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Fluctuation-dissipation ratios in the dynamics of self-assembly
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We consider two seemingly very different self-assembly processes: formation of viral capsids and crystal-
lization of sticky disks. At low temperatures, assembly is ineffective, since there are many metastable disor-
dered states, which are a source of kinetic frustration. We use fluctuation-dissipation ratios to extract informa-
tion about the degree of this frustration. We show that our analysis is a useful indicator of the long-term fate

of the system, based on the early stages of assembly.

DOI: 10.1103/PhysRevE.76.021119

I. INTRODUCTION

Self-assembly processes can be loosely defined as those in
which simple building blocks assemble spontaneously into
highly ordered structures. Assembly is of vital importance in
biology, where cells use dynamically assembled protein
structures to control the shapes of lipid membranes [1-3],
and the life cycle of viruses involves spontaneous assembly
of their protein coats [4,5]. Recently, self-assembly has also
been used to develop nanostructured materials [6,7], which
often draw inspiration from biological systems. The self-
assembly of viral capsids [8] has been the subject of elegant
experimental [4] and theoretical studies [5,9,10]. In this pa-
per, we study a model [9] designed to mimic this assembly
process. At low temperatures, assembly is frustrated by the
presence of long-lived disordered states. The avoidance of
this frustration is crucial for successful assembly. This effect
is rather general, as we illustrate by also considering the
formation of ordered structures in a two-dimensional system
of sticky disks. We analyze the crossover between frustrated
and unfrustrated regimes, and show that fluctuation-
dissipation ratios (FDRs) [11-14] associated with the early
stages of assembly are correlated with the long-time yield of
these processes. This represents an additional application of
FDRs, which have been discussed previously in the context
of glassy dynamics. We discuss how this analysis might be
helpful in the design of self-assembling systems.

In general, successful self-assembly requires both that the
equilibrium state of the system is an ordered structure, and
that the system reaches this ordered state in the time avail-
able for the biological or experimental application. The first
condition is thermodynamic: for the systems studied here,
the low-energy ordered states are known, and this crossover
can be estimated by free energy arguments, as in [9]. (Note,
however, that if “liquidlike” states are relevant near the ther-
modynamic crossover, then this will lead to more compli-
cated behavior, as in [10].) The second condition for success-
ful assembly is kinetic in origin: it is illustrated for a model
system of viral capsid assembly in Fig. 1. The degree of
assembly shows a maximum at a finite temperature T". As
the temperature is lowered through 7", the ordered state be-
comes more probable at equilibrium, but the self-assembly
process becomes less and less effective: we refer to this
change as a “kinetic crossover.”
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The purpose of this paper is to use dynamical observables
to study the behavior near 7". Since this is the regime of
most efficient assembly, it is relevant both biologically and
for applications of self-assembly in nanoscience. While the
kinetic crossover can always be identified by measuring the
degree of assembly, as in Fig. 1, achieving this in a computer
simulation requires access to long time scales, which restricts
the range of systems that can be studied. In this paper, we
show how FDRs can be used to locate the kinetic crossover
using simulations on relatively short time scales. (It is nec-
essary to average over many such short simulations, but such
averaging is trivially parallelizable.) We also discuss how
these response functions might be measured experimentally
in ordering processes that occur on complex energy land-
scapes.
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FIG. 1. (Color online) Assembly of model capsids in the B,
model of Ref. [9]. (a) A well-formed model capsid, with icosahedral
symmetry. (b) Representative selection of metastable states formed
at reduced temperature 7=0.067 and reduced time t=3 X 10° (see
the text for definitions). (c) Plot of the capsid yield at =3 X 10°,
which is nonmonotonic in the reduced temperature. The yield is the
fraction of particles in complete capsids, identified as in [9]. Here
and throughout, red and blue symbols identify high and low tem-
peratures, respectively. We also indicate the approximate location of
the kinetic crossover, at reduced temperature 7"
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FIG. 2. (Color online) Assembly of sticky disks. (a) Typical part-assembled structures at reduced time #=5 X 10, and reduced tempera-
tures 7=0.17,0.2,0.26,0.27,0.33, from left to right. Illustrated regions are of size 25a, X 25a,. The crystallinity is poor at low temperatures,
due to the metastability of the disordered states. (b) Plot of the fraction of particles with six bonds, which is a measure of the yield of the

assembly process. Compare Fig. 1(c).

