
Fokker-Planck-Kramers equations of a heavy ion in presence of external fields

J. I. Jiménez-Aquino* and M. Romero-Bastida†

Departamento de Física, Universidad Autónoma Metropolitana–Iztapalapa, Apartado Postal 55-534, Codigo Postal 09340, México,
Distrito Federal, Mexico

�Received 10 April 2007; published 3 August 2007�

In this work, we use the same strategy studied in our previous work �J. I. Jiménez-Aquino and M. Romero-
Bastida, Phys. Rev. E 74, 041117 �2006�� to solve exactly the Fokker-Planck �FP� and Fokker-Planck-Kramers
�FPK� equations of a charged Brownian particle in a fluid �a heavy ion in a light gas� under the influence of
external fields: a constant magnetic field and, in general, time-varying mechanical and electric fields. In our
proposal, a time-dependent rotation matrix is introduced to transform the Langevin equation in the phase-space
�r ,u� to a new space �r� ,u��. As a result, the transformed Langevin equations are very similar to those of
ordinary Brownian motion in the presence of those time-varying external forces only, without the magnetic
field; therefore, the associated FP and FPK equations can easily be solved in those transformed spaces. To solve
these equations, we use the methods of solution developed by Chandrasekhar in the field-free case of ordinary
Brownian motion. We also calculate a more general transition probability density in the velocity space by
assuming an initial heavy-ion Maxwellian distribution at a temperature generally different from that corre-
sponding to equilibrium, the same as that used by Ferrari �Physica A 163, 596 �1990��.
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I. INTRODUCTION

In 2005, Simões and Lagos �SL� �1� proposed an exact
solution method to the Fokker-Planck-Kramers �FPK� equa-
tion corresponding to a heavy ion immersed in a fluid in the
presence of external fields, such as mechanical and electro-
magnetic fields, by combining both Czopnik and Garbacze-
wski’s �CG� �2� “rotated” Stokes force and Ferrari’s �3�
gauge. As established in Ref. �1�, the method of solution
relies upon a transformation of the FPK equation into a simi-
lar field-free equation, in a similar manner to that advanced
by Ferrari �3�. Accordingly, the solution of such a field-free
equation is obtained by applying CG’s strategy, with an as-
sumed Gaussian distribution for the correlation functions of
the appropriate variables. Another interesting problem for
which the solution of the FPK equation is required is the
anisotropic diffusion of charged particles in an external mag-
netic field, as studied by Holod et al. �4� and Zagorondy and
Holod �5�. As an alternative method, in this work we extend
the strategy of Ref. �6� to solve the FP and FPK equations to
the situation in which the Brownian charged particle is under
the action of mechanical and electromagnetic forces. Here,
we assume the influence of a constant magnetic field B and
in general time-dependent, but space-independent, mechani-
cal Fmec�t� and electric E�t� external forces. Our proposal
introduces a time-dependent rotation matrix to transform the
Langevin equations in phase space �r ,u� to a new one
�r� ,u��. As a consequence of this fact, the respective Lange-
vin equations are very similar to those of ordinary Brownian
motion in the presence of the transformed time-dependent
external forces only, without the influence of the magnetic
field. In the transformed space, the rotated noise term con-
tains the magnetic field. It is shown that the statistical prop-

erties of the original noise and those of the rotated noise are
the same, if the former satisfies the properties of Gaussian
white noise. Under these circumstances, the FP and FPK
equations associated, respectively, with the transformed ve-
locity and phase spaces, are quite similar to those of the
ordinary Brownian motion in the presence of an external
field, and are therefore more easily solved than those formu-
lated in the original space. To solve these equations in the
transformed space, we use the same methods developed by
Chandrasehar �7� in the field-free case, and extend them to
the cases in which external fields are present. By returning to
the original variables, we obtain the corresponding transition
probability densities �TPDs�, which are referred to as “fun-
damental” solutions of the FP and FPK equations, having as
initial conditions the Dirac � functions. However, for arbi-
trary initial probability distributions, it is possible, in prin-
ciple, to calculate more general probability densities �PDs�
than those of the fundamental TPD’s. Such is the case of the
velocity-space probability distribution, for which we calcu-
late a more general PD by assuming an initial heavy-ion
Maxwellian velocity distribution at a temperature T0 differ-
ent from that of equilibrium, T, like that studied by Ferrari
�8� and Berman �9�. Our general PD will be compared with
that obtained by Ferrari.

