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Reflection-refraction properties of photonic barriers, formed by dielectric gradient nanofilms, for inclined
incidence of both S- and P-polarized electromagnetic waves are examined by means of exactly solvable
models. We present generalized Fresnel formulas, describing the influence of the nonlocal dispersion on the
reflectance and transmittance of single- and double-layer gradient photonic barriers for S and P waves and
arbitrary angles of incidence. The nonlocal dispersion of such layers, arising due to a concave spatial profile of
dielectric susceptibility across the plane film, is shown to result in a peculiar heterogeneity-induced optical
anisotropy, providing the propagation of S �P� waves in tunneling �traveling� regimes. The results obtained
indicate the possibility of narrow-band nonattenuated tunneling �complete transmittance� of oblique S waves
through such heterogeneous barriers, and the existence of spectral areas characterized by the strong reflection
of P waves and profound contrast between transmitted S and P waves. The scalability of obtained exact
analytical solutions of Maxwell equations into the different spectral ranges is discussed and the application
potential of these phenomena for miniaturized polarizers and filters is demonstrated.
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I. INTRODUCTION

Tunneling is a basic wave phenomenon with many inter-
esting applications. The concept of tunneling was pioneered
by Gamow for particles in quantum mechanics as long ago
as in 1928 �1�. Later on both the quantum approach, involv-
ing the time-independent Schrodinger equation, and the
wave approach, involving the Helmholtz monochromatic
wave equation, were considered to be formally equivalent.
The advent of lasers has attracted attention to the effects
associated with tunneling of the electromagnetic �EM� waves
through classical barriers in a series of optoelectronic prob-
lems such as, e.g., the evanescent modes in dielectric
waveguides �2� and liquid crystals �3�, and the Goos-
Hanchen effect for curvilinear interfaces �4–6�. Experiments
in the microwave range with an “undersized” waveguide �7�,
and the Goos-Hanchen spatial shift of a narrow beam, pass-
ing through paraffine double prisms �8�, have demonstrated
the possibilities of observation of tunneling effects, which
proved not to be easy to reproduce at quantum scales. Side
by side with the numerous applications of the tunneling con-
cept in optoelectronics, solid state, and microwave physics
�9�, this concept contains an intriguing theoretical challenge,
connected with the idea of superluminal light tunneling
through the photonic barrier known as the Hartman paradox
�10,11�.

The theoretical background of the aforesaid investigation
is based on the electromagnetics of heterogeneous media
�12�. Herein some important features of evanescent waves
are examined usually in the framework of a simple model of
a rectangular opaque barrier �13� or layered structure, formed
by steplike variations of refractive indices �14�. Another field
for wave-tunneling phenomena is connected with the gradi-
ent optics of thin films: the nonlocal dispersion, arising due
to continuous spatial variations of dielectric susceptibility

was shown recently to provide a rich variety of tunneling
phenomena even in a material with negligible natural local
dispersion �15�. These phenomena can be examined by
means of exact analytical solutions of Maxwell equations for
media with spatially distributed dielectric susceptibility

��z� = n0
2U2�z� . �1�

Here n0 is the value of the host dielectric refractive index;
the dimensionless function U�z� describes the coordinate de-
pendence of the dielectric susceptibility. This heterogeneity
can result in the formation of a cutoff frequency �, depen-
dent on the gradient and curvature of the ��z� profile �15�.
Thus, for heterogeneous nanofilms with a thickness of about
100 nm and with a depth of modulation of refractive index
about 25% the cutoff frequencies �, separating the evanes-
cent and traveling modes, belong to the near IR or visible
spectral ranges. Controlled variety of reflection-refraction
properties of the layer, produced by different profiles U�z�,
opens new possibilities of designing of media with optical
properties unattainable in natural materials.

The role of the heterogeneity-induced dispersion was ex-
amined in Ref. �15� for the case of normal incidence, when
the wave-polarization effects are vanishing; however, the
model U�z� used in Ref. �15� does not provide analytical
solutions of the wave equation in the inclined incidence case.
Unlike Ref. �15�, this paper is devoted to the peculiar effects
in the reflectivity and transmittivity of both S- and
P-polarized waves, incidenting under an arbitrary angle on
an heterogeneous dielectric layer, characterized by some pro-
file U�z�.

The paper is organized as follows. In Sec. II we present a
model of nonmonotonic concave profile U�z�, suitable for
both S and P waves in the gradient medium and demonstrate
the effects of heterogeneity-induced optical anisotropy. Exact
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analytical solutions of the wave equations obtained for such
U�z�, revealing the polarization-dependent propagation and
tunneling regimes for both one- and two-gradient layers, are
examined in Sec. III. In Sec. IV we use these solutions for
the analysis of narrow-band reflectionless tunneling of S
waves, the strong reflection of P waves, the deep contrast
between transmitted S and P waves, and some phase effects,
associated with the aforesaid phenomena. The conclusions
are summarized in Sec. V.

