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Inspired by, and using methods of optimization derived from classical three-dimensional electrostatics we
have found a four-dimensional polytope, new to our knowledge, with a high degree of symmetry in terms of
the lengths of sides—64 of the 80 vertices have twelve nearest neighbors with the same four nearest neighbor
distances, and the other 16 vertices have ten nearest neighbors with distances that are two of the four nearest
neighbor distances for the set of 64 vertices. We give and illustrate a simple geometric method to visualize this
configuration and other configurations in four, eight, and sixteen dimensions.
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Using an optimization method inspired by ones ourselves
and others have used �see Refs. �1–12�, and references
therein� for a problem in three-dimensional electrostatics—
Thomson’s �13� problem of finding the minimum energy of
N unit point charges on the surface of a unit conducting
sphere—we have found a configuration with 80 vertices �Fig.
1 and Ref. �14�� with 64 vertices with 12 nearest neighbors
of 0.7624, 0.6707, 0.7654, and 0.6661 distances, and 16 ver-
tices with 10 neighbors of 0.7654 and 0.6661 distances. To
our knowledge �15,16�, this polytope has not been discussed
previously. Study of polytopes and optimization methods in
higher dimensions can be useful in multidimensional statis-
tical mechanics problems. As well, study of configurations in
higher dimensions can provide insight into two- and three-
dimensional configurations, as in the case where tessellations
of higher dimensional figures has given insight into quasic-
rystals in lower dimensions, see Ref. �17� and references
therein.

We found the configuration looking at the slightly artifi-
cial, in four dimensions, but potentially useful �see below�,
problem of finding the minimum energy configuration of N
charges �points� on the surface of the hypersphere �S3� x2

+y2+z2+w2=1 in four dimensions with the energy function
�i�j1/rij, where r is the Euclidean distance between two
points 1 and 2 ��x1−x2�2+ �y1−y2�2+ �z1−z2�2+ �w1−w2�2.
As most surely in three dimensions �3�, in four or more di-
mensions the number of good local mimima for this problem
grows exponentially with N, and thus we cannot be certain
that for N=80 or other N that we have found the global
minima. Nevertheless, even good local minima may be inter-
esting or important configurations. In this initial work we
have found our best local minimum for a given N by starting
from 100 random initial starting configurations and then used
a standard conjugate gradient optimization. We have looked
at N=2 to 200. The other N for which we found possible
global minima configurations with polytopes with a high de-
gree of symmetry in terms of the lengths of sides are N=5, 8,
24, and 120 for which we found the simplex �4D equivalent
of the tetrahedron�, the 16-cell �the crosspolytope or 4D

equivalent of the octahedron�, the 24-cell, and the 600-cell
�4D equivalent of the icosahedron�, respectively, four of the
six completely regular Platonic solids in four dimensions. We
did not find the other two regular polytopes, i.e., N=16 the
tesseract �or hypercube, 4D equivalent of the cube� and N
=600 the 120-cell �4D equivalent of the dodecahedron�.
Their geometries are not energy minima, similarly to what
happens with the cube and the dodecahedron in 3D Thom-
son’s problem �Ref. �4�, and references therein�. Using a
method related to ours other higher dimensional polytopes
have been found �18�. The study of higher dimensional poly-
tope by our construction may give physical and intuitive in-
sight into configuration of points in three dimensions.

Visualization of the first Hopf map. Now, using the idea of
the Hopf maps �see below� from S3→S2 and S7→S4 we give
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FIG. 1. �Color online� A symmetric four-dimensional polytope
with 80 vertices. Four views showing each a different type of near-
est neighbor bond �different distance�. Dots correspond to a vertex
with ten nearest neighbors. These figures show a simple parallel
projection from 4D to 2D, i.e., z and w coordinates are discarded,
then each point is plotted accordingly to its x and y coordinates. All
of the views have been rotated to show a symmetric pattern in 2D.
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a new method to visualize configurations in 4, 8, and 16
dimensions and illustrate this with a picture of our novel 80
point configuration as well as the so-called 24-cell configu-
ration in four dimensions, and the E8 lattice in eight dimen-
sions. These last two configurations are what is known as the
kissing configurations in four and eight dimensions, respec-
tively.

