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Quantized cycling time in artificial gene networks induced by noise and intercell communication
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We propose a mechanism for the quantized cycling time based on the interplay of cell-to-cell communication
and stochasticity, by investigating a model of coupled genetic oscillators with known topology. In addition, we
discuss how inhomogeneity can be used to enhance such quantizing effects, while the degree of variability
obtained can be controlled using the noise intensity or adequate system parameters.
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The idea of a quantized generation time occupies a sig-
nificant place in research into time-dependent biological pro-
cesses, e.g., in cell cycle research [1]. Clear experimental
evidence for quantized cycles has been obtained for Chinese
hamster V79 cells [2], weel cdc25A fission yeast cells [3],
Xenopus oocytes [4], etc. Quantized cycling is the name
commonly used when a basic dynamical property of a homo-
geneous system demonstrates a clear multipeak character in-
stead of a flat distribution. Manifestations of this effect are,
e.g., the multimodal interspike interval probability density in
neurons [5,6], or the polymodal distribution of intermitotic
times in proliferating cell cultures [1]. To our knowledge,
two mechanisms are mainly responsible for the quantized
dynamical behavior in biological systems. The first mecha-
nism considers the interplay of external forcing, nonlinearity,
and stochasticity in the system as a determining reason [6],
an idea reminiscent of the effect of stochastic resonance [7]
(there are reports as well where an internal oscillator plays
the role of a periodic force [2]). The second mechanism is
based on the complex structure of the phase space disturbed
by noise [8,9]. It is important to note that these mechanisms
are based on the properties of a single, noncoupled oscillator
under the influence of forcing.

It is a well-established fact, however, that cells are orga-
nized in large populations, exchanging information in a sto-
chastic environment through different types of intercell com-
munication mechanism. Hence, the additional question
naturally arises as to whether intercell coupling can provide
the necessary background for quantized cycling due to noise.
Relying on this assumption, we propose here a different
mechanism for quantized cycling generation, which relies on
the interplay between noise and the complex behavior of the
dynamical system induced by specific, inhibitory, phase-
repulsive intercell coupling, and discuss a strategy to control
the degree of quantization. The polymodality we observe
phenomenologically differs from what is commonly re-
ported, e.g., in [5], where the peaks are located at integer
multiples with amplitude decay, as a result of the phase pref-
erence when the external force is applied. The mechanism
we propose provides various forms of interspike interval dis-
tribution, thus offering a potential explanation for the fact
that the modes in the polymodal distributions of generation
times observed experimentally are not equal to an integer
times a quantal period [2].

We study for this purpose a population of coupled syn-
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thetic genetic relaxation oscillators, mainly for the following
reasons. (i) The constructed synthetic networks have a rather
simple topology with an exactly known structure, in contrast
to the presently investigated circadian oscillator models. (ii)
The construction of synthetic genetic networks, using mutu-
ally activating or repressing genes (or gene products), en-
ables engineers to evolve biological systems by means of
variation and selection for any function they desire, mimick-
ing cell behavior. The design of these synthetic “applets,”
experimentally realized in simple organisms such as Escheri-
chia coli and yeast, is significant not only for the synthesis of
artificial biological systems, but also for biotechnological
and therapeutic applications [10,11].

The majority of experimentally constructed synthetic ge-
netic networks can exhibit bistable [12] or oscillatory behav-
ior [13,14] when in isolation. It has been shown theoretically,
however, that when organized in a population they can
achieve synchronization, if appropriate mechanisms of cou-
pling are present. These mechanisms require intercell com-
munication, such as the quorum sensing mechanism, used,
e.g., in Vibrio fischeri, a bioluminescent bacterium that colo-
nizes the light organs of certain marine species [15]. This
mechanism relies on the exchange of small signaling mol-
ecules, known as the autoinducers (Als), which diffuse
through the cell membrane and are thereby shared by all cells
in the population. Therefore, the V. fischeri LuxIR complex
has been proposed as an adequate method to obtain synchro-
nization of isolated genetic units [16,17]. However, the same
type of interaction between cells can generate additional
stable regimes, e.g., the oscillation death (OD) regime
known also as the inhomogeneous steady state [18], if the
coupling between the oscillators is sufficiently large. Re-
cently, we have shown [19] that this type of coupling inher-
ently leads to multistability (existence of many different
modes of organized collective behavior) and multirhythmic-
ity in a model of genetic relaxation oscillators [18].

Here, we show that the presence of multistability strongly
influences the response of the system to different external
stimuli, such as the effects of extrinsic and intrinsic noise on
a particular model. Physically, this type of noise can be gen-
erated by an external field, e.g., an electromagnetic field
[20], and its levels can be manipulated experimentally [21].
We demonstrate that the effects of quantized cycling in a
system of globally coupled synthetic genetic oscillators can
be induced by the interplay of intercell signaling and sto-
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chasticity. We show also how inhomogeneity can be used to
enhance the quantizing effect in such systems, while by
changing the noise intensity or an adequate parameter one
can manipulate the degree of polymodality in the system.
Furthermore, for an optimal value of the noise amplitude,
maximal variability in the system can be obtained.

