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Anomalous thermal conduction in one dimension: A quantum calculation
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In this paper, we study the thermal conductivity of an anharmonically coupled chain of atoms. Numerical
studies using classical dynamics have shown that the conductivity of a chain with nearest neighbor couplings
diverges with chain length L as L%; earlier studies found a= 0.4 under a range of conditions, but a recent study
on longer chains claims @=1/3. Analytically, this problem has been studied by calculating the relaxation rate
T, of the normal modes of vibration as a function of its wave vector g. Two theoretical studies of classical
chains, one using the mode-coupling formulation and the other the Boltzmann equation method, led to I,
o g>3, which is consistent with a=0.4. Here we study the problem for a quantum anharmonic chain with
quartic anisotropy. We develop a low-temperature expansion for I';, and find that, in the regime 7w, <kgT,
I, <q°*T%, where w, is the frequency of the mode. In our analysis, the relaxation arises due to umklapp
scattering processes. We further evaluate the thermal conductivity of the chain using the Kubo formula, which
enables us to take into account the transport relaxation time through vertex corrections for the current-current

correlator. This calculation also yields a=0.4.
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I. INTRODUCTION

Our understanding of heat conduction and other transport
processes is based on phenomenological laws like the Fou-
rier law. The basic assumption that underlies such laws is
that of local thermal equilibrium (LTE), in which the noneqi-
librium state of the system can be described in terms of slow
spatiotemporal variations of the thermodynamic variables of
the system. While these laws have provided a very useful
description of a vast range of near-equilibrium phenomena,
their microscopic basis is far from being understood [1-4].

In this context, much effort has been made to study one-
dimensional systems, as they are amenable to farther analyti-
cal and numerical progress [5]. The first such effort was the
celebrated work of Fermi, Pasta, and Ulam (FPU), who con-
sidered vibrations of a classical chain of anharmonically
coupled atoms [6]. Their observations regarding the lack of
energy sharing among long-wavelength modes in the system
has led to a large body of work examining relationships of
dynamical chaos with ergodicity, equipartition, energy diffu-
sion among modes, stochasticity, etc. [7,8].

Another important early study examining heat flow under
temperature gradient is due to Rieder, Lebowitz, and Lieb
[9], who obtained an exact solution for a harmonically
coupled chain. They showed that the thermal conductivity
diverges linearly with the chain length, and the temperature
profile departs from the expectations of the Fourier law. The
lack of LTE could be attributed to ballistic transport in a
harmonic system; however, the precise conditions on the dy-
namics needed to obtain LTE in the system remains a goal of
the work being pursued currently. The transport behavior is
intimately related to the dispersion and relaxation of normal
modes in the system. The latter aspect, in turn, depends cru-
cially on the dimensionality of the system. The role of di-
mensionality for the transport processes in general was
brought out by hydrodynamic arguments [10], which typi-
cally give for a mode of wave vector g a relaxation rate of
the form g2. This implies a divergence of the transport coef-
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ficients in dimensions two and smaller, and for a finite chain
the conductivity would diverge with chain length L as L%,
with a=0.5.

Recently, this problem has received a lot of attention
through a number of numerical and analytical studies [5,11].
The first set of numerical studies on the FPU chain that ob-
tained the divergence of conductivity found that a= 0.4 for a
range of anharmonicity parameters and temperatures [12,13].
Another system where the same exponent was seen is the
diatomic Toda lattice [14]. But the value of the exponent and
the extent of its universality have come under much scrutiny.
In one set of studies, where the atoms are allowed both trans-
verse and longitudinal motions, two sets of exponents were
seen [15]. For a certain range of parameters, the exponent
was seen to be 0.4, whereas in another range, where trans-
verse motion seems to dominate, the exponent was found to
be 1/3. In a study by us [16], two variations were made.
One, next-nearest-neighbor couplings between atoms were
introduced. Second, a two-ladder chain was used, in which
atoms can vibrate both along and transverse to the ladder. In
both cases, the divergence exponent was found to be 0.6, a
significant change, as in our first variation the new couplings
change only the dispersion of the modes. A very recent study
on longer FPU chains, however, claims that the asymptotic
exponent is 1/3, and it also shows the existence of LTE for
such chains [17].

