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The present work examines the applicability and efficacy of recurrence plots and recurrence quantification
analysis in interpreting statistical-mechanics-based simulations of classical fluids and solids. We analyze tem-
perature time series obtained from molecular dynamics simulations of a Lennard-Jones system at various fluid
and solid states. It turns out that the structure of the recurrence plots reflects the different regimes of atomic
motion as well as the degree of atomic diffusivity as the system density and temperature are varied. Recurrence
plots �RPs� can help to localize a region where a phase transition occurs, while recurrence quantitative analysis
descriptors confirm in a more clear way the results of RPs. The trends identified in our results are in qualitative
agreement with direct computation of Lyapunov exponents for liquid Lennard-Jones systems reported in the
literature.
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I. INTRODUCTION

The study of dynamical systems by analyzing the evolu-
tion in time of one or more observables is of importance in
many scientific areas, since we rarely have direct access to
the intrinsic dynamics of a system. Usually, we record one or
more system observables at equidistant points in time and,
based on the time series generated, we extract characteristics
about the underlying system dynamics. This is the case in
many physical systems in materials science, meteorology,
hydrology, etc., as well as biology, econometrics, and finan-
cial analysis, to mention just a few scientific areas where
time series analysis has attracted great interest in recent
years, especially in cases where the behavior of the underly-
ing system is chaotic.

Standard methods in time series studies include spectral
analysis, rescaled range analysis, computation of autocorre-
lation functions, and average mutual information. More com-
plex methods based on phase space reconstruction, such as
computation of correlation dimension and the false nearest
neighbors test are also very useful in time series analysis.
Comprehensive reviews of these methods can be found in
�1–3�. These methods allow us to extract information about
system temporal correlations and to give an answer to the
question of the existence or not of a chaotic attractor. How-
ever, these methods are not always straightforward to apply
and must be used with caution, especially in applications
with high noise-to-signal ratio, short observation records,
and high dimensionality. More recent methods, based also on
the idea of phase space, include the construction of recur-
rence plots �RPs� �4� �a visual analysis tool that relies
heavily on the power of human perception� and the recur-
rence quantification analysis �RQA� �5� which extracts quan-
titative information from RPs in order to render the analysis
objective.

In this paper, we focus on a dynamical system which con-
sists of argon atoms interacting via a Lennard-Jones poten-

tial. The system evolution in time is simulated by classical
molecular dynamics �MD� methods �6,7� at various thermo-
dynamic states. Based on statistical mechanics one can com-
pute a number of system “observables” such as temperature,
pressure, potential energy, etc., i.e., measurable quantities
that depend on the system dynamics. These highly oscilla-
tory time series were analyzed by Karakasidis and Liakopou-
los �8� using standard time series methods of analysis. Spe-
cifically, rescaled range analysis and spectral analysis
revealed a two-regime power law �1/ fa� behavior which cor-
responds to the regimes of atomic motion in the fluid. Posch
and Hoover studied the full Lyapunov spectrum of such a
Lennard-Jones fluid at various thermodynamic states and
found it to be chaotic �9,10�. Giuliani and Manetti �11� and
Manetti et al. �12� have employed RQA to discriminate the
dynamics of proteins from the dynamics of a simple
Lennard-Jones liquid by analyzing the potential energy time
series generated by molecular dynamics simulations. That
study was limited to only one state of the Lennard-Jones
fluid.

In the present work, we use RPs and RQA to analyze a
model Lennard-Jones system at various thermodynamics
states in order to see how the inherent dynamics of the sys-
tem is reflected in the RPs and the RQA descriptors. Molecu-
lar dynamics simulations were carried out in the microca-
nonical ensemble, and a single observable, the instantaneous
temperature, was analyzed. We note that the instantaneous
system temperature, being proportional to the kinetic energy,
depends on the squares of the particle velocities and thus
directly on the dynamics of the system. We mention also that
an analysis of the instantaneous potential energy would not
add new information because in the microcanonical en-
semble the kinetic energy fluctuations are the same as those
of the potential energy, since the sum of potential and kinetic
energy is constant. This is expected on theoretical grounds
�13�, and it is also confirmed in our simulations for the sys-
tem under study �8�. The temperature time series is used to
reconstruct the phase space, and subsequent analysis of the
results obtained shows how the dynamics of the physical
system and its liquid-to-solid phase transition is reflected in
the RP and RQA measures.*thkarak@uth.gr
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The paper is organized as follows. In Sec. II a brief de-
scription of the molecular dynamics method along with a
short presentation of the ideas behind the recurrence plots
and recurrence quantification analysis are given. In Sec. III
we present the analysis of temperature time series using RPs
and RQA and attempt a physical explanation of the observed
behavior. Conclusions are summarized in Sec. IV.