On the other hand, our phase-space fundamental solution
is similar to, but not exactly the same as, that proposed by
SL. The main reason is that our solution �which is a Gaussian
distribution� is not obtained directly from the FPK equation
in the original variables. Rather, it is calculated in a stricter
way in the transformed phase space, whereas SL’s solution is
also a Gaussian distribution function, but imposed as an an-
satz, as done by CG. To show the consistency of our phase-
space fundamental solution, we first compare it with Ferrari’s
�3� fundamental solution, when only a time-varying electric
field is present in the diffusion process. Next, we calculate
the velocity-space solution through an integration process
over the whole complete configuration space of the phase-
space solution. The obtained velocity-space solution coin-
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cides with that calculated through the solution of the FP
equation. In a similar way, the configuration-space solution is
obtained through an integration over the whole velocity
space of the phase-space solution. In addition, from the
configuration-space fundamental solution, we can calculate
the mean square displacements along the x, y, and z axes. A
more general phase-space probability density is still under
investigation. If we define P as the TPD for a single Brown-
ian particle, then the probability density of a swarm of ntot
mutually independent large particles in a dense fluid of much
smaller particles, defined as W, is given by W�ntotP. Fi-
nally, to complement our work, we introduce Appendixes A
and B, where we study the solutions of the transformed FP
and FPK equations, respectively.

II. THE FP EQUATION OF A CHARGED PARTICLE IN
EXTERNAL FIELDS

The Langevin equation describing the diffusion process of
a charged particle embedded in a fluid in the presence of
electromagnetic �via the Lorentz force� and mechanical Fmec
forces can be written as

u̇ = − �u +
q

m
u � B +

q

m
E +

Fmec

m
+ A�t� , �1�

where q denotes the charge of the particle of mass m, and
A�t� satisfies the properties of Gaussian white noise with
zero mean value and correlation function

�Ai�t�Aj�t��� = 2��ij��t − t�� , �2�

where �=�kBT /m is the noise intensity and kB is the Boltz-
mann constant. Fmec and E are, in general, both space-
independent and time-varying external forces. The magnetic
field is assumed for simplicity to be constant and with direc-
tion along the z axis of a Cartesian reference frame, that is,
B= �0,0 ,B� with B a constant. If we define the acceleration
a�t��Fmec�t� /m+qE�t� /m, the foregoing equation can also
be written as

u̇ = − �u + Wu + a�t� + A�t� , �3�

where W is a real antisymmetric matrix given by

W = � 0 � 0

− � 0 0

0 0 0
	 , �4�

�=qB /mc being the Larmor frequency. To establish the
Fokker-Planck equation associated with Eq. �3�, this last
equation must be written as

u̇ = − �u + a�t� + A�t� , �5�

where the matrix �=�I−W now reads as

� = �� − � 0

� � 0

0 0 �
	 , �6�

I being the unit matrix. Equation �5� corresponds to a
coupled system of equations in the �ux ,uy� plane and is in-

dependent of the coordinate uz, for which the corresponding
evolution equation is the Langevin equation of the ordinary
Brownian motion. The drift and diffusion coefficients are

Di = − �ijuj + ai,

Dij = ��ij , �7�

ai being the components of vector a�t�. Thus, the associated
Fokker-Planck equation for the transition probability density
of the velocity conditioned by initial data u�0��u0 at time
t=0, i.e., P�u , t
u0
�, reads as

�P

�t
+ a · graduP = divu��uP� + ��u

2P , �8�

subject to the initial condition

P�u,0
u0
� = C0��u − u0� , �9�

where C0 is a constant that will be determined later on. The
strategy of solution of Eq. �8� following Chandrasekhar’s �7�
idea requires the solution of its associated first-order equa-
tion without the Laplacian, which involves the Lagrangian
subsidiary system

u̇ = − �u + a�t� �10�

together with the three integrals

e�tu − ā�t� = I1, �11�

where I1=u0 and

ā�t� = �
0

t

e�sa�s�ds . �12�

However, such a solution is not easy to calculate due to the
coupling of the resulting equations. To solve this problem we
use the same strategy of Ref. �6�, where an alternative
method of solution has been proposed, which relies upon a
transformation of the Langevin equation by means of the
change of variables

u� = e−Wtu . �13�

In this new velocity-space the Langevin equation �5� adopts
the form

u̇� = − �u� + a��t� + A��t� , �14�

such that

a��t� = R−1�t�a�t�, A��t� = R−1�t�A�t� . �15�

R�t�=eWt is an orthogonal rotation matrix given by

R�t� = � cos �t sin �t 0

− sin �t cos �t 0

0 0 1
	 �16�

in such a way that RT�t�=R−1�t�, i.e., the transpose is its
inverse and therefore R−1�t�=e−Wt. The Langevin equation
�14� is very similar to that of the ordinary Brownian motion
in the presence of an external force a�, which in this case is
nothing but a rotation of the original external force a�t�.
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Similarly, A��t� accounts for a rotation of the original fluc-
tuating force A�t�. In the transformed velocity space, it can
be shown immediately from Eq. �14� that the drift and the
diffusion coefficients are �6,10�

Di� = − �ui� + ai�,

Dij� = ��ij . �17�

This is because �R−1�ik�t��R−1� jk�t�=�ij and therefore the dif-
fusion coefficient Dij� is the same as that given in Eq. �7�.
This means that the noise A��t� has the same statistical prop-
erties as A�t� if the latter satisfies the property of being a
Gaussian white noise. Thus, the FP equation associated with
the Langevin equation �14� for the transition probability den-
sity of the velocity conditioned by initial data u��0��u0� at
time t=0, i.e., P��u� , t
u0�
�, is obviously given by

�P�

�t
+ a� · gradu�P� = � divu��u�P�� + ��u�

2 P�. �18�

This partial differential equation has the same algebraic
structure as that associated with the ordinary Brownian mo-
tion in the presence of an external field a�, whose solution
can be calculated by using the same method developed by
Chandrasekhar �7� to solve the FP in the field-free case
a�=0, and subject to the initial condition

P��u�,0
u0�
� = ��u� − u0�� . �19�

Such a solution is explicitly developed in Appendix A.
Briefly stated, it is connected with the solution of the asso-
ciated first-order equation without the Laplacian term, which
involves the three integrals of the Lagrangian subsidiary sys-
tem

u̇� = − �u� + a��t� , �20�

which are given by

e�tu� − ā��t� = I1�, �21�

where I1�=u0� and

ā��t� = �
0

t

e�sa��s�ds . �22�

If we define the variable

S� � u� − e−�t�ā��t� + u0�� �23�

such that P��S��� P��u� , t
u0�
�, then the solution of Eq. �18�
can be written as

P��S�� = � �

2���1 − e−2�t�
3/2

exp�−
�
S�
2

2��1 − e−2�t�� .

�24�

To return to the original variables, we can observe from Eqs.
�12�, �13�, �22�, and �24� that u0�=u0, ā��t�= ā�t�, and

u� − e−�t�ā��t� + u0�� = e−Wt�u − e−�t�ā�t� + u0�� . �25�

If we now define the S variable as

S � u − e−�t�ā�t� + u0� , �26�

then

S� = e−WtS , �27�

and therefore 
S�
2= 
S
2. On the other hand, the transforma-
tion between P� and P is established by the expression
P dS= P� dS�, where the volume element transforms as
dS=J dS�, J being the Jacobian of the transformation, and
thus JP= P� such that �7,10�

J � 
Det��Si/�Sj��
 = 1/
Det��Si�/�Sj�
 � 1/J�. �28�

It is easy to show, from Eq. �27�, that J�=1 and therefore
P= P�. Now, from the initial conditions required by P and
P�, we conclude that the constant appearing in Eq. �9� must
be C0=1. Finally, if P�S�� P�u , t
u0
�, the solution of the FP
equation �8� can be written as

P�S� = � �

2���1 − e−2�t�
3/2

exp�−
�
S
2

2��1 − e−2�t�
 . �29�

For a swarm of charged particles the fundamental solution
�29� is simply W=ntotP.

If time goes to infinity as �t�1 this TPD can be approxi-
mated by

P�S� = � m

2�kBT
3/2

exp�−
m
Sas
2

2kBT
 , �30�

where Sas is the asymptotic approximation of S. Of course,
the explicit evaluation of Sas depends on the particular ex-
pression of the time-dependent external force a�t�, i.e., on the
explicit expressions of both mechanical and electric forces.

On the other hand, if we denote the quantity x̂ as any

vector on the xy plane and P̂ as the TPD describing the
diffusion process on the same plane, then, due to the struc-
ture of matrix �, it can be shown that the above TPD can be
written as the product of two independent probability densi-

ties, i.e., P�S�= P̂�Ŝ�Pz�S3�, such that P̂�Ŝ�� P̂�û , t
û0
� and

Pz�S3�� Pz�uz , t
u0z
�, with Ŝ��S1 ,S2� and Sz�S3. So

P̂�Ŝ� =
�

2���1 − e−2�t�
exp�−

�
Ŝ
2

2��1 − e−2�t�
 �31�

is the TPD which describes the diffusion process on the xy

plane, Ŝ being

Ŝ � û − e−�̂t�â̄�t� + û0� , �32�

with �̂=�Î−Ŵ a 2�2 matrix given by

�̂ = �� − �

� �
 �33�

and

â̄�t� = �
0

t

e�̂sâ�s�ds . �34�

The probability density Pz�S3� is shown to be
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Pz�S3� = � �

2���1 − e−2�t�
1/2

exp�−
�S3

2

2��1 − e−2�t�
 ,

�35�

with S3��uz−e−�t�āz+u0z�� and āz being the z component of
vector â�t�. This TPD describes the diffusion process along
the z axis, parallel to the magnetic field. In this case, the
diffusion process is not affected by this field.