II. MODELS
A. Model capsids

The first model that we discuss describes the assembly of
viral capsids. Full details are given in [9]. The model consists
of rigid subunits, the “capsomers,” which interact by isotro-
pic repulsive forces, and directional attractions. The low-
energy states in the model contain “capsids,” each of which
consists of 60 subunits in a cage structure, with icosahedral
symmetry. We use the B, variant of this model, which means
that the attractive potential favors the capsid structure shown
in Fig. 1(a). The subunit diameter is o, and the density of
subunits is p. The parameters of the model are the reduced
capsomer density po” and the reduced temperature T (mea-
sured in units of g,/kg, where g, is the energy associated
with the attractive potential and kg is Boltzmann’s constant).
In addition, the specificity of the directional attractions is
controlled by the angular parameters 6,, and ¢,,. The data of
this paper are obtained under the representative conditions
po>=0.11, 6,,=1.5, and ¢,,=3.14. We simulate a system of
1000 capsomers in a cubic box with periodic boundaries. The
capsomers evolve according to overdamped Brownian dy-
namics, and the unit of time is (¢02/48D), where D is the
capsomer diffusion constant. The rotational diffusion con-
stant of each capsomer is D,=2.5(D/0?), as in [9].

B. Sticky disks

We also consider a second model whose subunits are
sticky disks which interact by an attractive square-well po-
tential of depth J and range a,, and a repulsive hard core of
range 0.9a,. We quench the system into the solid-vapor
phase coexistence regime, so that the equilibrium state has
most of the disks in a single close-packed crystallite. How-
ever, we use Monte Carlo dynamics that are chosen to ac-
centuate the effects of kinetic frustration. We move bonded
clusters as rigid bodies, allowing translation and rotation, but
no internal rearrangements. To reflect the slow motion of
large clusters, we use an average translational step size of
0.1(ag/M) and a rotational step of 7/(10]) rad, where M is
the number of particles in the cluster and Iag its moment of
inertia (in units of the disk mass). The reduced time ¢ is
measured in Monte Carlo sweeps, and the reduced tempera-
ture 7' is measured in units of J/kg. Clusters can rearrange
only by bond breaking. These events are sampled by the
cleaving algorithm of [15], with equal fictitious and physical

temperatures. It is an off-lattice generalization of the
Swendsen-Wang algorithm [16]. At low temperatures, the
dynamics mean that bonds are broken very rarely, and aggre-
gation of the disks is diffusion limited. At 7=0, the system
reduces to diffusion-limited cluster aggregation [17].

The crossover from effective to ineffective assembly in
the capsid system was shown in Fig. 1. We show similar
results for the disk system in Fig. 2. The system contains 400
disks in a periodic square box of side 100a,. The system
does not reach full phase separation into close-packed struc-
tures on the time scales accessible to our simulation, so all of
our data are in the out-of-equilibrium regime.

III. FLUCTUATION-DISSIPATION RATIOS

The nonmonotonic yields shown in Figs. 1(c) and 2(b)
mean that for the observation times considered, and when the
temperature is small, reducing the temperature does not re-
sult in a decrease in of the total energy. This kind of negative
response to temperature perturbations is familiar in systems
with activated dynamics [14]. In the self-assembling systems
considered here, the kinetic crossover at 7" is associated with
a change from positive to negative response on the long time
scales considered in Figs. 1(c) and 2(b). In this section, we
use fluctuation-dissipation ratios to show that the crossover
between positive and negative response has signatures that
can be detected on much shorter time scales.

A. Basic idea

Fluctuation-dissipation ratios (sometimes also called
correlation-response ratios) have been widely studied in the
context of aging of glassy systems [11]. Imagine applying an
instantaneous perturbation to a single subunit (disk or cap-
somer) at a time 7,,, and measuring the effect of this pertur-
bation at some later time 7. For a system at equilibrium, the
fluctuation-dissipation theorem (FDT) relates the response to
small perturbations to the relaxation of spontaneous fluctua-
tions [18].