Lepri [18] has considered this question from two other
points of view. First, the power law decay of the autocorre-
lation function of current was numerically computed, and
found to decay asymptotically as (J()J(0))ot 5, where J(f)
denotes the heat current. The exponent B, determined by
studying the noise spectrum of the current in the low-
frequency range, is found to be 0.63 [18]. Second, the wave-
vector dependence of the decay rate I'; of the normal modes
has been examined numerically [18], and here a power law
dependence of the form ¢'%* has been seen for small ¢. Both
these values are consistent with the the value o= 0.4, how-
ever the question whether the asymptotic regime is reached
remains.
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The one-dimensional conductivity problem has been ex-
plored in two other classes of systems. One class is that of
fluidlike systems [19-22], where particles interact with a
hard sphere potential, and the other class is that of coupled
rotors [23,24]. For the fluid models, the conductivity di-
verges, and the exponent « obtained from the largest studies
is 1/3 [21]. For the rotor models, the conductivity is found to
be finite.

A good perspective on the above results is obtained by
considerations introduced by Prosen and Campbell, who ar-
gued that, in systems with momentum conservation, the con-
ductivity would diverge on general grounds [25]. Narayan
and Ramaswamy [26] (NR) pointed out a flaw in their argu-
ment, by showing that Prosen and Campbell wrongly in-
cluded a convective term in their definition of thermal cur-
rent, which makes the current-current correlator (J(7)J(0))
assume a nonzero value in the large-time limit, and is thus
responsible for the divergence of the conductivity. NR [26]
made a renormalization group study of the hydrodynamic
equations of heat transport in a liquid, and argued that for
any momentum-conserving one-dimensional system, in
which local equilibrium is established, the exponent « is
1/3. While their result is supported by numerical studies on
fluids and studies on vibrational chains in which local poten-
tials are added to violate the momentum conservation [27],
the results for FPU chains and rotors show a curious contrast.
Both these systems have translational invariance and the
consequent Goldstone mode, but in the vibrational system
the conductivity diverges, while in case of rotors, it does not
[28]. Some further progress in the hydrodynamical argu-
ments has been made by Lee-Dadswell et al. [29]. Since the
mode-coupling formalism couples heat transport modes to
momentum transport modes, these authors have also exam-
ined the frequency-dependent longitudinal viscosity {(w).
They find, using simple hydrodynamic relations, that {(w)
has distinct behaviors depending on whether y=c,/c, is 1 or
greater than 1. For y=1, {(w)—{, whereas for y#1,
{(w)<cw 2. This in turn leads to different forms for the
frequency-dependent thermal conductivity k(w). For y=1,
r(w) < w2, while for y# 1, k(w) > w™"3. The NR argument
is based on the latter behavior for {(w) and does not apply to
the FPU chain with quartic interactions, as y=1 for this sys-
tem. Lee-Dadswell et al. have numerically examined the be-
havior for k(w) and {(w) for quartic oscillators, and find that,
in the low-frequency limit, {(w) indeed tends to a constant,
but «(w) does not show a single power law, though over a
large frequency range it is < "38 which is consistent with
a=04.

More specific analytical studies in this regard are those of
Lepri er al. [13] and Lepri [18]. They used the mode-
coupling formalism to analyze the wave-vector dependence
of the vibrational modes in the FPU problem and found the
behavior I',ocg™? for small g. Pereverzev [30] has tackled
the FPU problem with quartic nonlinearity, by looking at the
classical version of the Peierls equation, which is essentially
the Boltzmann equation for phonons. He has obtained the
decay rate for the energy of a mode and finds its wave-vector
dependence to be ¢°’>. However, there is an essential differ-
ence between the last two set of arguments. In the Boltzmann
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equation approach, the decay rate of a mode comes from
processes involving umklapp scattering, whereas, in the
mode-coupling approach, the anomalous behavior arises
from a singular frequency dependence of the memory kernel,
a rather generic feature of the mode-coupling approach in
one dimension. Thus, though the two approaches give the
same answer, the basic mechanisms leading to the answer
seem different. NR [26] have pointed out an inconsistency in
the mode-coupling argument, which transfers the singular
frequency behavior to singular wave-vector behavior. A re-
cent mode-coupling study specific to cubic anharmonicity
[31] yields the decay rate of ¢*>.

