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We report numerical simulations of one-dimensional cellular solutions of the stabilized Kuramoto-
Sivashinsky equation. This equation offers a range of generic behavior in pattern-forming instabilities of
moving interfaces, such as a host of secondary instabilities or transition toward disorder. We compare some of
these collective behaviors to those observed in experiments. In particular, destabilization scenarios of bifur-
cated states are studied in a spatially semi-extended situation, which is common in realistic patterns, but has
been barely explored so far.
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An interface that is driven out of equilibrium frequently
develops a patterned structure, characterized by a spatially
periodic array of identical cells. This pattern can in turn
show a set of various secondary instabilities, until a possible
transition to disorder �1�. Such a scenario has been encoun-
tered in various experiments, such as directional solidifica-
tion �2,3�, directional viscous fingering �4–6�, Taylor-Dean
flow �7�, a locally heated thin layer of liquid �8�, or an array
of falling liquid columns �9–13�.

Coullet and Iooss �14� have proposed a generic model
based on broken symmetries which predicts ten secondary
instabilities from a primary static periodic cellular structure.
This model reproduced successfully many features of sec-
ondary modes associated to broken symmetries on the pri-
mary pattern; for instance, parity-broken �PB� domains of
drifting cells �15� or vacillating-breathing �VB� mode lead-
ing to out-of-phase oscillations. However, the model was
built under assumptions of slow-varying space-phase vari-
ables and thus remained valid only close to secondary thresh-
olds. Gil �16,17� has recently built an extension of this model
which includes possible phase mismatch between the pri-
mary static state and the bifurcated one. Therefore, Gil’s
model could reproduce some far-from-secondary-threshold
behaviors, such as oscillating patches left behind a propaga-
tive domain, black solitons, or spatiotemporal disorder.

Alternative approaches using partial differential equations
or cellular automata have been proposed, where the possible
dynamical modes are not explicitly introduced in the model,
but rather appear via the unstable dynamics of cellular solu-
tions. An example is the stabilized Kuramoto-Sivashinsky
�SKS� equation, which is investigated numerically in this
paper. In its nonstabilized form, this equation was first built
to reproduce some general phenomena in falling film on in-
clined substrates �18� or in flame-front instabilities �19�. The
SKS equation is the following:
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The term −�f represents the damping term. It has been

shown �20� that this equation was one of the simplest to
capture ubiquitous features of pattern-forming instabilities in
interfacial growing fronts. This equation is also known to
exhibit spatio-temporal intermittency, i.e., co-existence of
laminar domains and turbulent patches for a large number of
cells �21�, while secondary bifurcations have been found as
well �20�, albeit for a small number of cells �up to 3�. How-
ever, very few studies focused on secondary instabilities for
an intermediate number of cells �typically a few tens�. This is
the condition under which most experimental interfacial pat-
terns are investigated, and it is expected that collective be-
haviors with both spatial and temporal significance show up.

In this paper we numerically investigate tertiary bifurca-
tions, i.e., destabilization scenarios on secondary dynamical
states. These secondary states are themselves results of the
destabilization of a primary static periodic structure. With
this semi-constrained �or semi-extended� geometry, the pat-
tern is large enough to show collective behaviors, and small
enough to allow for the tracking of the motion and the shape
of a single cell. We aim to find a generic comprehensive
model for complex states that appear to be due to nontrivial
mode coupling or finite-size effects: �i� oscillating wakes be-
hind a propagative domain, �ii� an amplitude hole corre-
sponding to a phase jump in an extended oscillatory state,
�iii� oscillations superimposed on a state of drifting cells be-
fore its rupture. We show that these tertiary states, among
others, can be reproduced by the SKS equation, demonstrat-
ing its relevance for phenomena beyond the threshold of sec-
ondary instabilities. This paper is divided into two parts: we
give a short description of the numerical method, followed
by a set of results in the form of spatio-temporal diagrams.
Then we comment on similarities and differences with ex-
periments.

a. Results. The resolution of Eq. �1� is carried out by a
pseudospectral method. The space derivatives are calculated
in Fourier space: multiplication of the vector of the Fourier
coefficients, by the vector of the corresponding wave num-
bers, times the complex imaginary unit i, gives the first space
derivative. Any nth space derivative is calculated via the
same type of multiplication that is repeated n times. The time
derivative of f is then evaluated by a finite difference
method. The choice of a small time step �typically around
10−3� is suitable in order to avoid convergence problems. An*p.brunet@bristol.ac.uk
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implicit scheme has been used as well, but is not necessary
here: the cellular solutions are smooth enough for a simple
explicit scheme to work. We employ periodic boundary con-
ditions and the initial conditions are fixed through the num-
ber of cells Nc, using about 25 mesh points per cell.