In general, we can measure the fluctuations and responses
of any observable. Here, we focus on the energy of a given
subunit. In both of our model systems, the total energy
comes from interactions between pairs of subunits, E

=(1/2)2}E;;, where the primed sum excludes terms with i
=j. We denote the energy of the ith monomer by
E;=(112) X Ey. (1)
J(#i)
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We measure the responses in the system as follows. Start-
ing from a given initial state, the system assembles for a
waiting time 7,,. We then turn on a perturbation to the energy,
OE(t)=2,h,EO(t—t,), where h; is the (small) field applied to
the ith subunit, and O(x) is the unit-step function. We mea-
sure the integrated response to this field,

3<Ei(t)>tw>
ABhy) ) peo

where the notation h=(h;,h,, ...), and 8! is the temperature
multiplied by Boltzmann’s constant. The average is over tra-
jectories of the system in the presence of the perturbation. In
practice, we evaluate the partial derivative by assigning #;
=6h to half of the subunits (selected at random), and h;=
—6h to the other half. In the linear response regime (small

x(t.t,) = ( (2)

8h), the mean energy at =0 can then be estimated by E(r)

=N"'S,E(1), and the response by S[E(t)—E(t)]/h;. These
quantities are then averaged over many independent runs of
the dynamics. Our results for the capsid system were ob-
tained at 6h=0.05 and those for the disk system were ob-
tained at (6h/T)=0.3. These values are small enough that our
estimates of x(z,7,,) change very little if h is reduced, which
indicates that we are in the linear response regime. For sys-
tems with Monte Carlo dynamics, such as the disk system,
the derivative in Eq. (2) can also be evaluated as a correla-
tion function for the unperturbed dynamics, in which case it
is no longer necessary to apply the field &; directly [19,20].

For a system at equilibrium, the fluctuation-dissipation
theorem [ 18] states that

X(t’tw) = C(t7 t) - C(tvtw) (3)

for all ¢ and ¢,,, where

C(t.1,) =CEE(t,)) —E()XE(1,)). (4)

Alternatively, we can define the response to an instantaneous
perturbation (impulse response), as a derivative of the inte-
grated response: R(t,t,,)=—dx(t,t,,)/dt,. In that case, the
FDT states that

ac(t,t,,
Rt = 200, (5)
o,
Away from equilibrium, we define the -correlation-
response ratio X(z,1,,) by

aC(1,t,,)

R(t,t,) =X(,t,
(t.1,) =X(1,1,) Py

(6)
Thus, X(z,t,,) is the response of the system to an instanta-
neous perturbation, normalized by the response of an equi-
librium system with the same fluctuations.

In equilibrium, the fluctuation-dissipation theorem implies
that X(z,z7,)=1 for all ¢ and r,. Away from equilibrium,
X(z,t,,) may take any value. It is most conveniently obtained
from the gradient of a parametric plot of x(z,t,) against
C(t,t,,), where the parametric variable is the waiting time 7,
[21]. We will see that parametric plots distinguish between

PHYSICAL REVIEW E 76, 021119 (2007)

0.6 o7 =0.100 1
T =0.091
=hEs8
o 04r e
=
=]
N
0.2F
0 L
10° 10* 10°

FIG. 3. (Color online) Sample trajectories in the capsid system,
showing ng(), defined as the fraction of particles in bonded clus-
ters of size 60. We use a logarithmic scale for the reduced time .
The fraction ngy(t) reflects the number of capsids in the system,
since disordered clusters containing exactly 60 subunits are rare.
The first capsids appear at times around 10*. The system is away
from global equilibrium until reduced times are at least of the order
of 10°. The arrow indicates the maximal time associated with our
measurements of correlation and response functions (Figs. 4-6).

systems above the kinetic crossover region, and those below
it. This application of the FDR is the main result of this

paper.

B. Results

In Fig. 3, we illustrate the time scale associated with
capsid formation. The first capsids form in the system at
times around 10%, and all systems shown are significantly out
of equilibrium until reduced times at least as large as 10°.
The yield measurements of Fig. 1 were taken at t=3 X 10°.
As time proceeds, the system evolves increasingly slowly
toward the equilibrium state. We will show correlation and
response data at times of order 10°, so the system is still well
away from global equilibrium in all cases. However, we will
find that systems at temperatures above the kinetic crossover
region have responses in accordance with FDT, while those
below it do not. In the disc system, the snapshots of Fig. 2
show that the system is well away from equilibrium at times
around 5 X 10°. For that system, we will show correlation-
response data at much earlier times, those less than 10°.