II. MODELS AND METHODS

A. Molecular dynamics simulations

We consider a system of Np interacting particles contained
in a volume V. In the absence of external forces, the dynam-
ics of the system is described by a Hamiltonian H which is
conserved in time, i.e.,

H = �
i=1

Np 1

2
mivi

2 + U�r�1, . . . ,r�NP
� = const, �1�

where r�i and v� i denote the position vector and velocity of the
ith atom, respectively. The sum in Eq. �1� represents the
kinetic energy of the system while U denotes the potential
energy of the system.

In the present work, atomic interactions are described by a
6-12 Lennard-Jones potential:

��rij� = 4����/rij�12 − ��/rij�6� �2�

and � and � are parameters empirically derived by fitting
calculated quantities to experimental data. For argon, the val-
ues of the parameters are �=3.408 Å and � /kB=119.8 K.
The cutoff distance for the interactions was set to 2.5�. It is
customary to refer to the system reduced temperature, de-
fined as T*=kBT /�, and to reduced density, defined as �*

=Np�3 /V, where Np is the number of atoms in the MD cell
and V is the cell volume. The phase diagram of the Lennard-
Jones system appears in Fig. 1 and the simulated thermody-

namic states are marked.
For a system in three dimensions, we integrate 3Np

coupled second-order scalar differential equations of motion
with appropriate initial conditions and determine the position
and velocity of each particle as functions of time. Average
temporal quantities, which are comparable to macroscopic
measurable quantities, are computed through statistical me-
chanics relations �7�, e.g., the instantaneous kinetic tempera-
ture is given by

T =
1

3NpkB
�
i=1

Np

mivi
2, �3�

where vi denotes the speed of particle i and kB is the Boltz-
mann constant. Further in the text we are going to refer to
this quantity as the system instantaneous temperature. In ad-
dition to the temperature time series, we have calculated and
analyzed the mean square displacements �MSDs� which are
defined as

��r2�t�� =
1

N��
i=1

N

�r�0� − r�t��2	 �4�

The symbol �¯� denotes an average in time. The MSD
shows how far the atoms are displaced from their initial po-
sitions as a function of time.

Simulations were performed for Np=256 atoms. In order
to start the simulation, atoms are located on a fcc lattice in a
cube with edges parallel to the directions x �100�, y �010�,
and z �001�. The dimensions of the simulation cell are such
that we match the reduced density of the system. Periodic
boundary conditions are applied in the x, y, and z directions.
The equations of motion were solved using Verlet’s algo-
rithm �15�, with a time step �t=10−14 s. In order to start the
simulation, atoms are given velocities in order to reach the
appropriate temperature conditions. Equilibration runs of 3
�104 steps were performed before starting the production
runs. The production runs were 10−10 s long and all relevant
quantities were saved every 10−14 s. We simulated the system
for reduced density �* in the range 0.2–1.4 and reduced tem-
perature T* in the range 1.5–2.5 �see Fig. 1�. At each ther-
modynamic state, results are averaged over ten independent
production runs performed with different initial conditions.

B. Recurrence plots and recurrence
quantification analysis

Recurrence plots are a graphical tool introduced by Eck-
mann et al. �4� in order to extract qualitative characteristics
of a time series. In the present work, the method is imple-
mented in the reconstructed phase space of the system, but it
can be applied to any phase space trajectory. We first embed
the time series, say x�t�, in an m-dimensional space by form-
ing a sequence of vectors si= 
x�ti− �m−1��d� ,x�ti− �m
−2��d� , . . . ,x�ti��, where �d denotes an appropriately selected
time delay. The corresponding RP is based on the recurrence
matrix �16�

FIG. 1. �Color online� Phase diagram of the Lennard-Jones sys-
tem �from �14��. The simulated states are marked in red.
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Ri,j = �1, si 
 sj ,

0, si � sj ,
� i, j = 1, . . . ,N , �5�

where N is the number of considered states and si
sj signi-
fies equality up to a cutoff distance �. In fact, one compares
the states of the system at times i and j and, if they are
similar, this is indicated by a 1 in the recurrence matrix,
otherwise the corresponding value is set to zero. The RP is
obtained by plotting the recurrence matrix using different
colors for its binary entries, e.g., plotting a black dot at co-
ordinates �i , j� if the corresponding element of the recurrence
matrix is Ri,j =1 and a white dot for Ri,j =0. By definition
Ri,i=1 for every i and thus the RP has a black main diagonal
line called the line of identity. Moreover, RPs are symmetric
by definition with respect to the diagonal �Ri,j =Rj,i�. When
computing a RP, a norm must be chosen. The most fre-
quently employed norms are the L1 norm, the L2 norm �Eu-
clidean norm�, and the L� norm �maximum or supremum
norm� �16�. In the present study, we employed the Euclidean
norm since it gives an intermediate number of neighbors
compared to the L1 and L� norms �16�.