Inspired by the method employed in �20�, we prescribe
initial conditions as combinations of sinusoidal functions in
order to trigger secondary instabilities from a primary peri-
odic static pattern. Most of the initial conditions consist of a
single wave number k plus random perturbations �typical
magnitude 1/100�. Some states needed specific initial condi-

tions, for example the PB drifting cells, which are obtained
from a combination: f0�x�=sin�kx�+a sin�2kx+�0�. The
phase shift is arbitrarily chosen at 0.5, and the amplitude a is
chosen to be equal to 0.5. These two quantities can take
values in a certain range �0.3 to 2 for the absolute value of
�0, 0.25 to 1 for a� without changing the phenomenon
qualitatively, but they slightly influence the kinetic properties
of the selected states. As the purpose of this study is to
seek for destabilization scenarios of secondary bifurcated
states, we opt for a set of parameters �k, �, and NC� such
that the system is close to the boundary of existence of
the bifurcated states. To compute the temporal evolution of a
localized domain of PB cells, we chose the following
initial condition: f0�x�=sin(kx�1+ �

2 �1+tanh�xlim−x���
+a sin�2kx+�0�) 1

2 �tanh�xlim−x�+1�. Then between x=0 and
xlim, the cells are asymmetrical and have a larger wavelength,
which corresponds to the domain of stability of drifting cells
�20�.

Figure 1 gives a cartography of the main states obtained
by varying both � and k. The stability of each state is
checked by runs of relatively long duration time of one hun-
dred �corresponding to 105 time steps�: if the state is not
broken, it is considered as stable. The symbols stand for the
domain boundaries: when these are crossed, the initial state
undergoes a transition to another one �sometimes disor-
dered�. One of the main reasons for the breakup is the occur-
rence of the Eckhaus instability �20�, which delimitates the
domain for static cells. The breakup of drifting states coin-
cides well with the neutral curve of the mode of wavelength
2k. The oscillating cell �OSC� regime is stable within a much
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FIG. 1. Stability diagram of the primary and secondary states in
the SKS equation. The domains for static cells, oscillating cells
�OSC�, drifting cells �DRIFT�, and oscillating-drifting cells
�OSCD�, are bounded respectively by open circles, dark circles,
open squares, and dark squares. In empty domains, a given state is
unstable. The full line stands for the neutral curve of the mode of
wave number k, and the dashed line stands for the neutral curve of
the mode 2k.

(a) 0 50 100 150 200 250
30

35

40

45

50

55

(b) 0 50 100 150 200 250 300
70

75

80

85

90

(c) 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

FIG. 2. �Color online� Examples of complex
dynamics beyond a secondary instability. �a� A
global drift that undergoes in-phase oscillations
as a first stage to the breakup towards spatiotem-
poral disorder �k=0.47, �=0.095, Nc=18�. �b� A
global drift that undergoes a bifurcation to out-of-
phase oscillations �k=0.53, �=0.04, Nc=12�. �c�
Oscillating wake left behind a domain of drifting
cells �extract� ��=0.15, Nc=18�.
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narrower strip than the one predicted by the linear stability
analysis �20�. At large �, both drifting and static states un-
dergo a transition to a flat front and the cellular pattern van-
ishes: it corresponds to the neutral curve of the mode k.

Typical spatiotemporal diagrams are depicted on Fig. 2,
and reproduce complex collective behaviors �a�–�c� reminis-
cent of various experiments of patterned interfaces. Time
runs vertically from bottom to top. These diagrams are ob-
tained by plotting f�x , t� every nth time step, added to a ver-
tical shift proportional to the value of time. The case �a�
represents a state of drifting cells, initially traveling at con-
stant speed, which undergoes an oscillatory instability in a
second step, to ultimately break up and enter a disordered
regime. The case �b� is similar to �a�, except that each cell
oscillates out of phase of its nearest neighbors. These oscil-
lations are likely to become amplified and lead to spatiotem-
poral disorder, such as in case �a�. Case �c� shows a local
domain of drifting cells, propagating opposites of drift, and
leaving oscillatory patches behind its trailing edge.

A second kind of behavior concerns phase imperfections

in extended oscillatory regimes, Fig. 3. These diagrams are
obtained when an oscillatory state develops and exhibits a
so-called “optical mode” �by analogy to eigenmodes in
phonons�, i.e., neighbor cells oscillating out of phase. While
such a state can be almost perfectly homogeneous if the
number of columns is even, it will necessarily adapt to a
nonhomogeneous spatial phase for an odd number of col-
umns. These diagrams show that the phase imperfection can
be twofold: it can either be sharply localized �top diagram in
Fig. 3� or evenly dispatched on the pattern �bottom diagram�.
In this second case, the dashed line describes the isophase of
the double-period state. The first case exhibits an amplitude
hole, i.e., the amplitude of oscillations vanishes in the vicin-
ity of the phase imperfection, enabling the pattern to have a
sharp phase jump of �.