Some results for the capsid response function are shown
in Fig. 4, where we show how multiple simulations are used
to plot the response as a function of ¢,, for fixed #, which is
useful for estimating the impulse response. A typical corre-
lation function is shown in Fig. 5.

Results for the FDR in both capsid and disk systems are
shown in Fig. 6, where we have normalized both correlation
and response by the equal time fluctuation C(z,7). [The func-
tion C(z,7) is independent of 7, so the gradient of the para-
metric plot is —X(z,t,,), and is unaffected by the normaliza-
tion.] Above the kinetic crossover, assembly is taking place,
but the energy response is in accordance with the FDT, so
X(t,1,,)=1, at least for the times that we considered. As the
system passes through the kinetic crossover, the FDR
shrinks. While it can be convenient to characterize this cross-
over by the single temperature 7", it is more accurate to think
of a temperature range over which the long-time behavior of
system changes smoothly from effective to ineffective as-
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FIG. 4. (Color online) (a) A time line illustrating the simulation
protocol used to measure the response. (b) Response in the capsid
system (in units of sg) at reduced temperature 7=0.091, as a func-
tion of time ¢, for 7,=0,480,960,1440. The data are plotted with
lines, since each simulation yields data points for all ¢. (c) Plot of
the response as a function of waiting time ¢,, for ¢
=960, 1440,1920. This is a replot of some of the data of the middle
panel, but it allows estimation of the impulse response dx(7,t,,)/dx,,.
In this case, the data are shown as points (squares), and points with
the same value of ¢ are connected by lines.

sembly. This smooth change is accompanied by a smooth
change in the FDR.

We conclude that, if a system is to be designed so that it
assembles effectively, the correlation-response ratio can be
used to obtain a general prediction for the regime of good
assembly, before running the long simulations required to
test the yield directly.

Finally, note that we constructed Fig. 6 using data at con-
stant ¢ and variable ¢,,, since the gradient of this plot gives the
FDR. This procedure requires a separate simulation for each
data point. However, if we only wish to know if the inte-
grated response is small or large compared to the FDT pre-
diction, it is sufficient to use data at a single #,,: a simple
comparison of C(t,t)-C(z,t,) and x(¢,t,) is already quite
informative in that case (note, however, [21]).

IV. DISCUSSION

We now consider the kinetic and thermodynamic cross-
overs in a little more detail. We then discuss how the change
in FDR at the kinetic crossover arises, and the extent to
which we expect it to generalize to other self-assembling
systems.
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FIG. 5. (Color online) (a) A time line indicating the simulation
protocol used to measure the correlation. (b) Correlation function in
the capsid system (in units of 8%) at 7=0.091, as a function of
reduced time 7, for #,,=480. (c) Correlation as a function of ¢,, for
t=1920. The absence of time-reversal symmetry is clear.

A. Thermodynamic and Kinetic crossovers

We measure the yield of our assembly processes by run-
ning long simulations of length f;.q (recall Figs. 1 and 2).
These simulations have three types of final state. At high
temperatures, no assembly takes place, and the system con-
sists primarily of free subunits. At low temperatures, the sys-
tem evolves into a state that consists primarily of disordered
metastable clusters.

We also find an intermediate temperature regime, in
which the final state has a substantial quantity of assembled
products. This regime is delineated by two crossovers. For an
operational definition of the high-temperature crossover, we
impose a threshold on the relative probabilities of bonded
and free subunits at time 7y;¢q. While this definition depends
on 14, the position of the crossover has a well-defined limit
as tyjelg— °°, which can be evaluated from the contribution of
free subunits to the thermodynamic partition function of the
system. Thus we refer to this crossover as “thermodynamic.”

To define the low-temperature crossover, we consider the
relative probabilities of disordered clusters and correctly as-
sembled products at fy;iq- As the temperature is reduced, the
maximum of the yield occurs when the disordered clusters
are common enough to significantly impede assembly. We
therefore identify this maximum with the low-temperature
crossover. If we calculate the yield in the equilibrium state,
we expect it to depend monotonically on the temperature,
since the correctly assembled states minimize the total en-
ergy in both of our systems. Thus, the presence of the maxi-
mum in the yield is a kinetic effect that arises from the slow
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FIG. 6. (Color online) Correlation response plots for (a) the
capsid system at 7=1920 and 960<t,,<r, and (b) the disk system at
t=8 X 10*. These systems are all well away from equilibrium, but
the response is in accordance with the prediction of the FDT at the
higher temperatures. The response decreases rapidly as the system
passes through the kinetic crossover and falls out of equilibrium.
The red and blue coloring is consistent with that of Figs. 1 and 2.