The probability density for an initially displaced
Maxwellian velocity distribution

It is known that a more general probability density can be
calculated by assuming an arbitrary initial condition. This
can be achieved by taking into account the following facts:
the solution P�u , t
u0
� of the FP equation �8� with the initial
condition P�u ,0
u0
����u−u0�, given in Eq. �29�, is re-
ferred to as the “fundamental” solution. Once this fundamen-
tal solution has been calculated, the solution of Eq. �8� for
any other initial charged Brownian particle velocity distribu-
tion f�u ,0� can be obtained by the following integration:

f�u,t� = �
u0

f�u0,0�P�u,t
u0
�du0. �36�

In the particular case of an initial Maxwellian velocity dis-
tribution of the charged Brownian particle at a temperature
T0 different from the equilibrium temperature T and with an
assigned mean velocity �u�0 given by

f�u,0� = � m

2�kBT0
3/2

exp�−
m
u − �u�0
2

2kBT0
 , �37�

the solution of Eq. �8�, after integration of Eq. �36�, will be

f�u,t� = � m

2�kBTt
3/2

exp�m
u − e−�t�ā�t� + �u�0�
2

2kBTt
 ,

�38�

where

Tt = T�1 − �1 −
T0

T
e−2�t� . �39�

From this general solution, we can analyze the following
cases.

�a� For T0=0, we can see that f�u ,0�=��u−u0� with u0

= �u�0 and temperature Tt=T�1−e−2�t�. Therefore f�u , t� re-
duces to the fundamental solution �29�.

�b� For T0=T, we have that the initial heavy-ion velocity
distribution is the same as Eq. �37�, i.e., a Maxwellian, at the
equilibrium temperature T around the initial mean velocity
�u�0. The probability density is the same as Eq. �32�, but with
Tt=T.

�c� To compare Eq. �38� with Ferrari’s solution, we have
to make Fmec=0 and to take the electric field on the yz plane;
that is, a= �0, ay , az�, where ay =a�t�sin 	 and az

=a�t�cos 	, with 0
	
�. In this case, our general solution
�38� reduces to that calculated by Ferrari �8� by a different
method. Obviously, Eq. �38� can also be written as the prod-

uct of two PD’s, that is, f�u , t�= f̂�û , t�fz�uz , t�, where f̂�û , t�
and fz�uz , t� are naturally identified, respectively, on the xy
plane and along the z axis.

III. THE FPK EQUATION OF A CHARGED PARTICLE IN
EXTERNAL FIELDS

In phase space �r ,u� the Langevin equation of a heavy
ion is now given by

ṙ = u , �40�

u̇ = − �u + Wu + a�t� + A�t� , �41�

or

ṙ = u , �42�

u̇ = − �u + a�t� + A�t� . �43�

Its corresponding FPK equation for the transition probability
density P�r ,u , t
u0 ,r0
� of the velocity u and position r at
time t, given that u=u0 and r=r0 at time t=0, is then �10�

�P

�t
+ u · gradrP + a · graduP = divu��uP� + q�u

2P ,

�44�

subject to the initial condition

P�r,u,0
u0,r0
� = C1��r − r0���u − u0� , �45�

where C1 is again a constant which will be determined later
on. As in the previous section, the first-order solution may be
expressed in terms of six integrals of the Lagrangian subsid-
iary system

ṙ = u , �46�

u̇ = − �u + a�t� . �47�

These integrals are

e�tu − ā�t� = I1, �48�

r + �−1�u − �
0

t

a�s�ds = I2, �49�

ā�t� being the same as in Eq. �12�, with the constants I1

=u0, I2=r0+�−1u0. �−1 is the inverse of matrix � given by

�−1 =�
�

�2 + �2

�

�2 + �2 0

−
�

�2 + �2

�

�2 + �2 0

0 0
1

�

	 . �50�

The solution of Eq. �44� is not easy to obtain in terms of the
aforementioned integrals. To proceed further, we use the pro-
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posal of Ref. �4�, which suggests a transformation of the
Langevin equations �40� and �41� into another phase space
�r� ,u�� such that ṙ�=u� with u� the same as in Eq. �13�. In
this new phase space, Eqs. �40� and �41� transform into

ṙ� = u�, �51�

u̇� = − �u + a��t� + A��t� , �52�

where a� and A� are the same as those given in Eq. �15�. The
Langevin equations �51� and �52� display a strong resem-
blance to those associated with the ordinary Brownian mo-
tion in the presence of an external force a�. Therefore the
corresponding FPK equation for the transition probability
density P��r� ,u� , t
u0� ,r0�
� of the velocity u0� and position r0�
at time t, given that u�=u0� and r�=r0� at time t=0, is �7,10�

�P�

�t
+ u� · gradr�P� + a� · gradu�P�

= � divu��u�P�� + q�u�
2 P�, �53�

together with the initial condition

P��r�,u�,0
u0�,r0�
� � ��u� − u0����r� − r0�� . �54�

Clearly, the solution of Eq. �53� is easier to find than that of
Eq. �44�. In Appendix B, we give the solution of Eq. �53�,
making an extension to the Chandrasekhar �7� method by
solving the FPK equation in the field-free case. Thus, the
Lagrangian subsidiary system associated with the first-order
equation is