II. PROPAGATION AND TUNNELING OF S-
AND P-POLARIZED WAVES IN GRADIENT MEDIA

(EXACTLY SOLVABLE MODEL)

Unlike in the case of the normal incidence, here the waves
have a different polarization structure and are described by
different equations. By denoting the normal to the layer as
the z axis and choosing the projection of the wave vector on
the layer’s interface as the y axis, one can describe the po-
larization structure of an S wave by means of its electric
component Ex and the magnetic components Hy and Hz. The
layer is assumed to be lossless and nonmagnetic, and one can
write the Maxwell equations linking these components as

�Ex

�z
= −

1

c

�Hy

�t
,

�Ex

�y
=

1

c

�Hz

�t
,

�Hz

�y
−

�Hy

�z
=

��z�
c

�Ex

�t
,

�2�

div��Ē� = 0, div�H̄� = 0. �3�

Components of the P wave �Hx, Ey, and Ez� also satisfy Eqs.
�3�, however Eqs. �2� are in this case replaced by

�Hx

�z
=

��z�
c

�Ey

�t
,

�Hx

�y
= −

��z�
c

�Ez

�t
,

�Ez

�y
−

�Ey

�z
= −

1

c

�Hx

�t
.

�4�

The effects of heterogeneity-induced dispersion for inclined
incidence can be found from the set of Eqs. �2�–�4� by means
of exactly solvable models of ��z� given by Eq. �1�, suitable
for both S and P polarizations. The well-known Rayleigh
profile U�z�= �1+z /L�−1, dating back to 1880, and the expo-
nential profile U�z�=exp�±z /L� provide exact solutions of
the set of equations �2�–�4� for monotonic variations of U�z�
�12�; however, these models are not suitable for the descrip-
tion of smoothly varying concave photonic barriers, which
we plan to discuss. Thus, the reflection-refraction problem
for the set of equations �2�–�4� is considered below from the
very beginning. It is convenient to express the field compo-
nents in Maxwell equations by means of the following aux-
iliary, polarization-dependent functions �s and �p:

S polarization: Ex = −
1

c

d�s

dt
, Hy =

d�s

dz
, Hz = −

d�s

dy
,

�5�

P polarization: Hx = −
1

c

d�p

dt
, Ey =

1

��z�
d�p

dz
,

Ez = −
1

��z�
d�p

dy
. �6�

Using such representations one can reduce the system �Eqs.
�2�–�4�� to two equations, governing S and P waves, respec-
tively. Omitting for simplicity the factor exp�i�kyy−�t��,
these equations can be written as

�2�s

�z2 + ��2n0
2U2

c2 − ky
2��s = 0, ky =

�

c
sin � , �7�

�2�p

�z2 + ��2n0
2U2

c2 − ky
2��p =

2

U

dU

dz

��p

�z
. �8�

By introducing the new variable � and the new functions fs
and fp,

� = �
z0

z

U�z1�dz1, fs = �s
�U�z�, fp =

�p

�U�z�
, �9�

where z0 denotes the position of the film or vacuum first
interface, one can present Eqs. �7� and �8� for S and P waves
in the forms

d2fs

d�2 + fs�� −
U��

2U
+

U�
2

4U2� = 0, �10�

d2fp

d�2 + fp�� +
U��

2U
−

3U�
2

4U2� = 0, �11�

where �= ��2n0
2 /c2�− �ky

2 /U2�, U�=dU /d�, and U��

=d2U /d�2. Equations �10� and �11� are valid for arbitrary
profiles of photonic barriers U�z� and all angles of incidence
�, including, in particular, the two well-known exactly solv-
able models mentioned above: the Rayleigh and exponential
profiles. The fact that some polarization effects will depend
on the barrier profile is clear even without a solution of these
equations. In the case of the widely used Rayleigh profile
UR, which can be rewritten in � space by means of Eq. �9� as
UR���=exp�−� /L�, both Eqs. �10� and �11� coincide:

d2fs,p

d�2 + fs,p��n0

c
�2	1 −

�cr
2

�2 −
sin2 �

n0
2 exp�2�

L
�
 = 0.

�12�

Equation �12� shows that, due to heterogeneity-induced dis-
persion, characterized by a cutoff frequency �cr=c /2n0L, the
tunneling regimes arise in the Rayleigh barrier for both S and
P waves simultaneously. In the case of the exponential pro-
file, rewritten in � space as U=1±� /L, no heterogeneity-
induced cutoff frequency can be defined from Eqs. �10� and
�11�. In contrast to these traditionally used asymmetrical pro-
files, we consider here the exactly solvable symmetrical con-
cave barrier U�z�, formed inside the dielectric film with the
thickness d by variation of U from the value U=1 in the
center of the barrier �z=0� up to the values Um at the inter-
faces z= ±d /2 �Fig. 1 represents the case of a system con-
sisting of two such barriers deposited on a substrate with the
constant refractive index nD�,
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U =
1

cos� z

L
� , Um =

1

m
, m = cos� d

2L
� . �13�

With these conventions, the integral in Eq. �9� should be
taken from z0=−d /2. Note that this model is characterized
by one free parameter—the length scale L, however, it can be
used to study many features associated with this type of po-
tential as we will show in Sec. IV. In fact, it represents a
particular case of a more general potential with two adjust-
able parameters which, however, leads to much more cum-
bersome calculations and thus is not developed here. By sub-
stituting Eq. �13� into Eq. �9� one can express the profile
U���� in terms of the new variable �,

� = L ln	1 + tg�z/2L�
1 − tg�z/2L�
, U =

1

cos� z

L
� = ch�, � =

�

L
.