annealing of disordered clusters. This motivates our use of
the term “kinetic crossover.” Clearly, the existence of a re-
gime of efficient assembly requires that the kinetic crossover
is not too close to the thermodynamic one. If the system
crosses over smoothly from free subunits to disordered clus-
ters, then there is no temperature at which assembly is effi-
cient on the time scale fy;jqg-

B. Local equilibration

We now return to the link between the kinetic crossover
and the FDR. The general idea is that dynamics that is lo-
cally time-reversal symmetric allows disordered states to an-
neal into ordered states. This idea is not new (for example,
see Ref. [22], especially its Fig. 1). However, the FDR pro-
vides a quantitative measure of this effect.

The crystalline state of the two-dimensional system of
disks is close packed, with each particle bonded to six neigh-
bors. During assembly, the fraction of such particles in a
given cluster provides a measure of its crystallinity. As clus-
ters form, there are many possible states with low crystallin-
ity, and the system tends to visit these states quite frequently.
The effectiveness of assembly depends on whether these
states are able to anneal into crystalline clusters. This anneal-
ing becomes more difficult as the disordered clusters grow.
For example, annealing the disordered clusters of Fig. 2 into
crystallites requires highly cooperative processes with large
activation energies, while annealing small disordered clusters
requires less cooperativity.

Our results indicate that, near optimal assembly, large dis-
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ordered clusters are avoided because the system remains lo-
cally equilibrated at each stage of the assembly process (al-
though the system is globally out of equilibrium). At any
stage of assembly, there will be a set of likely states. The
condition of local equilibration is that the relative probabili-
ties of these likely states reflect their relative Boltzmann
weights. If this condition holds, the system avoids the disor-
dered states that are precursors to the large disordered clus-
ters of Fig. 2. For example, small disordered clusters have
smaller Boltzmann weights than crystalline clusters of the
same size, so local equilibration suppresses the disordered
states. On the other hand, if disordered states are likely at
any stage of assembly, this indicates that they are not being
annealed into crystallites, and are likely to evolve into larger
disordered clusters.

To link this argument with the FDR, we first demonstrate
a link between local equilibration and an approximate time-
reversal symmetry. We consider two states C and C’ that are
both likely at a given stage of assembly. The rate with which
the system makes transitions from C to C’ is

YC— C'.0)=W(C'[C)p(C.1), ()

where p(C,t) is the probability that the system is in state C at
time ¢, and W(C'|C) is the rate for transitions to state C’
given that the system is initially in state C. [The rate W(C|C")
depends only on the dynamical rules of the model, while the
rate y(C—C',t) depends also on the state of the system at
time t.]

For models that obey detailed balance, we have

W(C'|C)exp(BEcr) = W(C|C")exp(BEc).- (8)
Further, if the system is locally equilibrated, then we have
p(C.1)exp(BE¢) = p(C',1)exp(BEc/), ©)

where C and C' are likely states at this time. Thus, the rates
for forward and reverse transitions between these states are
equal:

YC—C'\1) = AC' — C,1). (10)

This relation is an approximate time-reversal symmetry of
the locally equilibrated state, which holds on time scales for
which the set of likely states is not changing significantly.

The extent to which this approximate time-reversal sym-
metry holds is correlated with the degree of local equilibra-
tion, and hence with the extent to which the system is dis-
criminating between high-energy disordered states and low-
energy ordered ones. By avoiding the high-energy disordered
states, the locally equilibrated system tends to assemble ef-
fectively.

To link this local equilibration with the FDR, we show in
the Appendix that, for systems obeying detailed balance, de-
viations from the FDT arise from differences between the
probabilities of trajectories and their time-reversed counter-
parts, during the time between perturbation and measure-
ment. The key result is (A5). We conclude that the FDR is a
probe of the degree to which the system obeys time-reversal
symmetry between times #,, and ¢, and hence of the degree of
local equilibration.
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Thus, our results for both capsid and disk systems (Fig. 6)
are consistent both with our hypothesis that the system falls
out of local equilibrium at the kinetic crossover, and with our
interpretation of the FDR as a measure of local equilibration.
The parametric plots summarize the important features of the
correlation and response functions, in a single system-
independent plot, in which time and energy scales are res-
caled away. The qualitative similarities in the behavior of the
FDR are all the more remarkable given the different dimen-
sionalities of the two models that we consider, and the very
different structures of their assembled states.