b. Discussion: Comparisons with experiments. We now
argue that the features depicted above reproduce destabiliza-
tion scenarios observed in several experiments. We start with
a presentation of quantitative data on the PB drifting cells.
Figure 4 shows general trends of the drift speed Vd, mea-
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FIG. 3. �Color online� Imperfect extended os-
cillatory, period-doubling state, caused by an odd
number of cells and periodic boundaries. Top: lo-
calization of an amplitude hole. Bottom: progres-
sive phase shift. Both obtained with k=0.64, �
=0.1, Nc=19.
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FIG. 4. Measurements of drifting velocities in
the SKS equation �a�,�b�,�c� and in the experi-
mental pattern of liquid jets �d�. �a� Versus 1/k
for two values of �. �b� Versus 1/� for k=0.47.
�c� Versus 1/� for various k �close up around
threshold�. �d� Drift velocities versus flow rate,
for different wavelengths �silicon oil of viscosity
�=100 cP�.
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sured on a globally extended drifting state in both the SKS
equation �a�–�c� and a pattern of falling jets �d� �10,13�. The
distance along x is chosen such as the length of a cell equals
one. Figure 4�a� shows the dependency of Vd versus 1/k, for
two values of �. Figures 4�b� and 4�c� show Vd versus 1/�:
the general trend is a sharp increase of the speed just above a
threshold value for �. Let us also recall that the drift velocity
of PB cells in the pattern of columns �Vd� increases as the
square root of � �the flow rate per unit length�, see Fig. 4�d�.
If one tries to get a similar relationship for the SKS equation,
it turns out that identifying the control parameter with 1/�, is
the most relevant choice �compare Figs. 4�b�, 4�c�, and 4�d��.
In the pattern of columns, a similar dependance on k was
found: the drift speed increases with 1/k for most of the
conditions �Fig. 4�a��. In other experiments, the identification
of 1 /� with the control parameter of the PB bifurcation is
also straightforward: in the printer’s instability, it is the rota-
tion speed of the internal cylinder �6� and in directional so-
lidification it is a combination of the wavelength � and the
pulling velocity V that reads: �V2.

The dynamics depicted in Fig. 2 are commonly observed
in experiments. Case �a� is reminiscent of various experi-
ments �3,7,13�. It can either appear under temporal modula-
tions of the control parameter �7� or simply when the control
parameter is increased sufficiently beyond the threshold of
drifting cells �3,13�. Case �b� has only been observed in di-
rectional solidification and referred to as T-2� O in �3�. Case
�c� is observed in both directional viscous fingering �5� and
an array of liquid columns �11,13�. It shows the link between
the parity-breaking and vacillating-breathing modes: in this
case the relaxation at the rear wall of the propagative dilation
wave �drifting cells are dilated compared to static cells� leads
to oscillations at the trailing edge of the domain. These os-

cillations are the local counterparts of the ones in Fig. 3. Two
of these destabilizing behaviors are reproduced on Figs. 5�a�
and 5�b� for the pattern of liquid columns �11,13�.

We now examine the phase imperfections in an oscillatory
state �Fig. 3�. The two types of phase imperfections on an
extended oscillating state have been observed in the pattern
of columns �13� for an odd number of columns �whereas an
almost homogeneous oscillatory state is observed for an even
number of columns�, as shown on Figs. 5�c� and 5�d�. It
should be noted, however, that the SKS equation failed to
reproduce a sustained propagating domain of PB cells. Such
a domain is bound to shrink and to vanish after a while, at
least in the explored parameter range. Thus probably, a state
of PB cells remains stable only for an extended drifting state.

In conclusion, the presented results show that the SKS
equation is able to reproduce a set of complex situations that
occur for some secondary instabilities of pattern-forming ex-
periments. We have chosen a semi-extended pattern �a few
tens of cells�, as this is frequently encountered in experi-
ments, and we have taken parameters and initial conditions
in order to trigger further destabilization of secondary bifur-
cated states. The fact that such realistic behaviors are repro-
duced by a simple generic equation such as �1�, provides an
interesting perspective for studying tertiary bifurcations. This
includes a disordered regime with occurrences of phase de-
fects �such defects appear on top of diagram Fig. 2�a��, al-
ready reported in �20� for a small number of cells and also
obtained for a larger number of cells �a few tens� in our
simulations. A comprehensive study of such a regime based
on statistics of defect occurrences, would be of great interest.
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FIG. 5. Various collective behaviors in the
pattern of liquid columns �viscosity �=100 cP�,
reproduced by the SKS equation. �a� Oscillations
superimposed on a state of global drifting cells,
leading ultimately to disorder. �b� An oscillating
wake in the trailing edge of a propagating do-
main. �c� A phase defect localized in an oscilla-
tory state. �d� Progressive phase shift in an oscil-
latory state.
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