In view of the above, we have undertaken to calculate the
thermal conductivity of the chain obeying quantum dynamics
directly by using the Kubo formula. We expect that a quan-
tum calculation will give further insights into the micro-
scopic dynamics, and the hydrodynamic behavior which
seems to underlie the anomalous transport. Particularly
through energy-momentum conservation in the mode-mode
scattering, the calculation of transport coefficients is sensi-
tive to dispersion of harmonic modes, in common with Per-
everzev’s approach [30]. In addition, the quantum treatment
offers several technical advantages over classical treatment,
as it allows a systematic perturbation treatment for the cal-
culation of current-current correlators. We can go beyond the
Boltzmann equation approach and develop a low-
temperature expansion for the phonon decay rate, as well as
include the vertex corrections for the current-current cor-
relator, which are of crucial importance for transport coeffi-
cients. The earlier studies on vibrating chains do not calcu-
late the conductivity directly.

II. FORMULATION

We consider here a coupled chain of atoms each of mass
m, with the Hamiltonian

N
1 1 g
H=2Y, (—p,z+—mwé(xl—xl+])2+—(xl—x1+,)4>, (1)
<\ 2wt 72 41

where x; and p; denote, respectively, the displacement and
momentum of the atom whose equilibrium position is la
along the chain. With periodic boundary conditions, the qua-
dratic part of the Hamiltonian is diagonalized by the normal
mode coordinates given by

N
1
0= =2 explikl)x,,
g \’/X’l:l !

N
1
Py=—=2 explik)p;, 2)
VN =1

where the wave vector k is given by k=2mj/N, and j is an
integer chosen so that k lies in the Brillouin zone (-, 7).
For quantum calculations, one works with the annihilation
and creation operators @; and a}i, with a; defined as
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Q P
o=\ (g, ,;(;k) ()

where (), are the normal mode frequencies given by
Qk=2w0|sin k/2| = WyWy. (4)

The Hamiltonian in units of fw), can now be written as

H= 2 wk< +akak) +— 2 v(k,q,p,s)A,T(A;APAS,

4IN s
(5)
where
Ap=ap+a’,, (6)
o(kyg.p.s) = LI N4 g - p ) (7
V0,0,
with
Y, =1- e, (8)
Further, g denotes the dimensionless coupling constant
F= - 9)

and the function A(k) is zero, unless the argument k is zero
or a multiple of 27r. A(0)=A(2nm)=1, the latter correspond-
ing to the umklapp processes.

The calculation of thermal conductivity requires evalua-
tion of the following thermal Green’s function of the heat
current operator J:

W(7) =—=(TJ(7)J(0)), (10)

where the angular brackets denote the thermal average,
T, is the usual time ordering operator, and J(7)
=exp(7H)J exp(—7H). Here, 7 lies in the range (-8,8),
where B=fwy/kgT is proportional to the inverse tempera-
ture, T. The thermal conductivity « is now given by [32]

1 Im W(iw, — o+ i0)

E— , 11
k== lim o (11)
where
B .
W(iw,) =f W(r)e'dr, (12)
0

and w,=2mn/B are the Matsubara frequencies.
For the above Hamiltonian, the classical expression for
the current is

J=(am)Im E V00 +

3‘Nk2 VY, (1+e")

q4:p-s
XA(k+q=p=5)2Q0,0,0-. (13)
where v;=wydwy/ Jk, is the group velocity of the mode, and

Qk denotes the time derivative. Henceforth, we choose units
in which wy=a=%=kz=1. In most of the traditional analysis,
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only the first term of this operator is analyzed, as the physi-
cally significant results come from this term, while the sec-
ond term provides largely higher-order quantitative correc-
tions. Neglecting the second term, one obtains for the current

J=> Ve, ay. (14)
k

Thus, for calculation of conductivity, we need to evaluate the
following Green’s function:

W(r) = %kE ST La(Pa D 0a ), (1)
P

where j,=v,w),. In the next section, we present the necessary
formalism of the diagrammatic perturbation theory to calcu-
late W and the conductivity.