�14�

By using Eq. �14� one can rewrite Eqs. �10� and �11� for S
and P waves inside the barrier given by Eq. �13� into the
similar form,

d2fs,p

d�2 + fs,p�q2 −
	s,p

ch2�
� = 0, �15�

q2 = ��n0L

c
�2�1 −

�2

�2 � , �16�

	s = �kyL�2 +
1

4
, 	p = �kyL�2 −

3

4
, �17�

where � is a characteristic frequency, determined by the pa-
rameters of concave barrier �13�,

� =
c

2n0L
=

c

n0d
arccos�m� . �18�

The sign of parameter q2 given by Eq. �16� changes in
�=�. Let us consider here the low-frequency spectral range
�
�, q2
0. In this range the expression in brackets in Eq.
�15� for the S wave is always negative, and thus the low-
frequency S wave, incidenting on the barrier given by Eq.
�13� under an arbitrary angle �, is traversing this barrier as an
evanescent wave. On the contrary, the same expression in
Eq. �15� for a P wave, for realistic values of the modulation
of the refractive index �13� in the layer �Um=m−1

�1.3–1.4� remains positive and provides the traveling-mode
regime for the P wave.

Thus, unlike the homogeneous rectangular barrier, where
the tunneling of the EM waves is determined by a condition
common to both S and P polarizations, the tunneling through
the concave barrier given by Eq. �13� proves to be polariza-
tion dependent. This heterogeneity-induced anisotropy can
result in a significant difference in reflectivity and transmit-
tivity of such a barrier for S and P waves, with their frequen-
cies and angles of incidence on the layer being equal. This
difference is illustrated below by means of the exactly solv-
able model �13�.

III. HETEROGENEITY-INDUCED OPTICAL ANISOTROPY
OF TRANSPARENT LAYERS

To simplify the analysis of the transmission of a concave
photonic barrier for the EM wave with inclined incidence, let
us first consider one layer without a substrate embedded in
free space �see Fig. 1�. We introduce the dimensionless quan-
tities

u = �/� � 1, N = �1 − u−2 
 1. �19�

By transforming Eq. �15� by means of the new variable 
 and
the new function W,


 =
1 − th�

2
, fs,p = �ch��N/2Ws,p, �20�

one obtains for this function the hypergeometric equation


�1 − 
�
d2W

d
2 + �� − 
�1 + � + ���
dW

d

− ��W = 0,

� = 1 −
N

2
. �21�

Although Eq. �21� is valid for both polarizations, the values
of parameters � and � have to be specified for each wave,
while the definition � given by Eq. �21� is valid for both
waves. Let us start the analysis from the S wave; in this case

�s,�s =
1

2
	1 − N ±

i sin ��1 − N2

n0

 . �22�

Since �s+�s+1=2�, two linearly independent solutions of
Eq. �21� are given by the hypergeometric functions
F��s ,�s ,� ,
� and F��s ,�s ,� ,1−
�, denoted below for com-

FIG. 1. Pair of gradient layers, supported by an homogeneous
substrate; the thickness of each layer and substrate are d and D,
respectively; the profile of the refractive index inside each gradient
layer is described by Eq. �13�.
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pactness as F�
� and F�1−
�; moreover, due to condition
Re��s+�s−��
0 the series, presenting these functions, are
converging absolutely �16�. The general solution of Eq. �21�
reads as

W = F�
� + QsF�1 − 
� . �23�

Here F�
� and F�1−
� can be considered as forward and
backward waves �meaning more exactly in a tunneling case,
evanescent and antievanescent waves�, while the factor Qs is
associated with the contribution of backward wave to the
total field. By using the variables defined in Eqs. �9� and �19�
and expressing the factor ch � in terms of cos�z /L� according
to Eq. �14�, one can present the generating function �s in the
form

�s = �cos�z/L���1−N�/2W . �24�

The substitution of Eq. �24� into Eq. �5� yields the explicit
expressions for components of the S wave inside the me-
dium,

Ex =
i�A

c
�s, Hz = − ikyA�s,

Hy =
− A

2L�cos�z/L���N+1�/2��1 − N�sin�z/L�W + cos2�z/L�
dW

d

� ,

�25�

where A is the complex amplitude of the wave. To find the
reflection coefficient for the S wave Rs one has to use the
continuity conditions on the film interfaces z= ±d /2. It fol-
lows from Eq. �14� that

th� = sin�z/L�, 
 =
1 − sin�z/L�

2
, 1 − 
 =

1 + sin�z/L�
2

.