The n-dimensional kissing problem asks how many
n-dimensional nonoverlapping unit spheres can be placed
touching a central unit n-dimensional sphere? This question
has applications to making efficient codes and other prob-
lems �19�. The two-dimensional sphere is the disk of points
x2+y2=1, and by using N identical circular coins the reader
can easily convince oneself that the kissing number in two
dimensions �K2� is six. Similarly, the one-dimensional sphere
is a line segment, and K1=2. Already in three dimensions the
problem becomes much more interesting. Indeed, the seven-
teenth century featured a dispute between Isaac Newton who
believed that K3=12 and David Gregory who thought that
K3=13. Perhaps not surprisingly, Newton was correct but it
took more than two and one half centuries to prove this �20�.
Using clever linear programming arguments it was proven
some decades ago that K8=240 and K24=196560 �21,22� and
that K4=24 or 25. Recently, a proof that K24=24 using much
more extensive and subtle use of linear programming has
been presented �23�, however, the proof has not yet been
fully vetted �24�. Though, more recently a complete proof
that K4=24 has been posted �25�. There exists a map known
as the �first� Hopf map between the surface of a three-
dimensional sphere and the surface of a four-dimensional
sphere, which essentially constructs the surface of a four-
dimensional sphere by considering there to be a circle of
points at every point on the surface of a three-dimensional
sphere. Here we emphasize that the Hopf map also gives a
very intuitive way of appreciating the N=24 kissing configu-
ration for S3—known as the 24-cell and then use the second
and third Hopf maps to give intuitive descriptions of the
E8 /K8 lattice, and the so called �16 lattice, currently the best
known kissing configuration in 16 dimensions.

The surface of a four-dimensional sphere �a three-
dimensional locus or manifold also known as S3� is defined
as the points x2+y2+z2+w2=1 �as the surface of a three-
dimensional sphere �S2� is defined as the points x2+y2+z2

=1�. The Hopf map is one between the points on the surface
of a four-dimensional sphere and the pair of complex num-
bers �w ,z� with �w�2+ �z�2=1

�w,z� → �2wz*, �z�2 − �w�2� in C � R = R3. �1�

One easily checks that

�2wz*�2 + ��z�2 − �w�2�2 = 4�w�2�z�2 + ��z�2 − �w�2�2

= ��z�2 + �w�2�2 = 1. �2�

So this does map to the ordinary sphere. If one fixes a point
of the ordinary sphere say �a , t� where a is complex, t is real
and �a�2+ t2=1, then its fiber, i.e., the set of all points which
map to it, is a circle

� aei�

�2�1 + t�
,ei���1 + t�/2	 . �3�

Further details, discussions and proof of the Hopf map from
S2 to S3 is given in Ref. �26�.

The only known configuration on S3 with twenty-four
kissing spheres is the so-called 24-cell. In this convex four-
dimensional polytope all of the faces are octahedra. The stan-
dard way of representing the 24-cell is by the coordinates
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This configuration is also known as the D4 lattice. By
rotating on S3 one can also easily see that these same twenty-
four centers of the kissing spheres can be obtained by lifting,
via the �first� Hopf map from six points on S2 arranged with
one at each pole and four arranged at ninety degree angles
around the equator.

Place one point on each pole of a three dimensional
sphere and four equally spaced points on the equator, i.e., the
vertex of an octahedron. These points are at the antipodal
points of the three axes of S2. These points can be expressed
as �a , t�, as stated above

�0,1�, �0,− 1�, �1,0�, �− 1,0�, �i,0�, �− i,0� .

Then four points can be placed on each circle via the
Hopf map to give a total of twenty four points:

�ei�,0�, � =
�

4
�2k + 1�, k = 0,1,2,3,

�0,ei��, � =
�

4
�2k + 1�, k = 0,1,2,3,

� ei�

�2
,
ei�

�2
	, � =

�

2
k, k = 0,1,2,3,

�−
ei�

�2
,
ei�

�2
	, � =

�

2
k, k = 0,1,2,3.

�i
ei�

�2
,
ei�

�2
	 
 � ei��+�/2�

�2
,
ei�

�2
	, � =

�

2
k, k = 0,1,2,3.