The underlying genetic circuitry of the model we consider
[18] is a hysteresis-based genetic relaxation oscillator, con-
structed from a toggle switch composed of two genes u and
v that inhibit each other, and a quorum sensing mechanism
which, on one hand, provides the transition from trigger to
limit cycle in a single cell, and also by diffusing Al mol-
ecules through the cell membrane, enables coupling in the
network (details are given in [18]). The time evolution of the
system is governed by the dimensionless equations.

% = a,f(v;) = u; + azh(w)), )
dv
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where N denotes the total number of cells (oscillators), and
w; represents the intracellular, and w, the extracellular Al
concentration. The mutual influence of the genes is carried
out through the functions f(v)=1/(1+vP), gu)=1/(1+u?),
and A(w)=w7/(1+w7), where B, 7, and 7y are the parameters
of the corresponding activatory or inhibitory Hill functions.
The dimensionless parameters «; and «, determine the ex-
pression strength of the toggle switch genes, as, the activa-
tion due to the Al, and a4, the repressing of the Al. The
coupling coefficients in the system, d and d, (intracellular
and extracellular), depend mainly on the diffusion properties
of the membrane [18]. One of the main characteristics of this
model is the presence of multiple time scales, producing re-
laxation oscillations. The noise term &) models the contri-
bution of random fluctuations and is a Gaussian white noise
with zero mean. We assume that the deterministic equations
provide a reasonable description of the system’s dynamics,
whereas the noise term represents the inevitable fluctuations
in living systems. It is considered that the noise intensity o’i
is rather small, not exceeding the order of 107%; hence, a
sufficient motivation to use Gaussian noise and Langevin
equations. The numerical integrations are performed using
standard techniques for stochastic differential equations [22].

A detailed analysis of the deterministic model of identical,
globally coupled relaxation genetic oscillators Egs. (1)—(4)
has revealed multistability—the appearance of several coex-
isting dynamical regimes (in-phase, antiphase, and asymmet-
ric oscillations and the OD regime), as well as the ability of
the system to produce clustering and multiple rhythms (note
the different period values for various attractors) [19], as a
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FIG. 1. (a) Asymmetric solution when eight identical oscillators
are organized in two oscillatory clusters. The distribution of the
oscillators between the clusters is 1:7 (period T=216.95) for «,
=2.868, a,=5, az=1, ay=4, B=y=n=2, £€=0.01, d=0.001, and
d,=1. (b) Distribution 4:4 (T=249.43) for nonidentical elements
with a; values between 3.246 and 3.4. (c) Bifurcation diagram ob-
tained for two identical oscillators by variation of «;. The asym-
metric solution lies on a secondary unstable bifurcation branch,
started from a pitchfork bifurcation point BP. The one-parameter
continuation moves in the direction of the subcritical Hopf bifurca-
tion HB|, where the asymmetric regime gains stability between a
saddle node (LP) and a torus bifurcation (TR) (d), the latter ensur-
ing the presence of two frequencies in the system. (d) Detailed view
of the region where stable asymmetric oscillations exist. Thin solid
lines denote stable steady state, thick solid lines, the stable limit
cycle, dash-dotted lines, the unstable steady state, and dotted lines
the unstable limit cycle.

result of the inhibitory, phase-repulsive coupling present.
The solution to which we refer as asymmetric oscillations
[Fig. 1(a)] is characterized by the presence of large- and
small-amplitude oscillations in one attractor: one of the os-
cillators performs large excursions, while the other one os-
cillates in the vicinity of the steady state [19].

In this work, however, we focus mainly on the behavior of
the system when the elements are nonidentical, i.e., more
realistically describing real networks. The heterogeneity is
achieved by introducing certain diversity in the a; parameter
values, not greater than 4% in separate elements. Thus, we
study the case when all oscillators are confined to the oscil-
latory region. A bifurcation analysis performed on a system
of two slightly nonidentical elements shows a significant en-
largement of the parametric area where the asymmetric solu-
tion is stable with respect to the equivalent investigations for
identical elements [19] [compare Figs. 2(a) and 2(b) and 1(c)
and 1(d)]. For illustration, the asymmetric solution now con-
sists of two separate branches: the first one, emerging from
HB, (HB;) [Fig. 2(a)], characterizes small-amplitude oscil-
lations around the lower stable state [Fig. 1(a)], whereas the
second branch [Fig. 2(b)] emerging from HB, (HB,) is char-
acterized by small-amplitude oscillations around the upper
stable state [Fig. 1(b)]. The stability regions depend mainly
on the degree of the system’s heterogeneity: larger diversity
between the elements leads to a larger parametric region of
stability. Note that in this case the asymmetric solution arises
directly from the HB, whereas for identical elements, it is
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FIG. 2. (Color online) Bifurcation analysis for two nonidentical
elements. The parametric region of stability of the asymmetric so-
lution is enlarged when the divergence between the two elements is
greater: compare the black thick line (difference between the a;
values of the two elements is 4%) and the gray (red) thick line
(difference between the «; values is 2%). For line notation refer to
Fig. 1.

necessary first to identify the broken-symmetry BP.