�26�

Let us consider the wave incidenting on the interface
z=−d /2. By introducing the variables 
1,2,




z=−d/2 = 
1 =
1 + s

2
, 
�1 − 
�
z=+d/2 = 
2 =

1 − s

2
,

s = �1 − m2,

F1,2 = F�
1,2�, F1� = �dF

d

�


1

, F2� = �dF

d

�


2

. �27�

Using the values of field components �25� on the interface
z=−d /2 and omitting, for simplicity, here and below the
phase factors exp�i�kyy−�t��, one can derive the expression
for Rs from the continuity conditions on this interface,

Rs =
M1 + i�sF1 + Qs�M2 + i�sF2�
i�sF1 − M1 + Qs�i�sF2 − M2�

, �28�

M1,2 = s�N − 1�F1,2 ± m2F1,2� , �s =
m cos ��1 − N2

n0
.

�29�

The factor Qs can be determined in the same way from the
continuity conditions on the opposite interface z=d /2,

Qs = − �M2 − i�sF2

M1 − i�sF1
� . �30�

By substituting Qs given by Eq. �30� into Eq. �28� one ob-
tains the complex reflection coefficient Rs,

Rs =
As

Bs
, As = M1

2 − M2
2 + �s

2�F1
2 − F2

2�, Bs = B1 + iB2,

B1 = M2
2 − M1

2 + �s
2�F1

2 − F2
2�, B2 = 2�s�F1M1 − F2M2� .

�31�

Now we rewrite the complex reflection coefficient Rs into the
form Rs= 
Rs
exp�i�sr�,


Rs
 =

As


�B1
2 + B2

2
, �sr = − arctan�B2

B1
� . �32�

To find the transmission function Ts we express the ampli-
tude of the refracted wave A from Eq. �25� in terms of the
amplitude of the incidenting wave E0 and the reflection co-
efficient Rs,

A =
− iE0c�1 + Rs�
��F1 + QsF2�

. �33�

By using Eq. �33� one can write the field E at the interface
z=d /2 by means of a complex transmission function Ts,

E = E0Ts, Ts = 
Ts
exp�i�st� ,


Ts
 =
2�s
F1M2 − F2M1


�B1
2 + B2

2
, �st = arctan�B1

B2
� . �34�

The reflection coefficient for the P wave Rp can be calcu-
lated in the same way. The generating function �p �Eq. �6��
is expressed via the relevant solution of Eq. �21�, similar to
Eq. �23�,

�p = �cos�z/L��−�N+1�/2�F��p,�p,�,
� + QpF��p,�p,�,1 − 
�� ,

Qp = − �M4 − i�pF4

M3 − i�pF3
� ,

�p =
n0 cos ��1 − N2

m
. �35�

Forward and backward �propagating� waves are described by
Eq. �35� in terms of the hypergeometric functions F with
parameters
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�p,�p =
1

2
	1 − N ±�4 −

�1 − N2�sin2 �

n0
2 
, � = 1 −

N

2
.

�36�

By substituting the generating function given by Eq. �35�
into Eq. �6� one obtains the components of the P wave. Us-
ing the continuity conditions, one can present the reflection
coefficient Rp in a form, analogous to Rs �Eq. �32��.

Rp =
M3 + i�pF3 + Qp�M4 + i�pF4�
i�pF3 − M3 + Qp�i�pF4 − M4�

,

Rp = 
Rp
exp�i�pr�, 
Rp
 =

Ap


�B3
2 + B4

2
, �pr = − arctan�B4

B3
� ,

Ap = M3
2 − M4

2 + �p
2�F3

2 − F4
2� ,

B3 = M4
2 − M3

2 + �p
2�F3

2 − F4
2�, B4 = 2�p�F3M3 − F4M4� ,

M3,4 = s�N + 1�F3,4 ± m2F3,4� ,

F3,4� = �dF��p,�p,�,
�
d


�

=
1,2

. �37�

The transmission function for the P wave Tp can be found
by analogy with Eqs. �33� and �34� in the form

Tp = 
Tp
exp�i�pt� ,


Tp
 =
2�p
F3M4 − F4M3


�B3
2 + B4

2
, �pt = arctan�B3

B4
� . �38�

Thus, we found the expressions for reflection coefficients
Rs,p and transmission functions Ts,p, valid for an arbitrary
angle of incidence �. The quantities 
Rs,p
 and 
Ts,p
 are linked
by the energy conservation law,


Ts,p
2 = 1 − 
Rs,p
2. �39�

It is worth emphasizing that in the normal incidence case
��=0� the difference between S- and P-polarized waves van-
ishes, and thus the modules of reflection and transmission
coefficients have to be equal. This equality, which is not
obvious from the formulas for 
Rs
 �Eq. �32�� and 
Rp
 �Eq.
�37��, is demonstrated in the Appendix. Therein we show that
the field expressions for S and P waves inside the film coin-
cide in this case, as it should, and hence all the derived
quantities.