In the literature there are several variations of RPs. One of
them, which is widely employed, consists of plotting the
distance matrix

Di,j = �si − sj� �6�

instead of plotting the recurrence matrix. Although this is not
a RP per se, it is sometimes called a global recurrence plot
�17� or an unthresholded recurrence plot �18�. The name
“distance plot” would perhaps be most appropriate in this
case, as mentioned in �16�. In this case, the pixels of the plot
can be colored according to how large or small the distance
Di,j is relative to the cutoff distance within which two state
points are considered as recurrence points. In the present
study, we employed such a color coding.

RPs exhibit large- and small-scale structure and different
conclusions can be reached from examination at different
scales. Hereafter we mention the basic indications and their
relation to the underlying system behavior. For further details
the reader may consult �4,16,19�.

The large-scale structure can give the following indica-
tions.

�a� Homogeneous RPs represent stationary and autono-
mous systems for which relaxation times are short in com-
parison with the time spanned by the RP. Such RPs may
occur for random time series.

�b� Periodic systems result in RPs with diagonally ori-
ented, periodic recurrent structures such as diagonal lines or
checkerboard structures.

�c� Systems with slowly varying parameters result in a RP
characterized by a drift.

�d� Abrupt changes in the dynamics as well as extreme
events result in white areas or bands in the RP.

The texture �small-scale structure�, which may consist of
single dots, or diagonal, vertical, or horizontal lines, is also
indicative of distinct system behavior.

�a� Single, isolated recurrence points can occur if states
are rare, if they do not persist for any time, or if they present

important fluctuations. However, they are not a unique sign
of chance or noise.

�b� A diagonal line occurs when a segment of the trajec-
tory runs parallel to another segment, i.e., the trajectory visits
the same region of the phase space at different times.

�c� A vertical or horizontal line marks a time length in
which a state does not change or changes very slowly.

Although powerful as a visual interpretation aid, the RP is
just a qualitative tool in order to obtain insight about the
dynamical system. Webber and Zbilut �5� and Marwan et al.
�20� extended this idea and defined a number of measurable
quantities that can be extracted from the recurrence plots,
giving rise to recurrence quantification analysis. RQA has
been used in the study of various dynamical systems such as
proteins �21,22�, corrosion �23�, financial systems �24,25�,
physiological systems �20,26,27�, and traffic dynamics �28�
just to mention a few. One advantage of RQA over other
tools of analysis of time series is that it does not require that
the time series under study is stationary.

Some of the RQA indices that have been proposed �5,20�
and we have employed in the present study are summarized
in the following paragraphs for easy reference.

(a) Recurrence �RRec, frequently referred to also as
%REC� gives the ratio of the number of recurrence points
�pixels� to the total number of points �pixels� of the plot,

RRec =
1

N2 �
i,j=1

N

Rij . �7�

This is a basic output of RQA. Its value depends on the
cutoff radius chosen.

(b) Determinism �RDet, or %DET� is the ratio of the num-
ber of recurrence points forming upward diagonal lines to the
total number of recurrence points,

RDet =

�
l=lmin

N

lP�l�

�
l=lmin

N

P�l�

. �8�

The threshold lmin excludes the diagonal lines formed by the
tangential motion of the phase space trajectory �16�.

Periodic signals have very long uninterrupted diagonal
lines; uncorrelated stochastic signals result in RPs with many
single points, while chaotic signals have a broad distribution
of lengths of diagonal lines �16�.

(c) Maxline, which is simply the length of the longest
diagonal line segment in the plot, excluding the main diago-
nal line of identity. This is a very important recurrence vari-
able because it is related to the Lyapunov exponents �4,29�.
As discussed extensively in �16�, Eckmann et al. have stated
that “the length of the diagonal lines is related to the largest
positive Lyapunov exponent if any” �4�. One approach to
estimate the largest Lyapunov exponent is to compute the
largest line. However, the relationship between this measure
and the positive Lyapunov exponent is more subtle, as dis-
cussed extensively in �16�. In fact, the K2 entropy is related
to the cumulative frequency distribution of the lengths of the
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diagonal lines and therefore with the lower limit of the sum
of positive Lyapunov exponents K2	�
,�0
�. Thus maxline
can be used as an estimator of K2 and thus of the lower limit
of the sum of the positive Lyapunov exponents. As a conse-
quence, the shorter the maxline, the “more chaotic” the time
series.