It is easy to see that these twenty-four points on S3 �the
surface of a unit four-dimensional sphere� are the same as the
points of a 24-cell.

The 24-cell is shown in Fig. 2. The number of different
colored polygons indicate how many circles there are for a
configuration �for the 24-cell there are 6�. The number of
sides of the polygons indicate how many points on each
circle �for the 24-cell each of the six circles has four points
on it�. The orientation of the circles with respect to each
other as the whole configuration is rotated helps one visual-
ize the relationship of points on different circles.
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Also, the Hopf map gives an extremely simple and some-
what intuitive way to think about the 24-cell: For one point
on each equator and four spaced at ninety degrees along the
equator then each point in S2 is a distance of ninety degrees
away from its nearest neighbor. Now associate with each of
these six points a Hopf circle placing four points again
spaced ninety degrees. The symmetry of the configuration
becomes self-evident.

Points on the same circle are ninety degrees—or distance
�2 apart from each other. Each point has eight nearest
neighbors—two points each from the four nonantipodal
circles—that are sixty degrees or distance one apart.

We can also use the Hopf map to nicely illustrate our 80
point symmetric configuration �Fig. 3�. We see that the con-
figuration is made up of ten circles each with eight points.
This polytope can be built using Hopf’s map: Place ten
points on the ordinary sphere �S2� as thus. In �complex�
� �real� coordinates pick �0,1�=the north pole,
�ei�m/2�1− t2 , t� for m=0, 1, 2, 3 and some 0� t�1, that is
four equally spaced points forming the base of a pyramid
with vertex the north pole. �ei��2m+1�/4�1− t2 ,−t� for m
=0,1 ,2 ,3 and the same t, and �0,−1�=the south pole. These
last five are just the symmetric points in the lower hemi-
sphere after a 45° turn so the two bases of the pyramids are
as far from aligned as possible.

This configuration of ten points on S2 is known as a
capped anticube, and also, interestingly, is the minimum en-
ergy configuration for a 1/r potential of unit point charges on
S2 �Thomson’s problem of charges on a sphere for N=10, see
Ref. �1�, and references therein�.

Now, suppose you lift these points to S3. Let r
=��1+ t� /2. Then we get 10 circles �0,ei��,
�ei�m/2�1−r2ei� ,rei�� m=0,1 ,2 ,3, �ei��2m+1�/4rei� ,�1−r2ei��
m=0,1 ,2 ,3, �ei� ,0�. Staggering eight points on each in
the correct fashion takes a little care, but the correct
choice is �0,e2�ik/8�, �ei�m/2+i��2k+1�/8�1−r2 ,rei��2k+1�/8�,
�ei��2m+1�/4+i��2k+1�/8r ,�1−r2ei��2k+1�/8�, �ei2�k/8 ,0�, where in

each case k runs 0,…,7. The nearest neighbor distances
are �2−�2, �2�1−r2�, �2−2r cos�� /8�, and
�2− �2+�2�r�1−r2�.

In our 80 vertex polytope in Fig. 3, which is the best
known minimum energy configuration for E=�i�j=1

80 1 /d
�where d here is a four dimensional Euclidean distance� r
=0.8423 and we can see that there will be four nearest neigh-
bor distances in the problem 0.7654, 0.7623, 0.6661, 0.6707.
With this Hopf map perspective we can easily see why there
are 64 points �points lifted from all circles but the poles� with
12 nearest neighbor distances of 0.7654, distance to two

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

FIG. 2. �Color online� 24-cell.
Parallel projection to a 2D plane.
Several views during an i2� /15
rotation in 4D are plotted. Lines
join neighbor points on the same
circle on S3, in the online version
each circle has a different color.
The symmetry of the configura-
tion is evident. The antipodal con-
struction is illustrated as the
circles �in S3� are ninety or one
hundred eighty degrees from each
other.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

FIG. 3. �Color online� Parallel projection to a 2D plane of sev-
eral views of the 80 point polytope during a rotation by i2� /20
around a plane in 4D are plotted. Lines join neighbor points on the
same circle on S3, in the online version each circle has a different
color.
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points on the same circle and to two points on other circles
but the poles, 0.7623, distance to two points on other circles
of the base of the same pyramid, 0.6661, distance to two
points on a pole, 0.6707, distance to four points on circles
placed in the base of the other pyramid and similarly 16
points—those lifted from the poles on S2 with ten nearest
neighbors of distances 0.7654, 0.6661, the former being the
distance of a point lifted from the north �south� pole to two
points on the same circle and the latter the distance to eight
points lifted from four points on the base of a pyramid with
vertex the north �south� pole.