III. PERTURBATION THEORY FORMALISM
FOR CONDUCTIVITY

We follow the standard perturbation treatment, but note
that in one dimension a special care needs to be taken. We
include in the unperturbed Hamiltonian H,, the diagonal part
of the nonlinear interaction. Denoting the number operator

a, by ﬁq, we write

Hy= E W+ — E v(k,q.k,q) (g + 7+ 1) (7, + 7,

12N
+1). (16)

The diagonal terms in the perturbation Hamiltonian need to
be projected out in the perturbation series, as they cause
vanishing energy denominators. In higher dimensions, this
need not be done explicitly, as the associated phase space is
vanishingly small; however, this is not so in one dimension,
causing spurious divergences. Due to separability of the in-
teraction term, the thermal and dynamical properties of H,
are easily obtained. We use the Hartree-Fock approximation
for unperturbed energies and occupation numbers,

€,=w,+ %% v(k,q,k,q)ny, (17)
=n(e )= _ . (18)

To calculate W(7), we also need to evaluate the following
propagators:

G(q, 1) ==(T fa(Daj0)]), (19)
D(q.7) =—(TJA,(DALO)]) (20)
=G(q.7) +G(=q,— 7). (1)

The perturbation expansion involves unperturbed versions of

the above propagators, denoted as G, and D, respectively.
We now briefly summarize the standard formalism em-

ployed to calculate the transport coefficients. The set of dia-
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q; Wy + 1wy,

q; Wy + 1wy,

jq jfl jq

A(q: Wy, + 1wy, iwm)
(a) . iwy (b) . iwy,

FIG. 1. (a) Zero-order diagram for WO(7). The lines represent
factors of G, and wavy lines factors of current j,. (b) Diagram for
W(iw,). The thick lines stand for G and the shaded triangle for
current vertex function A as defined in Eq. (23).

grams used to evaluate W(7) or W(iw,) is shown in Fig. 1.
Figure 1(a) shows the zero-order diagram. Its contribution is

: 1 : : . .
Wo(lwn) == ]V_E 2 ]ZGO(qalwm + lwn)GO(q’lwm),
q Oy

(22)

where Gy(q,iw,,) is the frequency transform of G(q,7),
given by (iw,,—€,)~". The higher-order terms in perturbation
series (a) renormalize the propagators and (b) give rise to
vertex corrections. This is shown in Fig. 1(b), in which the
current vertex function A(g,iw,,+iw,,iw,) is defined (see
Fig. 2 also), and thicker lines represent the full propagators
G(q,iw,,). The diagrams that incorporate the self-energy cor-
rections to each propagator independently renormalize the
energies of the phonons, and more importantly give rise to
finite lifetimes for these states. The decay of a one-particle
state comes from all the processes that scatter the particle out
of that state. The vertex corrections involve scattering pro-
cesses involving both the particles together. These corre-
spond physically to the processes in which the scattering
events replenish the state [32,33]. Algebraically, one writes

S

W(iw,) = - N

> 2 Gl iw, +i0,)G(g.iv,)

q Wy
XA(g,iw,, +iw,,io,,). (23)

Note that, at zero order, A(q,iw,+iw,,iw,)=j,. One writes
an integral equation for the current vertex function, which is

. . o1 . .
A g iow, +iw,,iw,) =jg— N_,BE U(q.p.q.p.iv;— iw,,)
g0,

XG(p,iw;+iw,)G(p,iw)
XA(p,iw;+iw,,iw). (24)

q, Wy + iw,

>vv Ja

q, i + iwy,
b m T

%m + 1wy, W)

q, 1w q; W
¢, Wiy + Wy piwy + dw,
+ wy — iwm U
A e + o, i)
q,iwn, Dy

FIG. 2. Diagrammatic representation for the integral equation
for the vertex function A as given in Eq. (24).
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q, twy + twy q'yiwy, + iwy + iw, . . ,
q, 1wy + 1wy, q 1wy, + Wy + twy
L‘@ iwn, =
) o ) Py iwy P’ iwn + iwy
P, iw P, iwy + iw
q, iwy + iwy ¢ iwy, +iwy + iw,
k. iwy 8, Wy + W,

W

P, twy Py i, + iwy

FIG. 3. Diagrammatic representation for the integral equation
for the interaction vertex U obtained in a ladder approximation
given in Eq. (25). The undirected lines represent factors of D,.