(d) Trapping time �TTime, or TT� shows the average length
of the vertical lines,

TTime =

�
v=vmin

N

vP�v�

�
v=vmin

N

P�v�

�9�

where v is the length of the vertical lines, vmin is the lowest
length that is considered a line segment �which is usually
taken to be equal to 2�, and P�v� is the distribution of the
corresponding lengths. The TT shows the time that the sys-
tem has been trapped in the same state. We stress the point
that these measures are based on binary RPs.

C. RPs and RQA: Implementation details

In order to construct the RPs and perform the RQA analy-
sis, we employed the visual recurrence analysis �VRA� pro-
gram of Kononov �30�. In order to construct a recurrence
plot one has to reconstruct the phase space and thus one has
to specify the embedding dimension and time delay. The
time delay �d was determined by the first minimum of the
average mutual information, which is a criterion widely em-
ployed in time series analysis �2�. The values of �d for the
fluid states were in the range 10–17 simulation time steps,
and for the solid in the range 4–6 time steps. We have chosen
the embedding dimension to be 5 based on results from prin-
cipal component analysis.

Another parameter that must be specified is the norm used
to calculate the distances between the reconstructed phase
space states �points�. We have used the Euclidean norm
throughout this work since it is widely employed in the lit-
erature and it gives an intermediate number of neighbors
compared to the L1 and L�-norms �16�.

The cutoff distance was chosen using Webber and Zbilut’s
�5� rule of thumb that RRec should be kept low �of the order
of 0.1–2.0 %� which is also suggested by Marwan �19�. We
have chosen cutoff values such that the resulting RRec was
around 1%. This results in radii in the range 42–50 pixels.
The lowest number of recurrence points required to define a
deterministic line was taken to be 2 �5,19�.

III. RESULTS AND DISCUSSION

Representative RPs obtained at various system densities
and temperatures are shown in Fig. 2. We first discuss quali-
tatively the recurrence characteristics of our system based on
the RPs before presenting quantitative results using RQA.
All RPs presented here are thresholded and the points that
are considered recurrent are classified into categories �de-
pending on the magnitude of the distance Dij� and color
coded as follows: Black and blue pixels represent system

states �microstates� that are closest to each other in the re-
constructed phase space, red pixels correspond to intermedi-
ate distances, while yellow pixels represent still “recurrent
states” �i.e., points in the interior of the hypersphere �Dij�
=�� but separated by even larger distances. On the other
hand, gray points are nonrecurrence points, i.e., points in the
exterior of hypersphere �Dij�=�.

A first qualitative conclusion that arises from the results
summarized in Fig. 2 is that the lower the system density and
temperature the more “structured” the RP appears to be. As
the system density and temperature are raised, the structure is
gradually lost and the RPs become more homogeneous at
least at the scale of the plots in Fig. 2. For a given tempera-
ture, as the system density increases the number of dark-blue
points decreases �Figs. 2�b�, 2�d�, 2�f�, and 2�h��, while the
number of red points increases.

At low density �Fig. 2�a�� there are relatively large re-
gions of gray points �nonrecurrent states�, and as density
increases these gray regions get smaller and are distributed
over the whole plot �Fig. 2�c� and 2�e��. In the solid, gray
points are distributed almost homogeneously over the plot
�see Fig. 2�h�� resembling RPs of a random signal. High-
density fluid states �Fig. 2�e�� give rise to RPs resembling
more a solid state RP �Fig. 2�h�� than the RP of low-density
fluid �e.g., Fig. 2�a��. This characteristic change of the struc-
ture of the RP may be used to identify the phase of our
system or discriminate a solid state from a liquid state.

On the other hand, for a given density, as the temperature
increases we observe a similar change in the distribution of
recurrence points. This behavior can be seen by comparing
Figs. 2�a�, 2�c�, 2�e�, and 2�h� with Figs. 2�b�, 2�d�, 2�f�, and
2�g�, respectively. We observe that the increase of tempera-
ture leads to loss of structure of the RP and to an increase of
states that are classified as recurrent but with relatively large
distances between them �red-colored points�.

An understanding of the described evolution of the struc-
ture of the RPs can be obtained on physical grounds by con-
sidering the motion of the atoms in a liquid and in a solid. In
a solid, atoms perform vibrations around their mean posi-
tions, while in the fluid phase, atoms perform a combination
of diffusional and vibrational motion, the latter becoming
predominant as the fluid density increases. The motion of
atoms determines the microstates of the system in phase
space.

