further reduce both
parameters substantially, depending on both the anchoring
strength and d /�.

A brief comparison of the analytic expressions derived
here with experimental data is in order. Early attempts to
fabricate the LCPG structure �1,25,26� resulted in strong in-
coherent scattering and very low diffraction. Since these
works were dominated by defects, the ideal LCPG structure
�Fig. 1� was not created over an appreciable area, making a
comparison to the analytic expressions for the ideal case
questionable. Therefore we instead compare to experimental
results in more recent work �7,12–14� wherein the LCPG
texture has been realized without defects and exhibits ideal
optical properties ��100% diffraction efficiency and 600:1
contrast ratio�.

Data from two contrasting samples with the following pa-
rameters is particularly relevant: �A� material MLC-6080, d
=2 �m, �=11 �m; and �B� material MLC-12100-000, d
=2.9 �m, �=6.3 �m. Their measured voltage thresholds
�Vth=1.6±0.1 and 0.7±0.1 V, respectively� are close to
those predicted by Eq. �13� with 
=0.4: �Vth=1.5 and 1.0 V,
respectively�. As designed, the thickness of each is below
their respective critical threshold �dC=8.5 and 5.2 �m, pre-
dicted by Eq. �11��. For sample �A�, all 
 values predict a Vth

within the measurement error, since d /�=0.18 �see Fig.3�.
For sample �B�, the best fit �
=0� predicts Vth=0.96 V.
However, we presume this discrepancy is linked to weak
anchoring �since d /�=0.46, see Fig. 6�b��.

The largest discrepancy we notice is with regard to the
dynamics. The measured fall times were approximately con-
stant �tof f =1.5±0.2 and 8.7±0.2 ms, respectively�. The ana-
lytic prediction �Eq. �18b�� is a factor of �5 slower �tof f

=10 and 44 ms, respectively�. This effect is similar to that
observed with the twisted nematic pi-cell �30� and other
characteristic modes �17,21�, where fluid-flow considerably
accelerates director reorientation both when voltage is ap-
plied and when removed, leading to a major reduction in the
switching times.

VII. CONCLUSION

We have analyzed the equilibrium and dynamic electro-
optic behavior of the LCPG profile using elastic continuum
principles. Analytic expressions were derived for the critical
thickness, voltage threshold, and no-flow switching times
�for arbitrary elastic constants, zero pretilt, and strong an-
choring�. We also found that LCPGs with a small, nonzero
pretilt are well characterized by the zero pretilt parameters.
By comparison with experimental data, we have identified
that backflow and kickback are likely prominent in the
LCPG configuration, leading to faster dynamics. Numerical
simulations using LC3D confirmed the validity of all these
strong anchoring expressions. Finally, we derived analytic
expressions that predict the influence of weak anchoring on
the critical thickness and voltage threshold, and discuss its
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influence on experimental LCPG realization. Because this
analysis has been done within a more general framework
than all previous LCPG studies, it serves as a robust guide
for material optimization and device design, and the 
 ap-
proximation is likely useful for many problems with nano- or
micropatterned surfaces.
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