The diagrammatic representation of this equation is shown in
Fig. 2. The above equation involves the renormalized inter-
action vertex U. The renormalization of the interaction is
necessary, as it is directly seen that, in the present case, the
current vertex corrections become zero when U is replaced
with the bare interaction v. We obtain U(gq,p’,p.q ;iw,,) in
a ladder approximation that is shown in Fig. 3:

Ulg.p'.p.q"siw,) = gv(g.p’.p.q")
g 2 ’ 0 .
-— v(q,s,k,q")D°(k,iwy)
Nﬁk,s,wl
XD (s,iw, + iw,,)Ulk,p',p,s;iw,,).
(25)

This integral equation can be solved as the interaction v is
separable. Using Eq. (7), we can write

v(g.k,p,s) = ur(q,uy(p,)A(g +k—p—s),  (26)

where u5(q,p)="v,v,/ \s"wqu. Now the following expression
for U:

Ulg.p'.p.q'siw,) = Ulp - gsiw,)us(q.p us(p.q")
XAlg+p' -p-q'), (27)

solves the integral equation, with U given by

8
1+3K(p—-q.io,)

Ulp - qsiw,) = (28)

Here K(p—gq,iw,,) is easily seen to be

1
K(p - q’iwm) = E wkwsDO(ksiwl)DO(saiwl + iwm)

k,s,w;

XA(p+k—qg-ys), (29)

where in the last equation the explicit form for the y,’s has
been used.
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(a) s (b) Ulq, p;iwnm)

FIG. 4. (a) Diagram for self-energy 3, in the second-order per-
turbation theory. (b) Self-energy diagram with renormalized inter-
action vertex.

From Eq. (23) it is a standard exercise [32] to obtain the
following expression for conductivity in terms of propaga-
tors and vertex function:

1 de( dn(e) dq
K"TLO 277( de )fz JgMa.€

The quantities A(q, €) and I'(g, €) are related to the retarded
Green’s function G(gq, €) in the following way:

Alg,€)
0, )
—ide+i )ZF(q,e)

(30)

1
e—¢e,—3(q,e+id)’
(31)

G(q,e) =G(q,iw, — €+1i6) =

and the self-energy (g, e+i8)=2(q,€)—il'(q,€). Further,

A(g,e)=-2TIm G(g,e+i0) (32)

is the spectral function. The above expression for conductiv-
ity is valid only when the decay rates I'(g,€) <€ =¢,
+2:(g,€), a condition that is well satisfied for small q.
Evaluation of the conductivity requires computation of the
single-particle self-energy and the vertex function A. These
calculations are presented in the next section, with some de-
tails relegated to the Appendix.

IV. EVALUATION OF CONDUCTIVITY

We begin our discussion by first considering the approxi-
mation in which vertex corrections are neglected by replac-
ing A(g,e~id,€e+id) by j,. Under the valid assumption that
A(q,€) is sharply peaked at €, one finds

d d
1) e[ s o

where C,, denotes the mode specific heat, and 7,=I""'(q,€,).
With this identification, one just gets the familiar formula of
kinetic theory.

The lowest-order contribution to I'(g, ) comes from the
second-order self-energy diagram shown in Fig. 4(a). The
schematic form for the self-energy containing all the other
contributions can be drawn in terms of renormalized propa-
gators and the renormalized interaction vertex, as shown in
Fig. 4(b). We first discuss the contribution of Fig. 4(a). It
turns out that it contains crucial aspects of the physics of the
problem. This self-energy is
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E > [v(g.k.p.s)]?

pks jm

E(Q’iwn N,82

X Do(p, lwm)DO(k,lw])DQ(s,lwn - lwm - lw,) .
(34)