The manifestation of the specific coupling present in the
system can be extracted from the bifurcation analysis and the
numerical simulations performed: a strong reduction in the
system’s dimension is established as a result of the clustering
that occurs. Thus, the two cluster decompositions are deter-
mined as most probable, with the possibility for different
distributions of the oscillators between the clusters, each
characterized by different periods of oscillations [Figs. 1(a)
and 1(b)] (some of them consisting of a sequence of several
subperiods [19]). Therefore, complex dynamical behavior
can be predicted in the presence of noise, identifying the
interplay with heterogeneity and intercell coupling as critical
at this point. In order to determine the effective jumps of the
oscillators in the system due to noise, we analyze statistically
the interspike intervals (ISIs) called also the frequency dis-
tribution [2]. Starting with the noise-free case, an auto-
oscillatory solution is obtained for a single oscillator (T
=336.84), when « is fixed to a value slightly before «, HB,-
Including the noise term, however, leads to a multipeak dis-
tribution of the ISIs, although only slightly noticeable (Fig.
3) (similar examples of noise effects in the vicinity of sub-
critical HBs are known in the literature [23]).

Now, we consider a population of identical genetic units,
whose dynamics is significantly influenced by the specific
type of cell-cell communication. We find that the noise in
this case contributes to the establishment of variability and
the well-expressed presence of multiple frequencies [see
Figs. 4(a) and 4(b)], despite the initially synchronized behav-
ior of the identical elements. The cycling is now quantized,
having either almost bimodal [obtained for a;=3.3 Fig. 4(a)]
or polymodal [a;=3.328, Fig. 4(b)] solutions. Choosing
slightly different «; values, one can effectively switch be-
tween different multipeak distributions, adapting the artificial
network to produce the desired frequencies. In order to iden-
tify the underlying mechanism responsible for various poly-
modal distributions of generation times, it is important to
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FIG. 3. Multimodal distribution of the ISIs for isolated oscilla-
tor, when @,=3.328 and 02=7x 107"

note that, in the presence of noise, we cannot speak about
switching between different attractors, because they are not
very deterministic and their lifetimes are rather short. There-
fore, a one-to-one correspondence between the deterministic
and stochastic attractors cannot be established. However, the
distribution of the probability density to find phase points
near the jumping threshold is mainly controlled by the pres-
ence of attractors found by the bifurcation analysis above
and in [19], and this density determines the ISI peaks ob-
served. The modes in the polymodal histogram might be
separated by almost equal intervals if one of the stochastic
attractors dominates or by different intervals in the opposite
case. The same interplay between attractors disrupts the ex-
ponential decay of the peak amplitudes, which is typical for
a noisy attractor under the influence of a periodic signal [6].

Furthermore, the variability is significantly enhanced
when the network becomes slightly inhomogeneous and
noise is present (Fig. 5). Slight manipulations of the «; val-
ues even allow switching between the unimodal, bimodal,
and polymodal solutions obtained. Another important effect
we report here is the possibility to observe maximal variabil-
ity in the system for an optimal noise intensity. This is in
contrast to the well-known effect of coherence resonance
[24], where, for intermediate noise intensities, maximal order
could be achieved in systems with underlying nonlinear dy-
namics [25]. The results also show that, although organized
in a population, different oscillators are characterized by dif-
ferent ISI distributions, as a consequence of the specific, re-
pulsive coupling considered.
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FIG. 4. (a) Bimodal ISI distribution for eight identical oscilla-
tors (a;=3.3) and (b) polymodal ISI distribution (a;=3.328). The
noise intensity is a>=5x 107"
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FIG. 5. Variability in the ISIs for four nonidentical elements
(from an eight-element network): multimodal for (a) a;=3.328 and
(b) a;=3.325, bimodal for (¢) a;=3.31, and unimodal for (d) «;
=3.25. The noise intensity is 02=5x 107",

In summary, we have proposed a mechanism for quan-
tized cycling in artificial gene networks, based on the inter-
play of cell-to-cell communications and stochasticity. This
mechanism allows quantized generation time in an oscilla-
tory population, despite the previous findings, where quan-
tized cycles were observed mainly for an isolated oscillator.
The variability obtained can be thus manipulated with only
one control parameter, which allows a precise switching be-
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tween different polymodal distributions. Therefore, the func-
tionality of the artificial genetic unit in a large set of frequen-
cies can be considered as a significant advantage in a
multitude of applications, such as the constructions of bio-
chips, the “new era” of drug production, cellular control, etc.
Moreover, the effects reported here might provide insight
into the treatment strategies of the so-called dynamical dis-
eases [26]. Considering the temporal dimension of illness, it
will be of certain importance whether the therapeutic appli-
cations exhibit complex behavior. We hope that, due to the
simplicity of the genetic motifs considered here, these find-
ings will also contribute to the understanding of naturally
produced cell time quantization. It would also be interesting
to compare this mechanism with other possible sources of
quantization, e.g., noise and multistability in genetic net-
works with delay [27].
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