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The critical behavior of the Ising model on a one-dimensional network, which has long-range connections at
distances l�1 with the probability ��l�� l−m, is studied by using Monte Carlo simulations. Through analyzing
the Ising model on networks with different m values, this paper discusses the impact of the global correlation,
which decays with the increase of m, on the phase transition of the Ising model. Adding the analysis of the
finite-size scaling of the order parameter ��M��, it is observed that in the whole range of 0�m�2, a finite-
temperature transition exists, and the critical exponents show consistence with mean-field values, which indi-
cates a mean-field nature of the phase transition.
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I. INTRODUCTION

Since first proposed by Watts and Strogatz �1� in 1998, the
Watts-Strogatz �WS� small world model has been widely and
deeply studied. In the WS model, vertices are placed on a
ring with each vertex having a finite number of 2k nearest
regular connections initially. The connections are then re-
wired with a probability pr to form long-range connections
or short paths. By varying the single parameter pr from 0 to
1, the WS model displays phase transition from a regular
network to a small world, which ends up with a random
network at pr=1. Considering that the rewiring of connec-
tions may cause isolated vertices, the addition-type WS
model–Newman and Watts �NW� model �2,3� was proposed
later, in which long-range connections are added with a prob-
ability p while keeping the initial regular connections un-
changed. The NW model and the WS model are nearly
equivalent, especially when the network size N→� �2,3�.
Marcelo Kuperman and Guillermo Aberamson generalized
the WS model in �4�. In their model, besides connecting with
the two nearest neighboring vertices, with a probability p
each of the vertices in the model chooses a non-neighboring
vertex to construct a long-range connection between them.
The choice of the non-neighboring vertex is governed by the
distance-dependent probability distribution:

��l� � l−m. �1�

When m=0, the NW model is restored. Through varying
the value of m, the global correlation of the network is in-
fluenced. By analyzing the topological characteristic of the
network, it was observed that the network also shows a small
world nature, and the network converges to a regular lattice
as m→� �4–7�.

To analyze the behavior of a small world network from
the point of view of statistical physics, researchers focus on
its long-range connections or short paths, which may lead to
global coherence. In networks without any short path, the
transmission of information has to pass a long distance
�O�N� �N is the network size�, so global coherence is diffi-
cult to reach. With the increase of the number of short paths,
or long-range connections, collective behavior will emerge in
the system. This global coherence and the ubiquitous small

world phenomenon in real-life make the study of thermody-
namic phase transition on networks with small world prop-
erty significantly popular �8–15�, in which the Ising model is
one of the most fascinating points.

As a comparatively simple but very important model of
statistical physics, the Ising model perfectly shows order-
disorder transition of the system. The Ising model on a one-
dimensional regular lattice does not show phase transition at
any finite temperature and the phase transition on a multidi-
mensional regular lattice is not of mean-field nature. That the
Ising model undergoes phase transitions in the addition-type
WS model has been studied in �10–13�. It has also been
shown that in the small world phase the addition-type WS
model has a mean-field nature �11–13�. The critical behavior
of the Ising model on a one-dimensional network with
distance-dependent connections given by Eq. �1� is expected
to reflect the nature of the network at different values of m
indirectly �12�. But it remains controversial about the mean-
field nature of the phase transition in the range of 1�m
�2 �6,7,12�.

To detect whether a network has a small world behavior,
one can calculate the average shortest-path length and the
average clustering coefficient. Sen and Charkrabarti in �6�
and Moukarzel and de Menezes in �7� obtained the contra-
dictory results by analyzing the topological structure of net-
works with connection probability at distance l given by Eq.
�1�. In Ref. �6�, it was found that the average shortest-path
length behaves as ln N on rings of size N for all m�2, hence
it was concluded that small world behavior occurs for 0
�m�2 while in Ref. �7�, it was argued that small world
behavior occurs only for m�1. In the section 1�m�2, ac-
cording to Ref. �7�, the average shortest-path length scales as
N� with the value of the exponent ��0���

1
2

� depending on
m. Reference �12� studied the critical behavior of the Ising
model on such a one-dimensional network, since if the net-
work’s behavior is that of small world it should be reflected
in the critical exponents of the Ising model, which will as-
sume mean-field values. Their result indicates that there is a
mean-field behavior for m�1 and a finite-dimensional be-
havior for 1�m�2, which is in accordance with the conclu-
sion in Ref. �7�.