If we concentrate on the motion of just one atom for sim-
plicity, we can reason as follows. In the solid, the states of an
atom are more or less related, since vibration around its
ground state position does not result in any significant
change in the energy and the atomic configuration. There is,
of course, a loss of correlation when the atom changes direc-
tion of motion, and this occurs very often, practically at a
half period of the vibration. Given that the characteristic time
of vibrations is of the order of picoseconds, this results in
temporal correlations of microstates of the order of 10−13 s or
a few simulation time steps ��t=10−14 s�. This is in fact the
situation that we observe in the RPs for the solid �Figs. 2�g�
and 2�h��, where we see that there are very small islands of
dark blue points that are separated by red �or nearly red�
points. As temperature increases, the increased velocities of
atoms lead to faster decorrelation since the time of succes-
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FIG. 2. �Color� Recurrence plots for various system densities and temperatures. �a� T*=1.5 and �*=0.2 ��d=17�; �b� T*=2.5 and �*

=0.2 ��d=13�; �c� T*=1.5 and �*=0.4 ��d=16�; �d� T*=2.5 and �*=0.4 ��d=11�; �e� T*=1.5 and �*=0.8 ��d=11�; �f� T*=2.5 and �*=0.8
��d=10�; �g� T*=1.5 and �*=1.4 ��d=4�; �h� T*=2.5 and �*=1.4 ��d=4�. �Time is in units of simulation time steps, i.e., 10−14 s.�
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sive changes in the sign of the particle velocity gets smaller.
As a result, the blue islands �indicating strongly correlated
states� get smaller, while we have the appearance of gray
regions corresponding to decorrelated microstates.

In the liquid, the situation is more complicated, since in
this case atoms perform a more complex motion. Now atoms
can be considered to reside in a kind of “cage” formed by
their neighboring atoms. The boundaries of the cages are not
rigid but, due to the motion of the atoms, they fluctuate. Due
to the interactions, an atom moves within its cage �a kind of
vibrational motion� and at some instances gets out of its cage
and moves to another one. This motion is related to the dif-
fusion process. Representative atomic trajectories of an atom
at the lowest fluid density studied in the present work ��*

=0.2� are shown in Fig. 3�a� and at the highest density ��*

=0.8� in Fig. 3�b�. In the high-density liquid, the atom
spends some time around a given position before diffusing to
a new position where again it spends some time, and so on.
At low density, the atom is mainly diffusing. The change in
system configuration due to a diffusing atom results in a new
microstate that differs considerably from the previous one.
Geometrically speaking, this means that in phase space the
two points �states� will be relatively distant. On the other
hand, when the atom remains within its cage the system con-
figuration does not change significantly. However, the vibra-
tional motion of the atom will result in collisions with the

cage’s boundaries. These collisions will have a characteristic
time related to the time between successive changes of the
velocity sign, which is in general an order of magnitude
smaller than the characteristic times related to the diffusion
events. In summary, both diffusional and vibrational compo-
nents lead to the decorrelation of states, but at different time
scales.

The macroscopic system density and temperature influ-
ence the degree of decorrelation between states by affecting
how far and how fast an atom can travel without a change in
the sign of its velocity. For fixed temperature we note that
“blue islands” get larger as density is reduced �Figs. 2�e�,
2�c�, and 2�a��. Of course, lower density means that diffusion
dominates, i.e., hopping events are frequent and the time of
flight increases along with the corresponding hopping dis-
tances. The denser the fluid the more restricted in the “cages”
the atoms are, thus vibrations are predominant and loss of
memory occurs faster, resulting in smaller “blue” islands im-
mersed in red and gray points. An increase in system tem-
perature leads to more energetic atoms which have higher
probability to diffuse; they travel faster, collide faster, and
thus result in smaller blue islands and fine-structured gray
bands. Such behavior is in agreement with spectral and res-
caled range analyses which both show a two-regime behav-
ior �a vibration-dominated short time regime and a diffusion-
dominated larger time regime� �8�.

The points close to the diagonal �identity� line deserve
special attention. The color of the pixels around the diagonal
indicates the degree of recurrence in successive points
�states�. If there are recurrences we observe a kind of square
structure with diagonal located on the main diagonal, which
in our case will be blue-colored squares. We observe in Fig.
2�a� �lowest density and lowest temperature� that in fact
there are such squarelike structures located along the diago-
nal. The size of these structures gets smaller as the density
increases �Figs. 2�c� and 2�e��. A similar behavior is ob-
served also as temperature increases. We believe that this is
related to the diffusional motion of the atoms since during
diffusion the successive states are related and thus nearly
recurrent. In the solid �Fig. 2�h�� there are very small such
square blue structures due to the vibrational motion, where
atoms change sign of the velocity very fast, and thus we have
loss of correlation with the previous positions.