The effects of heterogeneity-induced dispersion on the
amplitude-phase structure of transmitted radiation manifest
themselves, first of all, by the angular dependence of the
transmittance of gradient layers for S- and P-polarized
waves. These transmittances, 
Ts
2 and 
Tp
2, calculated by
using Eqs. �34� and �38�, respectively, are depicted in Fig. 2.
In the case of inclined incidence 
Tp
2, exceeding 
Ts
2 can
even reach the value 
Tp
2=1, illustrating the Brewster effect
for a gradient layer. The angle �, however, which is related to
this reflectionless regime, differs from the Brewster angle �B
for an homogeneous layer �tg�B=n0�.

In Fig. 2 we present the angular dependence of transmit-
tances of an heterogeneous layer for S and P waves for some
given value of dimensionless parameter � given by Eq. �21�,
defined for any normalized frequency u=� /�. Considering
the transmittance regime, related to some values �, m, �, and
n0 and using the characteristic frequency � given by Eq.
�18�, one can choose the thickness of the layer d, providing
the formation of such a regime for arbitrary polarization and
wavelength � by using the following expression derived
from Eqs. �21� and �18�:

d

�
=

�1 − 4�1 − ��2 arccos�m�
2�n0

. �40�

Thus, for the set of parameters related to Fig. 2 and �
=1.55 �m, Eq. �40� defines the thickness of the layer d
=45 nm; herein Fig. 2 remains valid for any values of d and
�, linked by relation �40� with m=0.75, n0=3.4, and �
=0.75.

To compare these results with the transmittance of an ho-
mogeneous layer �m=1� with the same values of d and n0,
one can use the formulas for reflection coefficients Rs and Rp
�20�, presented in forms similar to that of Eqs. �31� and �37�,
respectively,

Rs = As�B1 + iB2�−1, As = �n0
2 − 1�tg� ,

B1 = �r2 + cos2 ��tg�, B2 = 2r cos � ,

r2 = n0
2 − sin2 �, � =

�dr

c
=

2�n0d

�
�1 −

sin2 �

n0
2 ,

Rp = Ap�B3 + iB4�−1, Ap = − �n0
4 cos2 � − r2�tg� ,

FIG. 2. �Color online� Transmittance vs the angle of incidence �
of both the gradient and homogeneous layer with parameters m
=0.75, n0=3.4, and ��u�=0.75. Transmittances of the gradient layer
for S and P waves are indicated by full and dotted lines, respec-
tively, while transmittances associated with the homogeneous layer
for S and P waves are indicated by a dashed and a dash-dotted line.
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B3 = �n0
4 cos2 � + r2�tg�, B4 = 2n0

2r cos � . �41�

For normal incidence ��=0� these formulas reduce to the
natural result, Rs=−Rp. The transmittances 
Ts
2 and 
Tp
2, are
then found by means of Eq. �39�, and are also presented in
Figs. 2, 3�a�, and 3�b�. To calculate the dependence of the
transmittances on the frequency-dependent parameter ��u�,
one needs to evaluate the factor tg��� by using the ratio d /�,
as a function of ��u� and that is given by Eq. �40�. The
spectral properties of transmittance for S and P waves are
presented in Figs. 3–6 in the �
T
2−��u�� or in the �
T
2−u�
planes.

These graphs illustrate the quantitative differences in
transmittances, produced by profiles U�z�. Namely, Fig. 3�b�
shows a narrow spectral window for the total transmittance
of S waves, which profoundly differs from the smoothly
varying function 
Ts
2 for the homogeneous film. Herein the
comparison of Figs. 3�a� and 3�b�, drawn for one gradient
layer, shows that the increase of depth of modulation of re-
fractive index m can result in significant changes of the
transmittance-reflection spectra of the gradient layer for S
waves. A narrow asymmetrical peak of reflectionless tunnel-
ing for S waves arises near the point u=1, �=1. This peak is
contiguous with a narrow area of high dispersion of trans-
mittance coefficient with almost vertical tangent to the graph

Ts���
2. The transmittance 
Tp
2 in this range remains almost
constant, approximately 87%. When the angle of incidence is
decreased the existence of the peak is unaffected while trans-
mittance 
Tp
2 tends to 100% �see Fig. 3�c��.

On the other hand, in the lower-frequency spectral range
close to the point �=0.5—see Fig. 3�c�—the reflection of S
waves is almost unvariable, close to 100%, while the trans-
mittance of P waves tends to zero; herein the frequency dis-
persion of 
Tp
2 in this range is strong. The large contrast
between the transmittance of gradient layers for S and P
waves may prove to be of interest for polarizing systems,
operating under the large angles of incidence. The thickness
of the layers may be rather small: e.g., a polarizing screen,
providing for transmitted waves the ratio 
Tp
2 / 
Ts
2
0.05, is
characterized, under the conditions shown in Fig. 3�c� �u
=3.2�, by the ratio d /�=0.025 determined from Eq. �40�.
Such a miniaturized scale d represents a remarkable feature
of the anisotropic gradient nanolayers considered.