The imaginary part of this self-energy on shell is seen to be

~ . 1
(g, €,) =g w, (P 1);} > w,wpon,n (1 +ny)

pik.s

XA(g+s—k-p)ole, +€—€,—€). (35)

To analyze the energy-momentum conditions in the above
formula, we note that the Hartree energy has the same dis-
persion as the linear mode, due to the nature of the interac-
tion, i.e., €,=2dy|sin ¢/2|. For the low-temperature expan-
sion that we develop here, the temperature-dependent
Hartree correction give only higher-order terms in tempera-
ture, and we can replace €,=w,. In one dimension, the
energy-momentum conditions permit few solutions. For nor-
mal processes, only the diagonal terms for which p=g,k=s
or p=s,k=q are allowed. But these are excluded from the
perturbation Hamiltonian. This leaves contributions from
only umklapp processes, for which s=p+k—g+2mm with
m==x1. The analysis of umklapp processes is long but
straightforward, as many subcases need to be considered in
the regions of the Brillouin zone where umklapp processes
are allowed. For example, using the zone (0-2), s=p+k
—g+2m would hold when p+k—¢g <0, for which the energy
conservation condition is

sin(k—u> =tan(q_p>cos<u). (36)
2 4 4 4

Working out all the contributions, we find the following re-
sult:

2
2)(q,eq) g w, (ePé —l)f

><a’_pnpwpn(wl)(ul[n(wz) + 1w,

27 Jo(q.p) - (7

where

12
J.(q.p)= (i[cos(q/Z) +cos(p/2)]? + sin(q/Z)sin(p/2))

(38)
and
12
w,=2 sin(q;p>{[1 —tan2<q;p)cos2<q1p)}
i—cos(q:p)}. (39)

We first note that, if we replace the Bose factors n(w) by
their high-temperature form 7/ in the above formula, it
reduces exactly to the energy relaxation rate obtained by Per-
everzev [30], in the classical version of the Peierls equation
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approach. The denominator J,(q,p) inside the integral,
which comes from the Jacobian of the energy conservation &
function for umklapp processes, is identical to the one found
in Pereverzev’s calculation. The denominator diverges as ¢
— 0, and, to leading order in small g, the integral diverges as
g~'3. This, as shown by Pereverzev [30], leads to the relax-
ation rate I'® (g, &) « 2¢°".

We now go beyond the second-order result and obtain a
low-temperature expansion. This requires summing all dia-
grams with a fixed number of phonon lines carrying the Bose
factor n,, which results in a power of temperature. To the
lowest order in density, this can be done by using the ladder
approximation for the interaction vertex in the self-energy
diagram of Fig. 4(b).

The contribution for the self-energy diagram in this ap-
proximation can be written as

1
E(Cl,iwn) == E DO(p7iwm + iwn)U(q?p’q’p;iwm)'
BN o,
(40)

Following Harris [35], who derived the low-temperature re-
sult for the relaxation rate of magnons, we use the spectral
representation for U given by

dowIm U(g.p.q.p;®)

U(q9p’ qsp;iwn) == f > (41)

T iw,—w
and perform the frequency sum. This leads to the following

expression for the relaxation rate:

I'(g.€) =~ %2 Im U(q.p.q.p:€, - €,)[n(€,) —n(e, — €,)]
p

-(e,——¢,). (42)
To go further, we use the optical theorem for Im U, which
follows straightforwardly from Egs. (28) and (29), to write
1
T(g.€)=— sz [n(e,) - n(e, - €,)]w,0,K/(p - q.€, - €,)
P

X|[7(p_q’6p_6q)|2_(6p_)_€p)s (43)
where
n(w)wi[n(w,) + 1w,

n(Eq - ep)]a(cbp)
(44)

K/(p,0)=ImK(p,iw, — 0+id) =—

This expression for I'(¢,€,) differs from the second-order

expression evaluated above just by the factor of |l7|2 This
form is particularly useful for the low-g and low-temperature
expansion (A€}, <kgT<fhwy). Again as argued by Harris
[35], we replace the U factors by their zero-temperature and
zero-frequency values. This is because the Bose factors as-

sociated with the internal lines in U contribute higher-order
factors of temperature, and frequency-dependent terms con-
tribute higher-order factors in momentum. From Eq. (28) we
see that this requires evaluation of K(p—g¢,iw) at zero tem-
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perature and zero frequency. Denoting this value by Ky(p
—-q), we find

Ko(p) = 7%_{1 — cot(p/4)cos(p/4)In[tan(m/4 + p/8)]}.