ṙ� = u�, �55�

u̇� = − �u� + a�, �56�

and their corresponding six integrals are

e�tu� − ā� = I1�, �57�

r� + �−1�u� − �
0

t

a��s�ds = I2�, �58�

with I1�=u0� and I2�=r0�+�−1u0�. From these equations we can
introduce the variables

S� = u� − �ā� + u0��e
−�t, �59�

R� = r� − r0� − ��u0� − a��, �60�

where �� and a�� are defined in Appendix B. Note that S� is
the same as Eq. �23�. If we now define P��R� ,S��
� P��r� ,u� , t
u0�,
r0��, then the solution of Eq. �53�, with the
initial condition given by Eq. �54�, can be written as

P��R�,S�� =
1

8�3�FG − H2�3/2

�exp�−
�F
S�
2 − 2HR� · S� + G
R�
2�

2�FG − H2�
 ,

�61�

F, G, and H being

F =
�

�3 �2�t − 3 + 4e−�t − e−2�t� , �62�

G =
�

�
�1 − e−2�t� , �63�

H =
�

�2 �1 − e−�t�2. �64�

To return to the original phase-space representation, we in-
troduce the variables S and R, which are obtained from Eqs.
�48� and �49�, such that

S = u − e−�t�ā + u0� , �65�

R = r − r0 − �u0 − a� , �66�

S being the same as in Eq. �26�, ���−1�1−e−�t�, and

a� �t� = �
0

t

e−�sā�s�ds . �67�

The transformation between S� and S has been established in
Eq. �27� and the transformation between R� and R can be
established through the transformation between r� and r,
which can be achieved with the aid of Eqs. �13�, �49�, and
�58�, yielding

r� − �−1�
0

t

a��s�ds − I2� = �−1e−Wt��r − �−1�
0

t

a�s�ds − I2 .

�68�

Therefore

S� = e−WtS, R� = e−Wt�R . �69�

The transformation between the two TPD’s P and P� can
be established by taking into account that P dS dR
= P� dS� dR�. The volume element transforms as dS dR
=J dS� dR�; then JP= P�. The Jacobian J is shown to be J
=JSJR with

JS � 
Det��Si/�Sj��
 = 1/
Det��Sj�/�Sj�
 � 1/JS�, �70�

JR � 
Det��Ri/�Rj��
 = 1/
Det��Rj�/�Rj�
 � 1/JR� . �71�

In this case, a straightforward calculation shows that JS�=1
and JR� = ��2+�2� /�2, and therefore

P = JS�JR�P� = �1 + ��

�
2�P�. �72�

Also, the constant C1, given in the initial condition �45�, will
be equal to C1= ��2+�2� /�2.

Since Ŝ= �S1 ,S2� and R̂= �R1 ,R2� both represent vectors
on the xy plane, with S3 and R3 being their z components, we
can write


S�
2 = 
Ŝ
2 + S3
2, �73�


R�
2 = C1
R̂
2 + R3
2, �74�
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S� · R� = Ŝ · R̂ +
�

�
�Ŝ � R̂�z + S3R3, �75�

where �Ŝ� R̂�z= �S1R2−S2R1� is the z component of the
cross product and

Ŝ � û − e−�̂t�â̄ + û0� , �76�

R̂ � r̂ − r̂0 − �̂û0 − a�̂ , �77�

S3 � uz − e−�t�āz + u0z� , �78�

R3 � z − z0 − �−1�1 − e−�t�u0z − a� z, �79�

with �̂� �̂−1�1−e−�̂t� and

�̂ = �� − �

� �
, �̂−1 =�

�

�2 + �2

�

�2 + �2

−
�

�2 + �2

�

�2 + �2
	 .

�80�

Accordingly, if Eqs. �76�–�79� are substituted into Eq. �61�, it
can be shown that the solution of the FPK equation �44� can
be written as the product of two independent TPD’s, that is,

P�R,S� = P̂�R̂,Ŝ�Pz�R3,S3� , �81�

such that

P̂�R̂,Ŝ� � P̂�r̂,û,t
r̂
,û0� , �82�

Pz�R3,S3� � P�z,uz,t
z0,u0z
� . �83�

where

P̂�R̂,Ŝ� =
C1

4�2�FG − H2�
exp�− �F
Ŝ
2 − 2HR̂ · Ŝ

− 2
�

�
H�Ŝ � R̂�z + C1G
R̂
2�� 2�FG − H2�� ,

�84�

is the planar TPD describing the diffusion process of a
Brownian charged particle across the magnetic field and un-
der the action of a planar external force â�t�, with the initial

condition P̂�r̂ , û ,0
û0
�=C1��r̂− r̂0���û− û0�. The TPD Pz is
equal to

Pz�R3,S3� =
1

�4�2�FG − H2��1/2

�exp�−
�FS3

2 − 2HR3S3 + GR3
2�

2�FG − H2�
 . �85�

It describes the diffusion process along the z axis, that is,
parallel to the magnetic field, in the presence of an external
force az�t�, and satisfying the initial condition
Pz�z ,uz ,0
z0 ,u0z
�=��z−z0���uz−u0z�. This TPD is the same
as that of the ordinary Brownian motion in the presence of an

external force az�t�, without the influence of the magnetic
field, as expected. For a swarm of independent particles, we
simply have W=ntotP.