The question arises as to whether the symmetric 80 point
configuration is a global minimum or potentially global
minimum energy configuration for other potentials. We find
that it is in general not. Indeed, while for a potential 1 /r1.5 at
least for 200 runs the analog of the 80 point configuration,
adjusting r to minimize the energy is still a global
minimum—though this configuration may easily be beaten
with more runs—for even 1/r2 it is not with the optimized
80 point configuration �r=0.8428� having E=2287.40969,
and a random configuration having energy E=2287.40506.

It is not too surprising that analogs of the 80 point sym-
metric configuration are not global minima for multiple po-
tential functions. In recent studies Cohn, Kumar, and col-
leagues �Refs. �27,28��, and references therein, find that there
are very few universal optimal configurations—
configurations which are global minima for all completely
monotonic potential functions. In four dimensions the only
known ones they find are the simplex, cross polytope �Fig.
4�a�� and the 600-cell �Fig. 4�b��. None of the other Platonic

solids in four dimensions are universal global minima. In
particular, by our calculations for 1 /r and calculations of
Cohn and colleagues for other potentials of the form 1/rn

�29,27�, the 24-cell appears to be the global minimum for
N=24 points. However, for some exotic potentials the 24-
cell is no longer the configuration for 24 points of minimum
energy, e.g., the potential function �1+ t�8 where t is the co-
sine angle between the position unit vector. i.e., two points at
a distance r have t=1−r2 /2. The configuration shown in Fig.
5 �29� is the best known configuration for this potential. This
configuration has a Hopf map consisting of eight fibers from
S2 with 3 points per fiber �ei2�k/3 ,0�, �0,ei2�k/3�,
�ei2�k/3 sin � ,ei2�k/3 cos ��, �ei2�k/3 cos � ,ei2�k/3 sin ��,
�ei2�k/3 sin � ,ei2��k+1�/3 cos ��, �ei2�k/3 cos � ,ei2��k+1�/3 sin ��,
�ei2��k+1�/3 sin � ,ei2�k/3 cos ��, �ei2��k+1�/3 cos � ,ei2�k/3 sin ��,
where k=0,1 ,2 and �=2.5920367. . ..

Visualization of the second Hopf map. In addition to the
first Hopf map from S3 to S2, there is also a second Hopf map
from S7 to S4 �and a third Hopf map from S15 to S8�. Intu-
itively the second �third� Hopf map uses quaternions �octo-
nions� to accomplish the map. Using the Cayley-Dickson
construction for the normed division algebras, A0=R �real�,
A1=C �complex�, A2=H �quaternions�, and A3=O �octo-
nions�, we can make An from An−1 for n=1,2 ,3. In this
construction, an element in An is made of a pair of elements
a ,b�An−1 with the multiplication

�a,b��c,d� = �ac − db*,a*d + cb� �4�

and the conjugation in An

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

a) b)

FIG. 4. �Color online� Parallel projection to a 2D plane of several views of the cross polytope �a� and the 600-cell �b� during a rotation
by i2� /20 around a plane in 4D are plotted. Lines join neighbor points on the same circle on S3, in the online version each circle has a
different color.
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�a,b�* = �a*,− b� . �5�

It is also possible to continue this procedure to get A4 �sed-
enions� but it is no longer a division algebra. Hopf maps can
be compactly defined as a map h1 from An � An to An� ���
followed by a second map h2 from An� ��� to S2n