(45)

We now evaluate Eq. (43) by substituting for the U factors

&
1+8Ko(p-q)
The factor K|, varies between 0 and 2/ over the range of
integration. We have seen, in the evaluation of the second-

order term, that the most important contribution to the inte-
gral comes from the low-momentum singularity of K;. Thus,

Up-q,0) = (46)

with little error, we can replace ﬁ(p—q,'ép—'éq) by a constant
gr=8/(1+gKy). In the Appendix, we have given the evalu-
ation of this term in the low-temperature limit, and indeed
find the qualitative dependence I'(g) «¢>3T?. To check this
result and also obtain I'(g) for higher values of g, we have
also evaluated the integral numerically. Apart from numerical
factors, this requires the evaluation of the integral given in
Eq. (37). As a first step toward this evaluation, we reduce the
range of integration to O—sr. Then the denominator tends to
zero schematically as (¢p)'?+¢* as g,p—0. Such singular
integrals can be evaluated by the method of Gaussian
quadratures with weight function proportional to p~'2. We
found that our procedure yields convergent answers, and the
result are exhibited in Fig. 5.

Finally, we turn to examine the effect of vertex correc-
tions. First, as a general remark, we mention that the physical
role of vertex corrections in the calculation of transport re-
laxation time is to give weight to scattering processes depen-
dent on the scattering angle. The smaller the weight, the
smaller is the scattering angle. However, in one dimension,
this feature is already taken care of, as our relaxation rate
contains contributions from only umklapp processes, as dis-
cussed above. Nevertheless, A(g,€e,~i8,€,+i6) can have
nontrivial wave-vector dependence, which can affect the
evaluation of « in a qualitative manner. One can derive an
integral equation for this quantity directly from Eq. (24).
After performing the frequency sum on the right-hand side of
this equation [34], one obtains

A(g,e,—i6,€,+1i0)
1 n(w,) ~
=j -=2 ww,—L—ImUQp-q0,-w,-id
q Np q Pr(p’ep) ) q
XA(p,€,—i6,€,+i0). (47)

Using the same low-temperature approximation as was used
for Eq. (43), we get

~2
A(Q) =jq - %E wqu%)%l{l(p - q7wp - wq)A(P),
p b

(48)

where A(g) denotes A(g,€,~id, €,+id) here. The kernel of
this integral equation is not separable and singular, due to the
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FIG. 5. Numerical solutions of A(g) and I'(¢)/g* as functions of ¢ for T=0.1.

presence of the factor J,(¢q,p) in the denominator through K;.
Note that this is the factor that also gave rise to the singular
behavior of I'(g,€,). We have solved this equation numeri-
cally. The solution is shown in Fig. 5, and is seen to be linear
in g over a wide range. We have checked the convergence of
the solution by raising the number of points in the Gaussian
quadrature formula. This implies that the transport relaxation
time also varies as ¢~>'>. Then, following the arguments of
Lepri et al., one argues the value of « to be 0.4.

V. SUMMARY

In this paper, we have studied thermal transport in a chain
of anharmonically coupled particles using quantum dynam-
ics. We have obtained the phonon relaxation rate I'(g) in the
low-temperature limit by including all diagrams of the low-
est order in phonon density, and find that Fq0<q5/3T2. Like
the earlier result of Pereverezev on energy relaxation of the
mode using classical Boltzmann equation, in our result the
relaxation arises due to umklapp scattering and is specific to
the phonon dispersion. We have used the Kubo formula to
calculate the conductivity directly. We use self-energy cor-
rections as well as vertex corrections in this evaluation, and
find that the conductivity diverges with exponent a=0.4.