In this paper, we re-examine the critical behavior of the
Ising model on a one-dimensional network with distance-
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dependent connections in Ref. �12� by using Monte Carlo
simulations. But we enlarge the underlying network sizes,
and also take into account the finite-size scaling analysis of
the order parameter ��M�� by using the plot of ��M��N1/4 vs
T, which can reflect the mean-field nature indirectly �8�.
Here, �¯� and �¯� denote the thermal average taken over
Monte Carlo steps for equilibrium at each temperature, and
over different network realizations, respectively. Thus more
reliable results can be produced from our simulations, since
statistical fluctuations are greatly suppressed in these large-
scale networks, and the finite-size effects are much more
discernible in Binder’s cumulant UN �16,17� and the specific
heat Cv than in the order parameter ��M�� �8�. The results
show that the model has a mean-field nature in the whole
range of 0�m�2.

In the next section, we will introduce the model we use
and the Monte Carlo simulation. In Sec. III, the results and
analysis are given. Section IV is the conclusion.

II. ISING MODEL AND MONTE CARLO SIMULATIONS

The underlying network of the one-dimensional Ising
model used in this paper is based on the generalized WS
model �4�. The distance between vertices is considered in the
addition of connections. That means the vertex j to which a
connection is attached is not randomly selected, but accord-
ing to a distribution depending on the distance l from i to j:
��l�� l−m. We start with a one-dimensional regular lattice
with N=2K+1 vertices and 2k=2 nearest neighbors. From
i=0, we select the ith vertex and generate a random number
�� �0,1� from a uniform distribution. If �� p, we select one
vertex from the clockwise K vertices to attach to according
to the probability distribution ��l�� l−m. Self-connections

and multiple connections are prohibited. We repeat this pro-
cess until all the vertices are selected, which results in a
network with N�1+ p� connections on average.

In order to investigate the influence of m on the critical
behavior of Ising model, in this paper we only consider the
case p=1 for simplicity. Our model with m=0 is equivalent
to the model used by Andrzej Pekalski �9�. As m→�, our
model restores to the one-dimensional regular network with
2k=4 nearest neighbors. Figure 1 shows that with the in-
crease of m, long-range connections are more and more dif-
ficult to form between vertices with long distances.

Figure 2 shows that the increase of m results in the in-
crease of the average shortest-path length L, but the small
world property retains within the entire range 0�m�2 as
L� ln N. Figure 3�a� shows that with the increase of the m

FIG. 1. Examples of generated networks with N=101 under the same p=1 and different m values. The inner figure inside the bottom right
figure shows the magnification of the denoted rectangular region.

FIG. 2. The relationship of the average shortest-path length L
with the size of the network N under different m values �the case
m=0.5 is almost identical to m=0�. All the plots have been aver-
aged over 50 realizations.
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value, especially after m�1, the network clustering coeffi-
cient becomes independent of system size, which is the char-
acteristic of a regular network. Furthermore, it can be seen
from Fig. 3�b� that, for a certain network size, with the in-
crease of m, the clustering coefficient converges to Cmax
=1/2, which is identical to the clustering coefficient of a
one-dimensional regular network with 2k=4 nearest neigh-
bors.

The Ising model is described by the Hamiltonian

H = − J�
�i,j�

	i	 j , �2�

where J�0 is the coupling constant between vertex i and j if
they are connected, �i , j� is the collection of all the connec-
tions in the network.

Our Monte Carlo simulation of the Ising model starts on a
periodic one-dimensional ring. At the beginning, all the spins
on the ring are given the same value +1, then a random
vertex is selected to flip according to the rule of the Metropo-
lis algorithm �9,18� and Glauber dynamics �11� to simulate
the evolution of Ising model under different temperature.
And finite-size scaling is used to investigate the
paramagnetic-ferromagnetic transition temperature and the
critical exponents. During the simulations, we mainly use the
random number generator in �19�, and we also use the
drand48� � function in standard C library as a comparison. It

is found that there is no notable influence on the simulation
results. In the simulations we measure the Binder cumulant
UN, the susceptibility 
, and the specific heat Cv
�16,17,20–22�:

UN = 1 −
��M4��

3��M2��2 ,


 =
1

N
�
ij

��	i	 j�� ,

Cv =
��H2� − �H�2�

T2N
�3�

with M = 	 1
N�i	i	. Here �¯� denotes the thermal average

taken over 2.5�104 Monte Carlo steps after discarding the
initial 2.5�104 ones for equilibrium at each temperature,
and �¯� denotes the average over different network realiza-
tions taken over 30–80 configurations.