Our solution given in Eq. �81� is similar to that obtained
by SL �1� but not identical. The reasons are the following:
SL’s strategy starts with the same FPK equation �44�, which
is transformed into a field-free case by means of Ferrari’s �3�
gauge. The solution to the transformed FPK equation is thus
established via CG’s ansatz. This solution is a Gaussian
TPD subject to the initial condition G�x ,v ,0
v0 ,x0
�
=��x−x0���x−x0�, as given in that reference. On the other
hand, in our proposal we transform Eq. �44� to the form
given by Eq. �53�, which is quite similar to that satisfied by
the ordinary Brownian motion in the presence of an external
field a��t�. We show in this case that the solution to the FPK
equation �44� is also a Gaussian TPD, but with the initial
condition given by Eq. �45�, where the multiplicative con-
stant is shown to be C1=�2+�2 /�2. In this sense, it is thus
clear that our solution �81� and that obtained by SL �Eq. �7�
of Ref. �1�� are similar but not identical. However, a common
and expected result for both of them is that, for zero mag-
netic field ��=0 in our case and �=0 for SL�, both solutions
reduce, as can easily be checked, to that of the ordinary
Brownian motion in the presence of the external field a�t�
only. In this case, C1=1, and therefore both initial conditions
coincide, as expected. A similar situation was studied in Ref.
�6� by comparing the solution calculated in that reference to
that calculated by CG �2� without the presence of the exter-
nal field a�t�. In fact, when this external field is zero �a=0�,
our solution �81� reduces to that given in Ref. �6� and SL’s
solution reduces, in the planar case, to that calculated by CG.

The immediate consequences of Eqs. �84� and �85� are the
following.

�a� In the absence of magnetic ��=0� and mechanical
Fmec=0� forces, it is shown that C1=1 and therefore the
product given in Eq. �81� reduces exactly to the same funda-
mental solution as that obtained by Ferrari �3� when the dif-
fusion process is under the action of an electric field only.

�b� Both P̂�Ŝ� and Pz calculated in Sec. II can also be
obtained from the integrals

P̂�Ŝ� =� P̂�Ŝ,R̂�dR̂ , �86�

Pz�S3� =� Pz�R3,S3�dR3, �87�

respectively, yielding

P̂�Ŝ� =
�

2���1 − e−2�t�
exp�−

�
Ŝ
2

2��1 − e−2�t�
 �88�

and
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Pz�S3� = � �

2���1 − e−2�t�
1/2

exp�−
�S3

2

2��1 − e−2�t�
 ,

�89�

consistently with Eqs. �31� and �35�. These results clearly
show the consistency of the solutions �84� and �85�.

�c� Similarly, in the configuration space r the planar-

spatial TPD P̂�R̂� and spatial TPD Pz�R3� defined by

P̂�R̂� � P̂�r̂,t
r̂0,û0
� , �90�

Pz�R3� � P�z,t
z0,u0z
� , �91�

can be calculated through the integrals

P̂�R̂� =� P̂�Ŝ,R̂�dŜ , �92�

Pz�R3� =� Pz�R3,S3�dS3. �93�

After long but straightforward algebra, they reduce to

P̂�r̂,t
r̂0,û0
� =
�

2�De�2�t − 3 + 4e−�t − e−2�t�

�exp�−
�
r̂ − r̂0 − �̂−1�1 − e−�̂t�û0 − a�̂ 
2

2De�2�t − 3 + 4e−�t − e−2�t�
 ,

�94�

where De=D�2 / ��2+�2� represents a rescaling of the Ein-
stein diffusion constant �D=� /�2=kBT /m��, and

Pz�R3� =
1

�2�D�2�t − 3 + 4e−�t − e−2�t�/��1/2

�exp�−
��z − z0 − �−1�1 − e−�t�u0z − a� z�2

2D�2�t − 3 + 4e−�t − e−2�t�
 .