It is of interest to zoom on regions along the main diag-
onal. Figures 4�a�–4�d� contain representative magnified sub-
regions along the diagonal of the lowest-density and
-temperature fluid state. In this case there are structures of
vertical and horizontal lines formed mainly by red points
along with blue structures �of recurrent states� normal to the
diagonal. The horizontal and vertical lines indicate that states
do not change for some time, while the lines orthogonal to
the identity line are indicative of an evolution of states simi-
lar at different times but with reverse time. The correspond-
ing zooms for a representative solid state �Figs. 4�e�–4�f��
show a different structure consisting mainly of red and blue
“lines” parallel to the diagonal and islands consisting of blue
points. The lines parallel to the diagonal indicate that the
evolution of states is similar at different time intervals. The
time distance between these lines corresponds to some char-
acteristic period. In our case, this distance is of the order of
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FIG. 3. Typical trajectories of atoms �projection on y-z plane� in
the liquid phase. �a� T*=1.5 and �*=0.2; �b� T*=1.5 and �*=0.8.
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FIG. 4. �Color� �a�–�d� Zoom along the diagonal for the lowest fluid density ��*=0.2, T*=1.5, ��d=17��; �e�–�h� zoom along the diagonal
for the solid state ��*=1.2, T*=1.5 ��d=6��. �Time is in units of simulation time steps, i.e., 10−14 s.�
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20�t, which corresponds to a frequency of a few terahertz,
representative of the vibrational motion of the atoms in the
solid. It is clear that the fine structure of RPs close to the
main diagonal is quite different between the solid and liquid.
In the liquid case the dominant characteristic is the existence
of vertical and horizontal lines, while in the solid the domi-
nant feature is the lines parallel to the main diagonal. This
may be used as a signature of the phase characterization of
the system �liquid or solid�.

The average displacement of all atoms is quantified by the
mean square displacement defined in Eq. �6�. Figure 5 shows
the computed MSD for several thermodynamic states. For
fluid states, our results are in agreement, at least qualita-
tively, with the notion of Brownian motion. It is well known
that in Brownian motion �31� there is a characteristic time
�=m /6
�� that leads to two distinct limiting cases for the
mean square displacement of the atoms.

�i� For times t��, �inertia-dominated free flight regime�

�r2� = �u0
2�t2 =

kT

m
t2 �10�

i.e., the mean square displacement is independent of the den-
sity and depends only on the temperature of the system.

�ii� For large t,

�r2� =
6kT�

m
t =

kT


��
t = 6Dt , �11�

i.e., the MSD is proportional to temperature and inversely
proportional to shear viscosity. In the equations above, D is
the self-diffusion coefficient, m is the mass of the atom, �
denotes the atom diameter, and � is the fluid viscosity.

Computed MSDs for various system densities are shown
in Fig. 5, where the distinct behavior predicted by the theory
�Eqs. �10� and �11�� is reproduced.

Equation �11� allows us to relate computed MSD values
with shear viscosity values for specific system densities and
temperatures. We have analyzed the trends reported by Meier
et al. �32� in their recent work on the shear viscosity of
Lennard-Jones fluids and found good agreement with our
MSD calculations.

When we zoom in on the MSD versus time plot �Fig.
5�b�� we observe that, up to time t1
0.6�10−13 s, all the
curves for various system densities collapse into one curve
�at least at the scale of the figure�. For the fluid states, the
collapse to a single curve persists up to time t2
1.2
�10−13 s. If we zoom in on the recurrence plots of low- and
high-density fluid �Fig. 6� we observe small islands of blue
points �“highly” recurrent points� that are not evident at the
resolution of Fig. 2. These small islands with characteristic
length of the order of 5–10 pixels indicate that for very
small times there are “recurrences” corresponding to times of
the order of �0.5–1.0��10−13 s. It is remarkable that this
characteristic time is comparable with the times up to which
MSD curves in Fig. 5�b� collapse.

The characteristic structure of the RPs and its relation to
the underlying physics of the system are confirmed by recur-
rence quantification analysis. Results concerning RDET are
summarized in Fig. 7. For fluid states, RDET decreases at
fixed temperature as the system density increases, and for
fixed density as the system temperature increases. For each
temperature, the calculated values of RDET for the four fluid
states follow approximately a characteristic linearly decreas-
ing trend. For the solid states, it appears that RDET ap-
proaches a temperature-dependent limiting value with a
slight increase when the density of the solid is further in-
creased.