IV. NARROW-BAND REFLECTIONLESS TUNNELING
OF S WAVES

While discussing the transmittance peaks for S waves

Ts
2=1 in the spectral range � �u��1 �Figs. 3�b� and 3�c��,
one has to emphasize that these peaks arise in the regime of
the reflectionless tunneling of wave �Rs=0� through the gra-
dient layer. The cancellation of the reflected-wave results
from the interference of the wave reflected on the interface
z=−d /2, with the transmitted part of the backward antieva-
nescent wave. This cancellation arises only for the concave
photonic barrier: in the case of a square barrier with a con-
stant refractive index, such cancellation proves to be impos-
sible �17�.

FIG. 3. �Color online� Spectra of the transmittance of both the
gradient and homogeneous single layer �n0=1.4� for the inclined
incidence of S �full line� and P waves �dotted line� vs the
frequency-dependent parameter ��u� �Eq. �21��; �a� m=0.95, �
=75°; �b� m=0.75, �=75°; �c� m=0.75, �=65°. Transmittances as-
sociated with the homogeneous layer for the S and the P wave are
indicated by the dashed and the dash-dotted line, respectively.
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Proceeding in a similar fashion, we can find the transmit-
tance of a pair of gradient layers for S- and P-polarized
waves, characterized by coefficients 
T2s
2 and 
T2p
2. To cal-
culate these coefficients let us examine the set of two parallel
adjacent layers, shown in Fig. 1. Herein the continuity con-
ditions on the interfaces z=−d /2 and z=3d /2 remain un-
changed. Considering first the S wave, one can see that for-
mulas for Rs �Eq. �28�� and Qs �Eq. �30�� relating to these
conditions for the S wave, are also valid for the set of two
layers. Recalling these conditions for the intermediate
boundary z=d /2, one can find, after some tedious algebra,
the value Q, related to this boundary,

Q = − 	 F1M2 + M1F2 + 2QsM2F2

Qs�F1M2 + M2F1� + 2M1F1

 . �42�

Here the values M1,2 and Qs are defined in Eqs. �29� and
�30�. The substitution of Eq. �42� into Eq. �28� yields the
complex reflection coefficient R2s for the set of two layers,

R2s =
Gs

Ks + iJs
,

Gs = �F1M1 − F2M2��M1
2 − M2

2 + �s
2�F1

2 − F2
2�� ,

Ks = �F1M1 − F2M2��M2
2 − M1

2 + �s
2�F1

2 − F2
2�� ,

Js = �s��F1
2 − F2

2��M1
2 − M2

2� + �F1M1 − F2M2�2� . �43�

The reflection coefficient of the same pair for the P wave
R2p can be determined by analogy with Eq. �43� by means of
the replacement of indices s→p in the relevant terms in Eqs.
�42� and �43�, e.g., Gs→Gp, and the following transposi-
tions:

R2p =
Gp

Kp + iJp
,

F1,2 → F3,4, M1,2 → M3,4, �s → �p. �44�

In the case of normal incidence one again obtains 
R2s
2
= 
R2p
2 �see the Appendix�.

The transmission coefficients 
T2s
2 and 
T2p
2 for the pair
of layers, found by means of the substitution of Eqs. �43� and
�44� into Eq. �39�, are presented in Fig. 4. The comparison of
Figs. 4�a� and 4�b� shows the strengthening of optical aniso-
tropy of gradient films due to the increase of their heteroge-
neity. The decrease of m from m=0.95 �Fig. 4�a�� to m
=0.86 �Fig. 4�b�� results again in the formation of reflection-
less tunneling �nonattenuated transmittance� regimes for S
waves as well as the huge dispersion of 
T2s
2 and the slowly
varying high transmittance of P waves near the point u=1.
However, in this geometry the range of reflectionless tunnel-
ing contains two closely located peaks with a very narrow
spectral width �see Fig. 5�. Thus, such a pair of films can be
considered as a model of miniaturized frequency filter for S
waves. We note that the effects of nonattenuated tunneling

FIG. 4. �Color online� Spectra of the transmittance of a pair of
layers �n0=1.4, �=75°� for the S �full line� and the P waves �dotted
line�. �a� m=0.95;�b� m=0.86.

FIG. 5. �Color online� Narrow-band peaks of the reflectionless
tunneling of S �full line� and P waves �dotted line� through the pair
of gradient layers �n0=1.4, m=0.75, �=65°�. The transmission co-
efficients are plotted vs the normalized frequency u.
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analogous to the superlensing phenomenon in which evanes-
cent waves contribute to the perfect image of the objects by
means of negative refractive index medium �18�, represent
an alternative and new concept of energy transfer that em-
ploys evanescent waves and may be useful in the design of
subwavelength devices.

In Fig. 6 we present the phase shifts of transmitted waves
�. The phase times tph=�� /�� are positive for the S wave in
all the spectral range ��u�
1, while for the P wave the
values tph are positive in a broad spectral interval 0.55
�

1 and negative in a narrow spectral interval 0.52
�

0.55. In the former interval the phase shift of P waves,
passing through the pair of layers, can reach values close to
±� /2.