�95�

Clearly, the configuration fundamental solution is

P�r , t
r0 ,u0
�= P̂�R̂�Pz�R3�.
�d� A more general PD f�r ,u , t� satisfying an arbitrary

initial condition f�r ,u ,0� can in principle be obtained by
integration such that

f�r,u,t� = �
r0

dr0�
u0

du0f�r0,u0,0�P�r,u,t
r0,u0
� ,

�96�

P�r ,u , t
r0 ,v0
� being the fundamental solution �81�.
�e� In the large-time limit �t�1, Eqs. �94� and �95� re-

duce, respectively, to

P̂�r̂,t
r̂0,û0
� �
1

�4�Det�
exp�−


R̂as
2

4Det
 �97�

and

P�z,t
z0,u0z
� �
1

�4�Dt�
exp�−

R3as
2

4Dt
 . �98�

When the external fields are taken into account, we can es-
timate the equilibrium mean square displacements �MSD’s�
along and across the magnetic field, although the expression
of the external force a�t� is not explicitly given. We can do
this in the following way: in the usual field-free Brownian
motion it is well known that the equilibrium MSD reads
�
r−r0
2�=2Dt. Therefore, in the presence of an external
field, and according to Eqs. �77� and �79�, we could in prin-

ciple neglect the term �̂û0 with respect to r̂− r̂0−a�̂ , and the
term �−1�1−e−�t�u0z with respect to z−z0−a� z. However, ac-
cording to Ferrari �3�, there is no reason to neglect the terms

�̂−1u0 and �−1u0z, since they must be taken into account in
the integration process over the whole u0 space in Eq. �96�
for a general probability distribution calculation. In this case
the fundamental solutions �97� and �98� can be approximated
by

P̂�r̂,t
r̂0,û0
� �
1

�4�Det�
exp�−


r̂ − r̂0 − �̂−1u0 − a�̂ 
2

4Det

�99�

and

Pz�z,t
z0,u0z
� �
1

�4�Dt�
exp�−

�z − z0 − �−1uoz − a� z�2

4Dt
 .

�100�

Therefore, the equilibrium MSD’s for each variable x, y, and
z, defined as ��x�2����x−x0�2�, ��y�2����y−y0�2�, and
��z�2����z−z0�2� are easily calculated from Eqs. �99� and
�100�, thus giving

��x�2� = 2Det + � �u0x

�2 + �2 +
�u0y

�2 + �2 + a� x2

, �101�

��y�2� = 2Det + � �u0y

�2 + �2 −
�u0x

�2 + �2 + a� y2

, �102�

��z�2� = 2Dt + �u0z

�
+ a� z2

. �103�

In the absence of all external forces, these MSD’s can be
written in shorthand as �
r−r0
2�=2Dt+ �
u0
 /��2, which is
the same as that of the ordinary Brownian motion if the term
u0 /� is not neglected. However, if u0=0 and also a� =0, then
they reduce to ��x�2�= ��y�2�=2Det and ��z�2�=2Dt, cor-
responding to the MSD’s when the diffusion process occurs
under the action of a constant external magnetic field only
�2,6�.

IV. CONCLUSIONS

When a magnetic field B is allowed to point along the z
axis of a Cartesian reference frame, then it influences the
diffusion process only across the magnetic field, i.e., on the
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xy plane. Along the magnetic direction, a magnetic-field-free
diffusion process is obtained, as expected. These statements
have been well characterized through the fundamental solu-
tions given in Eqs. �31�, �35�, �84�, and �85�. Formally, these
solutions have been obtained not from the FP �8� and FPK
�44� equations, but from their respective transformations �18�
and �53�. In contrast with SL’s proposal, where a Gaussian
probability distribution associated with the correlation func-
tions is assumed as an ansatz, our solution method is mark-
edly different and allows for a solution free of extra assump-
tions. Simões and Lagos’s PD satisfies the same initial
condition as that given by Eq. �9�, except for the constant C1.
These are the main reasons why both fundamental solutions
are similar, but not exactly the same.

In the velocity space, we have obtained the more general
PD �38� with an initial Maxwellian velocity distribution �37�.
As can be readily seen, our theory is an alternative one to
that proposed by Ferrari �8�. The conditions under which our
result reduces to that obtained by Ferrari are given in point
�c� of Sec. II.

The consistency of the phase-space fundamental solution
�81�, or equivalently �84� and �85�, have been well estab-
lished through the different cases studied in the points �a�–�e�
of Sec. III. A particular and interesting point we want to
stress here is that, when both mechanical and magnetic fields
are absent, our fundamental solution �81� reduces exactly to
Ferrari’s phase-space solution �3�. As a simple calculation,
we obtain the MSD across �Eqs. �101� and �102�� and along
�Eq. �103�� the magnetic field, assuming that the initial con-
dition u0 is not necessarily neglected.