C. Generic and nongeneric features of the FDR

While the behavior of both capsid and disk systems are
both consistent with our analysis above, there are important
differences between the two panels of Fig. 6. In particular, at
the peak of the assembly curve, the response in the disk
system is larger than the corresponding response in the
capsid system.

The reason for this difference can be inferred from the
states shown in Figs. 1 and 2. In the disk system, the crys-
tallinity of the product is rather low at all temperatures. Even
small clusters typically explore many disordered states be-
fore they form locally crystalline structures. The system
needs to be very close to local equilibrium in order to ensure
that the ordered structures can be discriminated from the
large number of disordered states. Thus, assembly is effec-
tive only when the FDR is close to unity. On the other hand,
the directional interactions in the model capsid system im-
pose quite stringent constraints on the local structure of the
growing cluster. This reduces the possibility for stable disor-
dered clusters, and discriminating between ordered and dis-
ordered states is easier. Thus, the system still assembles ef-
fectively even when deviations from local equilibrium are
quite significant, and assembly is still effective even when
deviations from FDT are quite large.

Taking account of these differences, we emphasize the
main feature of Fig. 6: the FDR is large above the kinetic
crossover, and small below it. We expect this behavior to be
preserved as long as three conditions are met. First, the ob-
servables used to construct the FDR should couple to the
processes by which metastable disordered states are annealed
into ordered ones. For example, if we had measured the FDR
in the capsid system using the capsomer positions in place of
their energies, then diffusive processes would dominate both
correlation and response functions, and this response is not
sensitive to the extent to which the bonds in the system are
locally equilibrated.

Second, we require that the assembled state of the system
minimizes the free energy both globally and locally. Many
biological systems are believed to have funnel-shaped energy
landscapes consistent with this constraint [23]. The models
presented in this paper also have this property. We believe
that satisfying this constraint contributes quite generally to
good assembly, and it is therefore practical to bear it in mind
when designing self-assembling systems. Of course, systems
that violate this constraint do exist. For example, in three
dimensions, minimization of the free energy of small clusters
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of spherical particles leads to icosahedral structures [24],
while the crystalline phase has a close-packed structure. It is
therefore possible for these particles to assemble into icosa-
hedral structures while always remaining locally equili-
brated. The FDR would be close to unity, but the system
would never visit the “correctly assembled” close-packed
structure.

The third condition that is required to ensure usefulness of
the parametric FDR plot concerns the time ¢ used to con-
struct it. The behavior of Fig. 6 depends weakly on the value
of ¢, but changing its order of magnitude will lead to differ-
ent behavior. In particular, at very low temperatures and for
large t, the capsid system shows a FDR close to unity. This
occurs because the system is locally equilibrated over a par-
ticular set of disordered states. However, in this case, the
system would not be locally equilibrated while the disor-
dered clusters were forming, so that FDR on that time scale
would have been smaller than unity. In other words, detec-
tion of the relevant deviations from local equilibrium re-
quires a measurement on the time scales during which those
deviations occur.

These three conditions show that the application of the
FDR to self-assembling systems requires some consideration
of the relevant observables and time scales. However, for the
systems studied in this paper, meeting these conditions does
not require careful tuning of model parameters, but only the
kind of qualitative analysis discussed in this section. This
represents evidence in favor of the applicability of these
methods to other self-assembling systems.

V. OUTLOOK

The arguments of Sec. IV seem general, and relatively
independent of details of the system. Further tests of the
links between efficient assembly, local equilibration, and
FDRs would be valuable, especially if FDRs could be mea-
sured experimentally. In principle, FDRs can be obtained
whenever conjugate correlation and response functions can
be measured. Measuring fluctuations and responses of local
quantities, such as the energy of a single subunit, requires a
high degree of experimental control, but methods do exist in
some systems. For example, Wang et al. [25] recently mea-
sured a FDR in a three-dimensional glassy colloidal system.
The diffusive correlation function is conjugate to the re-
sponse of a single particle to a force in that case. Applying
similar methods to ordering processes of spheres or disks
would be analogous to our studies of the sticky disk system.