This is at variance with recent numerical results on clas-
sical chains, which give a=1/3, in agreement with the hy-
drodynamic arguments of Narayan and Ramaswamy [26],
though the generality of these arguments has been questioned
by later arguments of Lee-Dadswell et al. [29]. We would

further like to point out that the hydrodynamic arguments use
density and momentum conservation equations for particles,
whereas both these equations do not apply to a phonon gas,
as may be easily checked from the Boltzmann equation for
phonons. Further investigations are needed to resolve these
issues.
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APPENDIX

In this appendix, we give the details of the numerical and
analytical evaluations of I'(g, €,), followed by details of the
procedure used for numerically solving the integral equation
of the vertex function.

Using Eq. (43) after replacing U by a constant as dis-
cussed in the text, one gets

) (eﬁwq_ 1) 2
T(qw)=g—— f dp wn(w,)
0

B
wn(w) w1 +n(w)]
Jo(q.p)

(A1)

We first change the range of integration to 0-7 to write
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F(C]’w ) MJA dp wpn(wp)wln(wl)
0

B

J.(q.p) +J1.(q.p)
Ja.p)q.p)

where J/(q,p)=J,(¢q,27-p). The denominator now reads

X[ 1 +n(w,)] (A2)

1
JJ, = Z{[cos2(q/2) +cos?(p/2) + 4 sin(g/2)sin(p/2) T

— 4 cos*(p/2)cos?(g/2)}"2. (A3)

To perform the integration numerically, we note that the in-
tegrand assumes very large values as p,g—0, as in this do-
main the denominator is proportional to (pg)"?+¢* To
handle this singular variation, we adopt the procedure of
Gaussian quadrature. The integrand is written as F(p)/p'/?,
and the the integral is obtained as the sum, XF(p;)H;, where
the points p; and weights H; correspond to the Gaussian
quadrature formula with weight function p~'/2 [36].

To obtain the analytical behavior at small g, we note that,
for small g, @, — 0, and w,* w,, and the relaxation rate can

be written as
Wy _ 1 21
@ge™=1) f dp wn,[n,+1]

J[,(q,p) +J4(q.P)
Jda.p)i(a.p)
Changing the integration variable to y=sin(p/2) and retain-

ing terms to the lowest order in g, one arrives at the follow-
ing expression:

I'(g,0,) =

(A4)

1 dy

V1 -y?

I'(q.0,) =283,

N(q.y)
B _1)2(y* =2 4g%y* + 4
(e )? (y* =2y’ +4¢7y* + 4qy

y2eP

)i
(AS)
where N(q,y)=J.(q.p(y))+J.(q.p(y)). Now it is easily seen

PHYSICAL REVIEW E 76, 021105 (2007)

that the integral diverges as ¢ — 0. Furthermore, we note that
N(q,y) is a slowly varying function and can be replaced by a
constant value N(0,0). The divergence with respect to ¢ can
be extracted by making the substitution y=g'3x and setting
q=0 in the integrand. This leaves us with

o, (ksT)?
F(q,wq)=2N(0,O) 11/33 f (x* .,.4;5)”2

(A6)

Since the integral has a weak dependence on g we obtain the
result given in the text.

In order to solve Eq. (48) for the vertex function A(g), we
note that the kernel diverges due to the presence of the factor
I'(p,€,) in the denominator. This divergence can be softened
by the transformation A(p)=px(p). The equation for x(g) is

Jo_ 2@ [T dp
X(q) = —gR . 2m
a

o @M (eﬁ(”’ ~) = Dojoyn(w)[1 +n(wz)]px(p)
[(p,w,)J,(q.p)
(A7)

The integration range is again changed to 0-7r. To solve this
integral equation numerically, we again use the Gaussian
quadrature method [36]. Here we can solve the equation by
using the weight function p~'°. The equation is schemati-
cally written as

N

x(q) = j(g)/qi+ 2 K
j=1

WjX(pj)’ (A8)
where K(g,p)p'/® denotes the kernel of the equation. The
discrete values p; and the weights W; are again determined
by the Gaussian quadrature method with weight function
w(p)=p~/6. Now the solution is obtained by inversion of the
matrix equation. Note that, with this procedure, the sum
gives the correct analytical limit to the integral, which is
essential to obtain the correct inversion. Finally, the solution
is checked for consistency and convergence by increasing N.
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