A comparison of phases of reflected �Eq. �32�� and trans-
mitted �Eq. �34�� S waves leads to the relation tg�srtg�st
+1=0. A similar relation between the phases can be found
from Eqs. �37� and �38� for P waves as well, and they are
linked as

�sr − �st = �pr − �pt = ±
�

2
. �45�

Formulas �43� and �44� show that the correlation �45�, de-
rived for one layer, remains valid for a pair of layers. This
property can be used for the determination of the phase of
tunneling wave, if its detection is impeded due to strong
attenuation in an opaque barrier �19�.

Until now our analysis was restricted to the model of
heterogeneous films without a substrate. To examine the ap-
plicability of our results to the real case of a layer supported
by a substrate, let us consider a layer deposited on an homo-
geneous lossless layer of thickness D and with refractive
index nD �see Fig. 1�. By presenting the generating function
for, e.g., the S wave, inside the homogeneous layer in the
form

�D = �exp�ik�z� + QD exp�− ik�z��exp�i�kyy − �t�� ,

k� =
�

c
r, r = �nD

2 − sin2 � , �46�

and by using the continuity conditions on the interface be-
tween this layer and air �z=d+D�, one can find the parameter
QD that enters Eq. �46� in the form

QD = − � cos � − r

cos � + r
�exp�2ik�D� . �47�

The continuity conditions on the interface between the layer
and the heterogeneous film can be written by means of Eqs.
�25�–�27�.

M2 + QsM1

F2 + QsF1
=

2i�Lrm

c
�1 − QD

1 + QD
� . �48�

The expression in parentheses in Eq. �48� can be rewritten by
means of Eq. �47� in the form

1 − QD

1 + QD
=

cos � − irtg�

r − i cos �
, � =

�rD

c
. �49�

If the thickness D is chosen so that

�D�nD
2 − sin2 �

c
= l�, l = 1,2,3, . . . , �50�

where the right side of Eq. �48� is reduced to i�s �Eq. �29��,
and the value Qs, defined from Eq. �48�, as well as the re-
flection coefficient Rs, coincide with the values �30� and
�32�, calculated in the absense of a substrate. The same con-
dition �50� can also be found for the P wave. Thus, when the
condition �50� is fulfilled, this layer does not affect the
reflection-refraction properties of the gradient films dis-
cussed.

When the gradient layer is deposited on a homogeneous
transparent substrate with refractive index n and thickness D,
the expressions for reflection coefficients Rs and Rp obtained
above can be generalized by means of the relevant continuity
conditions on the interface z=d /2. In particular, in the case
when D�ct, where t is the duration of the incident wave
pulse �thick substrate�—so that no interference effects can
occur between the incident and the far-interface reflected
pulse—or when the reflection is eliminated by the use of an
antireflection coating or by using a wedged substrate, these
generalized expressions for a single layer read as

Rs =
As1

Bs1
,

As1 = M1
2 − M2

2 + �s�1�F1
2 − F2

2� + i��s − �1��F1M1 − F2M2� ,

Bs1 = M2
2 − M1

2 + �s�1�F1
2 − F2

2� + i��s + �1��F1M1 − F2M2� ,

�1 = �s
r

cos �
,

FIG. 6. �Color online� Phases of S �full line� and P waves �dot-
ted line�, propagating through the pair of layers under the condi-
tions, given in the caption to Fig. 4�a�.
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r = �n2 − sin2 � . �51�

The value Rp can be obtained from this Rs by applying the
transpositions

As1 → Ap1, Bs1 → Bp1, F1,2 → F3,4, M1,2 → M3,4,

�s → �p, �1 → �p
r

cos �
.

In the case when n=1 �air� and r=sin �, these formulas re-
duce to Eqs.�31� and �37�, respectively. The condition of
reflectionless tunneling R1s=0 results in two equations, nul-
lifying the real and imaginary parts of the numerator As1.
Combining Equations Re�As1�=0, and Im��As1��=0, one ob-
tains the expression r,

r

cos �
=

M2
2 − M1

2

�s
2�F1

2 − F2
2�

. �52�

The right side of Eq. �52� is known, therefore r
=�n2−sin2 � and, finally, one obtains the value of the refrac-
tive index of substrate n, which provides such nonattenuated
tunneling. Then the values Ts and Tp can be calculated by
using Eq. �39�. An example of transmittance through a gra-
dient photonic barrier deposited on a thick substrate with
refractive index n for the S and P waves, calculated accord-
ing to Eq. �52�, is depicted in Fig. 7 and denoted by Tsn and
Tpn, respectively. We find that the presence of the thick sub-
strate affects the transmittance for the S wave �denoted by Ts
in Fig. 7� and results in a broadening of the peak of the
transmittance and an increase of its minimum in comparison
with the transmittance without the substrate. However, the
main tendencies in the spectrum remain unchanged, while
the change of the transmittance for the P wave is negligible.