Besides these three physical quantities, the finite-size
scaling analysis of the order parameter ��M��, which exhibits
the critical behavior ��M����Tc−T�� in the thermodynamic
limit, is used. In a finite-sized system, the order parameter
scales as �8�

��M�� = N−�/̄g„�T − Tc�N1/̄
… , �4�

where g�x� is an appropriate scaling function. Equation �4�
leads to a unique crossing point at Tc in the plot of ��M��N�/̄

vs T, so Beom et al. �8� suggested analyzing the finite-size
scaling of the order parameter by ��M��N1/4 for large m to
overcome the finite-size effects, which are more prominent
in other thermodynamic quantities.

III. RESULTS AND ANALYSIS

As shown in Fig. 4, for m=0, Binder’s cumulant with
different network sizes yields a unique crossing point at Tc
=3.10�5� �Fig. 4�a��. Figure 4�b� results in the critical expo-
nent ̄
2 �the reciprocal of the slope obtained in the linear
fit of ln �UN vs ln N�, which gives the critical exponent �
=2− ̄
0 for the specific heat Cv. With such a mean-field
value, the finite-size scaling of the specific heat can be writ-
ten as �8,20,23�

Cv = f„�T − Tc�N1/̄
…; �5�

f�x� is an appropriate scaling function. Thus the specific heat
Cv with different network sizes intersect to one unique cross-
ing point and determines Tc=3.10�7� �Fig. 4�c��, which is in
accordance with the value obtained from UN within numeri-
cal errors. The expansion of Cv near Tc gives �8,20,23�

�Cv � N1/̄, �6�

the linear fit of ln �Cv vs ln N provides an alternative way of
determining the critical exponent ̄
2 �the reciprocal of the
slope obtained in the fit, Fig. 4�d��. Combined with the ob-
tained critical exponent ̄
2, finite-size scaling of the sus-
ceptibility yields Tc=3.10�5� with the critical exponent �

FIG. 3. �a� Network clustering coefficient C vs network size N
for different m values. �b� Network clustering coefficient C vs m
value for a network with N=100 001 vertices. The shown C values
in these two plots have been averaged for 50 different network
realizations.
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1 �Fig. 4�e��. Finally, finite-size scaling of the order pa-
rameter ��M�� gives �
 1

2 , ̄
2 �Fig. 4�f��. The value of the
obtained critical exponents reveals the mean-field nature of
the transition.

Until now, the most controversial property of the phase
transition of one-dimensional Ising model with distance-
dependent connections given by Eq. �1� is in the range of
1�m�2 �6,7,12�, so we will focus on the critical behavior
of the Ising model for 1�m�2.

Figure 5 presents the finite-size scaling of Binder’s cumu-
lant UN, the specific heat Cv, and the order parameter ��M��

at m=1.0. The measured quantities remain a unique crossing
point and reveal unanimously Tc
3.05, which confirms the
presence of a finite-temperature phase transition. The ob-
tained critical exponents indicate the mean-field nature of the
transition.

Figure 6 is the finite-size scaling of Binder’s cumulant
UN, the specific heat Cv, and the order parameter ��M�� at
m=1.5. The curves of Binder’s cumulant UN do not intersect
to one unique crossing point very well. But the trends of the
evolution indicate that it will emerge when the underlying
network size is large enough. The finite-size scaling of the

FIG. 4. For m=0, �a� Binder’s cumulant UN has a unique crossing point at Tc=3.10�5� �in units of J /kB�. �b� The critical exponent ̄
=2.08�7� is obtained from the linear fit of ln �UN vs ln N. �c� Specific heat Cv has a unique crossing point at Tc=3.10�7�, suggesting �

0. �d� The expansion of Cv near Tc obtains ̄=2.04�6�. �e� Finite-size scaling of the susceptibility again determines Tc=3.10�5� with the
critical exponent �
1. �f� Finite-size scaling of the order parameter ��M�� leads to a unique crossing point at Tc=3.10�1�, and yields �


 1
2 , ̄
2 �see Eq. �4� �8��.
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FIG. 6. For m=1.5, �a� finite-size scaling of Binder’s cumulant UN has a unique crossing point at Tc=2.70�2�. �b� The expansion of UN

near Tc obtains ̄=2.03�3�. �c� Finite-size scaling of the specific heat Cv determines Tc=2.70�4�, which indicates �
0. �d� Finite-size
scaling of the order parameter ��M�� leads to a unique crossing point at Tc=2.70�2�, and yields �
 1

2 , ̄
2 �see Eq. �4� �8��.

FIG. 5. For m=1.0, �a� finite-size scaling of Binder’s cumulant UN has a unique crossing point at Tc=3.05�2�. �b� Finite-size scaling of
the specific heat Cv determines Tc=3.05�3�, which indicates �
0. �c� The expansion of Cv near Tc obtains ̄=2.05�8�. �d� Finite-size scaling
of the order parameter ��M�� leads to a unique crossing point at Tc=3.05�3�, and yields �
 1

2 , ̄
2 �see Eq. �4� �8��.
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order parameter ��M�� under different network sizes behaves
better in intersecting to one unique point, revealing unani-
mously Tc
2.70, which reflects the mean-field nature indi-
rectly. And the obtained critical exponents indicate the pres-
ence of a mean-field finite-temperature phase transition also.

With the increase of m, the algebra decreasing of ��l�
� l−m will have a cutoff due to the finite network size. This
makes the normalization of the distribution function depend
on the size of the network, and makes it inevitable to study
systems of very large sizes so as to obtain correct scaling
behavior �8,22�. By analyzing the plot of ��M��N1/4 vs T, we
get further progress on the transition temperature of systems
with large scale, as shown in Fig. 7 as examples. This also
indicates the fact that the phase transition still holds a mean-
field nature for m�1. The phase transition temperatures here
are higher than those found by Hong et al. in Ref. �20�,
which may be due to the presence of more long-range con-
nections in our model which contribute to different phase
transition properties.

In Fig. 8, the decrease of Tc in the range of �0,1� is not
significant, but this decreasing becomes obvious after m�1.
This brings difficulties to the phase transition analysis of the
Ising model due to the following two factors: �i� with the
increase of m, the appearance of a convincing unique cross-
ing point needs larger network sizes, as shown in Figs. 6 and
7; �ii� the transition temperature decreases rapidly after m
�1 �Fig. 8�, so we need to do Monte Carlo simulation at

lower temperature, which means lower probability to flip.
What is more, the value of the order parameter ��M�� has a
strong correlation with its value at the previous step. Thus
the system needs more Monte Carlo steps to reach equilib-
rium, and we need more iterations to get the thermodynamic
average. Consequently, the simulations will be more time
consuming.

IV. CONCLUSION

In this paper, we reconsider the phase transition of Ising
model on a one-dimensional network with distance-
dependent connections given by ��l�� l−m, by adding the
finite-size scaling analysis of the order parameter ��M�� to
overcome the difficulties at high m values. Reference �12�
based their model on networks with hundreds of vertices and
concluded that the phase transition has a mean-field nature
only in the range of 0�m�1. Our results, based on larger
network sizes and further finite-size scaling analysis of the
order parameter ��M�� as well as Binder’s cumulant UN, the
specific heat Cv, and the susceptibility 
, show that the phase
transition has a mean-field nature in the whole range of 0
�m�2.

Because of the constraint of the long simulation time, we
cannot apply the analysis to networks with even larger sizes
at present. Thus we cannot make sure whether there is a
critical value of m at or beyond m=2, above which there will
be no mean-field nature or finite-temperature phase transition
since the transition point m=2 was suggested by the study of
the network topological structure �6,7,12�. With the finding
of a proper solution to the long simulation time, more inter-
esting results are supposed to come out.
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FIG. 7. Finite-size scaling of the order parameter ��M�� gives �a�
Tc=2.58�5� at m=1.6 and �b� Tc=2.28�2� at m=1.8.

FIG. 8. The evolution of the transition temperature with the
increase of m.
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