We remind the reader that RDET measures the ratio of the
number of recurrence points forming upward diagonal lines
as a percentage of the total number of recurrence points in
the RPs. The existence of diagonal lines indicates that the
evolution of states is similar at different times and the pro-
cess could be deterministic. We observe that, at a given tem-
perature, RDET is higher in the fluid than in the solid, at least
for the thermodynamic states studied here. This can be attrib-
uted to the fact that in the solid the only motion of the atom
is the vibrational one, where during vibrations the mi-
crostates are related up to the time that an abrupt change in
the direction of motion �“collision”� occurs. In the fluid, we
have a combination of diffusional and vibrational motion.
This vibrational motion has characteristic times of the order
of magnitude of the solid. However, as far as the diffusional
component is concerned, the microstates of the system under
study are more recurrent as long as an atom moves in a given
direction �mean free path�, and this leads to larger character-
istic times, compared to those of the vibrational motion, and
thus longer diagonal lines. At low densities atoms are freer to
move and fewer collisions occur, thus successive microstates
are more related �and thus are classified as recurrent�. As a
result RDET is high. Then, as density increases collisions
among atoms become more frequent, thus resulting in fewer
related microstates, fewer occasions of recurrent microstates,
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FIG. 5. �a� Mean square displacement at T*=1.5 and various
system densities. �b� Same as in �a� but zoomed at small time scale.
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and a reduction in RDET. Now at a given density the increase
of temperature results in faster motion of the atoms; thus
collisions occur more often, the diagonal lines become
shorter, and RDET is reduced.

Results concerning the maxline are summarized in Fig. 8.
The observed behavior is consistent with the atomic motion
discussed above. We can see from the results that, as tem-
perature increases at a given density, the maxline is reduced,
since as we have mentioned an increase in temperature re-
sults in atoms moving faster and thus colliding faster, and
consequently the corresponding microstates become uncorre-
lated on shorter time scales. At given temperature, RDET re-
duces as density increases, since in a more dense environ-
ment collisions among atoms occur more often �thus faster�
and the corresponding microstates become uncorrelated on
shorter time scales again. We notice the dramatic drop in the
value of the maxline between the states �*=0.8 �fluid� and
�*=1.2 �solid�. Maxline values are the most sensitive, among
the indices examined, to the transition from liquid to solid. It

is worth mentioning that the effect of temperature is impor-
tant, since at the highest temperature studied the drop of the
maxline is more important as a function of the system den-
sity.

As we have already discussed in Sec. II B, the maxline
can be used as an estimator of K2 entropy and thus of the
lower limit of the positive Lyapunov exponents since K2
	�
��0
�. Posch and Hoover �9� calculated the sum of the
positive Lyapunov exponents for several fluid states from
MD simulation output. Their calculations showed that this
sum increases as the system temperature and density in-
creases, indicating that the system becomes more chaotic.
Thus our results are in qualitative agreement with those of
Posch and Hoover.

The trapping time measures the average length of vertical
lines of recurrence points and indicates for how long a sys-
tem state does not change or changes slowly. In Fig. 9 we
summarize the results for the TT for all thermodynamic
states studied in the present work. It turns out that the TT
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FIG. 6. �Color� Zoom at representative recurrence plots. �a� T*=1.5 and �*=0.2, �b� T*=2.5 and �*=0.2, �c� T*=1.5 and �*=0.8, and �d�
T*=2.5 and �*=0.8. �Time is in units of simulation time steps, i.e., 10−14 s.�
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decreases as temperature and density increase, similarly to
the RQA descriptors �RDET and maxline� discussed above.
At a given temperature, as the density increases and the at-
oms are more densely packed, the probability of the system
remaining close to a given state is reduced due to the in-
creased frequency of collisions. Similarly, at given density,
as the temperature increases the probability of collisions in-
creases and thus again the TT decreases. Although the varia-
tion of the TT with �* and T* shown in Fig. 9 is not very
large, it is rather clear. With this latter in mind it is of interest
to zoom in on the RPs �see Fig. 6� and focus our attention on
the blue islands inside the red regions, which correspond to
short-time correlations. These islands exist both at low and
high values of system density and temperature, and their av-
erage vertical size seems to be of the order of five pixels,
which is comparable with the TT values obtained. It seems
also that their size follows a trend similar to that of the TT
variation as a function of �* and T*. These islands, whose
size appears to be rather independent of the system thermo-

dynamic state, seem to be an inherent characteristic of the
system.

The transition from a homogeneous RP that corresponds
to a solid phase to a more structured RP that corresponds to
a liquid reflects in fact the transition from the vibrational
motion of atoms �represented by the very small blue islands�
to the combined vibrational and diffusional motion �repre-
sented by larger regions of recurrence points�. The size of the
RP structures seems to be larger at lower densities and lower
temperatures. Thus one can envisage the use of RPs and
RQA to identify the state of a system and locate a region
where a phase transition occurs by the analysis of only one
measured system property �observable�, e.g., the instanta-
neous temperature.