Once the fundamental solution �81� is obtained, a more
general phase-space PD can be calculated for an arbitrary
initial PD. However, this task is still under investigation.
Finally, another interesting problem to which our proposal
can be extended is that of anisotropic diffusion, as studied by
Holod et al. �4�. This work is in progress.
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APPENDIX A: SOLUTION OF THE FP EQUATION IN
VELOCITY SPACE u�

To solve the Fokker-Planck equation �18�, which is quite
similar to that of the ordinary Brownian motion in the pres-
ence of a general time-varying external field a��t�, we follow
Chandrasekhar’s methodology to solve the FP equation in
the field-free case �7�. Accordingly, the solution of Eq. �18�
is connected to the solution of the associated first-order equa-
tion without the Laplacian term, that is,

�P�

�t
+ a� · gradu�P� = � divu��u�P�� . �A1�

The solution of Eq. �A1� involves the first three integrals of
the Lagrangian subsidiary system

u̇� = − �u� + a��t� , �A2�

which are

e�tu� − ā� = I1�. �A3�

In this last expression I1�=u0�, and

ā��t� = �
0

t

e�ta��s�ds . �A4�

By defining a new vector

p� = ���,��,��� = e�tu� − ā�, �A5�

it can be shown that each term of Eq. �18� reduces in this
space to

�P�

�t
=

�P��p�,t�
�t

+ �p� · gradp�P� + �K̄� · gradp�P�

− e−�ta� · gradp�P�, �A6�

a� · gradu�P� = e−�ta� · gradp�P�, �A7�

�u� · gradu�P� = �p� · gradp�P� + �ā� · gradp�P�, �A8�

�u�
2 P� = e2�t�p�

2 P�. �A9�

Then Eq. �18� becomes

�P�

�t
= 3�P� + ��p�

2 P�. �A10�

This equation can be further simplified by introducing the
variable

�� = e−3�tP�, �A11�

giving as a result

���

�t
= �e2�t� �2��

���2 +
�2��

���2 +
�2��

���2 . �A12�

Thus, following Chandrasekhar’s proposal, if ��t� is an arbi-
trary function of time, the solution of the equation ��� /�t
=�2�t��p�

2 �� which has a source in p�=p0� at time t=0 is
given by

�� =
1

�4��0
t �2�t�dt�3/2exp�−


p� − p0�

2

4�0
t �2�t�dt

 . �A13�

Finally, for ��t�=�e�t, the solution of the Fokker-Planck
equation �18� will be

P��u�,t
u0�
� =
1

�2���1 − e−2�t�/��3/2

�exp�−
�
u� − e−�t�ā� + u0��


2

2��1 − e−2�t�
 .

�A14�
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APPENDIX B: SOLUTION OF THE FPK EQUATION IN
PHASE SPACE „r� ,u�…

Again, according to Chandrasekhar, the solution of Eq.
�53� is connected with the solution of the associated first-
order equation without the Laplacian term, that is,

�P�

�t
+ u� · gradr�P� + a� · gradu�P� = � divu��u�P�� .

�B1�

The solution of Eq. �B1� involves six integrals of the La-
grangian subsidiary system given by

u̇� = − �u� + a��t�, ṙ� = u�. �B2�

Thus, their corresponding six integrals are

e�tu� − ā� = I1�, �B3�

r� + �−1u� − �−1�
0

t

a��s�ds = I2�, �B4�

where ā� is the same as in �A4�, I1�=u0�, and I2�=r0�+�−1u0�.
Accordingly, to solve Eq. �53�, we introduce the following
change of variables:

p� � ���,��,��� = e�tu� − ā�, �B5�

Q� � �X�,Y�,Z�� = r� + �−1u� − �−1�
0

t

a��s�ds . �B6�

For these transformations, we can show that

�P�

�t
=

�P��p�,Q�,t�
�t

+ �p� · gradp�P� + �ā� · gradp�P�

− e−�ta� · gradp�P� − �−1a� · gradQ�P�, �B7�

gradr�P� = gradQ�P�, �B8�

gradu�P� = e�tgradp�P� + �−1 gradQ�P�, �B9�

and

�u�
2 P� = e2�t�p�

2 P� + 2�−1e�t�p� · �Q�P� + �−2�Q�
2 P�.

�B10�

Substituting Eqs. �B7�–�B10� into Eq. �53� we get

�P�

�t
= 3�P� + ��e2�t�p�

2 P� + 2�−1e�t�p� · �Q�P�

+ �−2�Q�
2 P�� . �B11�

Again, by introducing the variable

�� = e−3�tP�, �B12�

Eq. �B11� reduces to

���

�t
= ��e2�t�p�

2
�� + 2�−1e�t�p� · �Q��� + �−2�Q�

2
��� .

�B13�

This equation has the same structure as that obtained by
Chandrasekhar to solve the FPK equation of a Brownian
particle in the field-free case �7�. Following his method, and
by defining the variables

S� = u� − �ā� + u0��e
−�t, �B14�

R� = r� − r0� − ��u0� − a��, �B15�

where ��=�−1�1−e−�t� and

a�� = �
0

t

e−�sā��s�ds , �B16�

we finally show that the solution of the FPK equation �53� is

P��R�,S�� =
1

8�3�FG − H2�3/2

�exp�−
�F
S�
2 − 2HR� · S� + G
R�
2�

2�FG − H2�
 ,

�B17�

where the parameters F, G, and H are given by

F =
�

�3 �2�t − 3 + 4e−�t − e−2�t� , �B18�

G =
�

�
�1 − e−2�t� , �B19�

H =
�

�2 �1 − e−�t�2. �B20�
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