Turning to biological systems, it would be possible to
measure the degree of kinetic frustration in the folding of
biomolecules, either computationally in more detailed capsid
models, or in systems such as the trpzip peptide [26], or,
experimentally, in RNA folding, by a generalization of the
experiment of [27]. In this latter case, the conjugate variables
of force and displacement are already measurable, although
obtaining good statistics for the correlations and responses as
a function of both ¢ and 7,, might be challenging. Results
obtained in this way would complement information about
the nonequilibrium dynamics obtained from analysis of the
work distribution [28,29]. For example, the thermodynamic
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definitions of reversible and irreversible work are linked to
the idea that nonequilibrium processes can occur with or
without local equilibration. By characterizing the extent to
which particular degrees of freedom are locally equilibrated
on particular time scales, FDRs provide another link between
these thermodynamic ideas and the statistical mechanics of
nonequilibrium trajectories.
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APPENDIX: TIME REVERSIBILITY, AND THE FDR

In this appendix, we briefly consider a general stochastic
system evolving between times #; and 7, and show how de-
viations from the predictions of the FDT come from trajec-
tories (histories) which occur with probabilities that are dif-
ferent from those of their time-reversed counterparts.

Consider a stochastic system evolving between times f;
and ;. The energy of a configuration C during this time pe-
riod is given by E(C)=E(C)—hA(C), where h is a field, A is
an observable, and A(C) is its value in configuration C. The
stochastic dynamics obey detailed balance with respect to the
Boltzmann distribution peq(C)ocg‘BE(c). The response of ob-
servable B to the field & is

(A1)

dP[C(1);h]
L) = D ~aam '
x(t5.1;) %B( ) aBh) =0

where the sum is over trajectories (histories) of the system,
which we indicate by the function C(z); the initial and final
configurations of the trajectory are C; and Cy, respectively;
and P[C(t);h] is the probability of a trajectory, which in-
cludes the probability of its initial condition.

The property of detailed balance dictates that

PIC(sh] PIC()h]
pi(Ci) o8 pl((_z )

i

log = Bh[A(Cy) - A(C)] - BLE(C))

- E@C)], (A2)

where p;(C,) is the probability of the initial condition of the
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trajectory C(f), and C(r) is the time-reversed counterpart of
C(¢). That is, 5(t)=TC(t,»+tf—t), where the operator T re-
verses all quantities that are odd under time reversal, such as
momenta. To enforce time-reversal symmetry of the equilib-
rium state, we assume that the energy and its perturbation are
time-reversal symmetric: E(C)=E(TC) and A(C)=A(TC). We
also assume that B(C)=B(TC) for convenience, although the
same analysis can also be carried out without this assump-
tion, leading to an analogous result.

Using  (dP[C(1);h]/oh)=P[C(1);h](d/ dh)log P[C(1);h],
we substitute (A2) into (A1), and obtain

x(tpt) = (B(t)[A(t) - A@)]) + % B(Cy)P[C(1);0]
C(t

X

J _
280 log P[C(1);h] =

(A3)
where we have used (-)=ZX¢P[C(1)](-). The fluctuation-
dissipation theorem states that the first two terms are equal at
equilibrium, so we define Ax(,1;)=x(t;,1,)—(B(t/)[A(t))
—A(t;)]) in order to measure deviations from the FDT.

To obtain an informative expression for A )((tf,ti), we use
conservation of probability to write

EB(E,»)P[E(r>;h]=§B(C)p,-<0). (A4)

C(1)

Thus, the derivative of the left-hand side of (A4) with respect

to h is zero. Noting that B(éi):B(Cf), we subtract this de-
rivative from the right-hand side of (A3), arriving at

0 _
A L, 1;) = C _1 C ,h
x(tpt) %B( ) g %8 PC(1):h] .

X{P[C(1);0]- P[C();0]}. (AS)

The purpose of (A5) is to show that, if all trajectories C(¢)
have the same probabilities as their time-reversed counter-

parts E(t), then the second term vanishes, and the FDT ap-
plies. This condition holds exactly only at equilibrium, but if
the dynamics of the system are close to local equilibrium
between times ¢; and ¢, then the relative weights of forward
and reverse trajectories will be similar, and deviations from
FDT will be small.
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