IV. CONCLUSIONS

In the present work, we have tried to establish the efficacy
of recurrence plots and recurrence quantification analysis in
gaining insight into molecular dynamics simulations, and to
show the relation between the physics of the system under
study and the visual as well as quantitative recurrence analy-
sis results. Temperature time series of a Lennard-Jones sys-
tem were recorded in various liquid and solid states, and the
effect of system density and temperature on the correspond-
ing RPs has been examined.

Low-density fluids generate RPs with a rather well-
defined structure. This structure is gradually lost as the fluid
density is increased and finally approaches the solid behav-
ior, which gives rise to nearly homogeneous RPs. An in-
crease in system temperature also leads to loss of the RP
structure. These changes in RP characteristics are attributed
to the distinct modes of motion of the atoms in the solid and
fluid states. In the solid phase, the loss of structure is attrib-
uted to the vibrations of the atoms which lead to fast loss of
memory at time scales comparable to the frequencies of vi-
bration. In contrast, a fluid has a more complex atomic mo-

65

70

75

80

85

90

95

100

0 0.5 1 1.5

T*=1.50
T*=1.73
T*=2.00
T*=2.20
T*=2.50

%
D
E
T

System density �*

FIG. 7. �Color online� RDET obtained from the temperature time
series at various system densities and temperatures �lines are only a
guide to the eye�.

0

2

4

6

8

10

0 0.5 1 1.5

T*=1.50
T*=1.73
T*=2.00
T*=2.20
T*=2.50

m
ax
lin
e
(1
03
)

System density �*

FIG. 8. �Color online� Maxline obtained from the temperature
time series at various system densities and temperatures �lines are
only a guide to the eye�.

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5

T*=1.50
T*=1.73
T*=2.00
T*=2.20
T*=2.50

Tr
ap
pi
ng
Ti
m
e

System density �*

FIG. 9. �Color online� Trapping time obtained from the tempera-
ture time series at various system densities and temperatures �lines
are only a guide to the eye�.

KARAKASIDIS, FRAGKOU, AND LIAKOPOULOS PHYSICAL REVIEW E 76, 021120 �2007�

021120-10



tion with both vibrational and diffusional components
present. As atoms diffuse, they change microstates, and thus
we have the appearance of significant white bands along with
highly correlated motions. When the fluid temperature is
raised, the increased probability of collisions leads to loss of
correlation and gradual loss of structure in the RPs. Simi-
larly, as the fluid density increases, atoms become more con-
fined, diffusion events become less frequent and vibrational
motions lead to faster loss of correlations, resulting in less
structured RPs.

The quantitative descriptors of RQA shed more light on
the observed behavior. RDET, which measures the ratio of the
number of recurrence points forming upward diagonal lines
as a percentage of the total number of recurrence points in
the RPs, decreases considerably as the system density and
temperature increase. The maxline, which is proportional to
the inverse of the largest Lyapunov exponent, follows the
same tendency. In addition, the maxline marks very clearly
the phase transition from liquid to solid behavior. Our com-
puted maxline values in the liquid phase are in qualitative
agreement with the results reported by Posch and Hoover �9�
on the temperature dependence of the largest Lyapunov ex-
ponent of a Lennard-Jones fluid. Posch and Hoover found
that the largest Lyapunov exponent increased as the system
temperature increased, i.e., a consistent trend when com-
pared with our maxline computtions. To the authors’ knowl-
edge no analogous study has been published for systems un-
dergoing phase change. The trapping time also follows a
trend consistent with the above behavior. The system under
study gets trapped for very small times at a given state. At
first glance the RPs miss this behavior, but, on closer exami-

nation, one detects a fine structure which manifests itself
through well-defined small islands formed from points with
high recurrence. It should be mentioned that the maxline is
not the only quantitative descriptor that is able to distinguish
between liquid and solid states. Indeed, values of all three
RQA descriptors mark quite clearly the difference between
liquid and solid states.

RPs and RQA constitute together a useful tool which can
provide insight into the dynamics of atomic systems in a
multitude of ways. Characteristic times related to the physi-
cal behavior of the system and in particular to the mean
square displacement can be extracted from RPs. We can also
extract qualitative information from RPs about the degree of
atomic diffusion. The quantitative analysis of RQA can help
us localize phase transitions in a more clear-cut way. This
leads us to envision RP-based or RQA-based identification
of a system phase in simulations or in experiments where we
do not have access to full details about the system. However,
it seems to us beneficial to quantify in new ways the wealth
of information contained in RPs with a view to better cap-
turing their signature quantities. To this end, work is under
way to introduce RQA-based descriptors tailor-made for MD
time series that will be based on either global or local mea-
sures.
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