�stereo-
graphic projection�, for n=0,1 ,2 ,3 �31�. h1 and h2 can be
stated as

h1:�a,b� → c = ab−1, �6�

where a ,b�An and �a�2+ �b�2=1, so the point �a ,b� is actu-
ally a point of Sm, being m=2n+1−1:

h2:c → Xi�i = 1, . . . ,2n + 1�, �
i=1

2n+1

Xi
2 = 1. �7�

Now, Dixon �see Ref. �30�, and references therein� seems
to have been the first to have appreciated not only that the
first Hopf map can be used to generate the 24-cell from
points on S2, but that E8 is generated from ten 24-cells lifted
from S4, and �16 is generated from 18 E8 lattices lifted from
S8. Dixon’s discussion was mostly topological and algebraic.
Here we give a remarkably simple and intuitive geometric
construction for E8 and �16. We note �see Ref. �31�, and
references, therein� that such Hopf maps that make construc-

tions may have utility in quantum computers and communi-
cation. After initially posting some results as a preprint �32�
we greatly appreciate correspondence from Henry Cohn who
upon going through Dixon’s somewhat opaque notation
pointed out that he did in fact give the same constructions for
E8 and �16 that we do. Dixon gives these with a topological
flavor. By taking a geometric viewpoint and approach we are
able to give easy enumeration and understanding of other
features of the lattices such as numbers of nearest neighbors.
Also, we give figures of the configurations to allow one to
“picture” or “put a face” on these beautiful structures. S7 is
the surface of an eight-dimensional sphere. The kissing con-
figuration of eight-dimensional spheres on the surface of an
eight-dimensional sphere as mentioned is known to be 240
points arranged in the E8 lattice. The kissing configuration in
five dimensions �K5� which is points arranged on the surface
of S4 is thought to be 40 points arranged in an D5 lattice, but
there is no proof of this. Initially we wondered if we could
use the second Hopf map to lift from the forty kissing points
on D5 six points each onto S7 and obtain the E8 lattice/K8
configuration. We have not been able to do this, however, we
noticed that by taking again the ten antipodal points from the
axes on S4, �±1,0 ,0 ,0 ,0�, �0, ±1,0 ,0 ,0�, �0,0 , ±1 ,0 ,0�,
�0,0 ,0±1,0�, and �0,0 ,0 ,0 , ±1�, and lifting ten 24 cells to
S7 we get the E8 lattice. This construction is illustrated in
Fig. 6. Again, our construction immediately illustrates that as

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

FIG. 6. �Color online� E8. Parallel projection to a 2D plane of
several views during a rotation by i2� /20 around a plane in 8D are
plotted. Lines join neighbor points on the same circle on S7, in the
online version each circle has a differente color. Again we see the
symmetry inherent in this configuration, and the antipodal construc-
tion being highlighted as the circles �S7� are ninety or 180° apart.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

FIG. 5. �Color online� Parallel projection to a 2D plane of sev-
eral views of the 24 point polytope �29� that has a lower energy than
the 24-cell �Fig. 2� for some potential functions during a rotation by
i2� /20 around a plane in 4D are plotted. Lines join neighbor points
on the same circle on S3, in the online version each circle has a
different color.
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for the 24-cell points are separated by 60°, 90°, 120°, or
180°. Our construction also intuitive explains why each point
has 56 nearest neighbors: eight on its own S3 circle and six
�two per orthogonal axis of a three-dimensional object� on
each of the eight other nonantipodal circles on S4.

Similarly, by lifting from the 16 antipodal points of the
axes of S8 an E8 lattice one gets the �16 lattice. This con-
struction again illustrates why �16 is a kissing configuration
with points separated by angles 60°, 90°, 120°, or 180°, and
why each point on �16 has 280 nearest neighbors=56 on its
own S7 circle+14 �two points per orthogonal axis of a seven-
dimensional object� � 16, where 16 is the number of nonan-
tipodal S7 circles on S8. This construction suggests, but of

course in no way proves, that �16 may be a configuration of
maximum kissing number. Our construction may give a help-
ful picture in proving, or disproving this, or in attacking
other problems such as finding the maximal packing configu-
rations in 4, 8, or 16 dimensions. Study of higher-
dimensional polytope by our construction may give physical
and intuitive insight into configuration of points in three di-
mensions. Geometric and intuitive insight into higher dimen-
sional polytopes may be useful in studying multidimensional
statistical mechanics problems.

We thank Richard Stong, Henry Cohn, and Andrew Glea-
son for helpful discussions.
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