V. CONCLUSIONS

In conclusion, we have considered the transmittance of
gradient photonic barriers, formed by thin dielectric layers
with concave profiles of refractive index, for both S- and
P-polarized EM waves, incidenting on these barriers under
arbitrary angles. The nonlocal dispersion, determined by the
shape of photonic barriers, is shown to provide a peculiar
optical anisotropy, stipulating the propagation of the P �S�
-polarized waves in the traveling �tunneling� regime. The
amplitude-phase structure of reflected and transmitted S- and
P-polarized waves is found in the framework of the exactly
solvable model of gradient barriers, and the generalized
Fresnel formulas for the reflectance and transmittance of
single-layer and double-layer concave photonic barriers are
presented. The effect of narrow-band reflectionless tunneling
�100% transmittance� of the S wave is demonstrated. These
solutions, obtained without any assumptions regarding the
smallness or slowness of variations of EM fields or media,
can be used as a benchmark of some approximations, found
by the transfer-matrix approach �20� or numerical solutions
for EM fields in spatially varying media �21�. The examples
of the use of these results in the gradient optics of nanolayers
may become useful for the design of miniaturized subwave-
length optoelectronic devices, operating with the oblique in-
cidence of EM waves, such as polarizers, phase shifters,
frequency-selective interfaces, and large incidence angles fil-
ters.

In the optical and near IR domain, there are already
known technological solutions to the fabrication of such de-
vices. Gradient index films with refractive index variations in
excess of 30%—typically 1.45–1.9—over a few tens of na-
nometers can be realized using, e.g., silicon oxinitride with
varying O/N stoichiometry �22�. The plasma enhanced
chemical vapor deposition technology used in the fabrication
of such structures allow large-scale treatment. The Ion-
implantation method represents another solution for control-
ling locally the refractive index of a material.

If the methods used for obtaining such gradient layers can
be generalized to materials operating in different wavelength
ranges, the scalability of our exact analytical solutions to the
different spectral ranges opens new perspectives for the de-
sign of materials with electromagnetic properties unattain-
able in the natural media.
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APPENDIX

To confirm the equality of fields inside the barrier and of
the reflection coefficients for S and P waves in the case of
normal incidence �ky =0, d /dy=0�, let us start from general
Eq. �2� for the S wave and Eq. �4� for the P wave; with an
incidence angle tending to zero, these equations coincide if

FIG. 7. �Color online� Transmittance of S �full line� and P
waves �dotted line� propagating through one layer gradient photonic
barrier denoted by Tsn and Tpn, respectively, deposited on the thick
substrate with n=2.32 �m=0.86, �=65°, n0=1.4�; the curve indi-
cated by Ts �dashed line� shows the transmittance of the same bar-
rier without a substrate.
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Exs = Eyp, Hys = − Hxp. �A1�

To verify that the solutions obtained above from different
equations for S and P waves, satisfy these conditions, one
needs to �1� establish the link between the generating func-
tions �s and �p in the case of normal incidence; �2� find the
expressions for the field components for S and P waves, this
link being taken into account; and �3� compare these expres-
sions, revealing their coincidence. These steps are performed
below.

�1� In the case of normal incidence, Eq. �8� for the P wave
can be viewed as resulting from the differentiation of Eq. �7�
for the S wave with respect to z; i.e.,

�p =
d�s

dz
�A2�

and, thus, generating functions �s and �p for this case are
not independent.

�2� A generating function for S waves �s inside the film
can be presented as a sum of forward and backward waves
�Eq. �23��,

�s = A��s1�z� + Qs�s2�− z�� . �A3�

Here A is a constant and Qs determines the contribution of
the backward wave to the total field. The substitution of Eq.
�A3� into Eq. �5� brings the electric and magnetic compo-
nents of the S wave. Introducing the quantities

d�s1�z�
dz

= ��s1��,
d�s2�− z�

dz
= − ��s1��, �A4�

where the notation ���� indicates the derivative of function
� with respect to its argument, and using the relation �A2�,
one can write by means of Eq. �5�,

Exs =
i�

c
�s, Hys = A���p1 − Qs�p2�� . �A5�

We point out that the Hys component is expressed here via
the generating function of the P wave. On the other hand,
considering the generating function for the P wave in a form,
similar to Eq. �A3�,

�p = B��p1�z� + Qp�p2�− z�� , �A6�

one obtains by substituting Eq. �A6� into Eq. �6�,

Hxp = −
i�B

c
��p1�z� + Qp�p2�− z�� . �A7�

Now let us write the expression for Ep �Eq. �6�� in the form

Eyp =
B

n0
2U2 ���p1�� − Qp��p2��� , �A8�

where B is some constant. Using Eq. �A2�, one can express
the first derivative of �p1 via the second derivative of �s1:
��p1��= ��s1��, as well as ��p2��= ��s2��; presenting these
second derivatives by means of Eq. �7�, governing the gen-
erating function �s for normal incidence, one obtains from
Eq. �A8�,

Eyp = −
�2

c2 B��s1 − Qp�s2� . �A9�

Thus, the component Ep of the P wave proves to be ex-
pressed via the generating function for the S wave. Now one
has to compare the values Hs and Hp as well as Es and Ep,
revealing the link between Qs and Qp in the case ky =0. One
can use the general properties of hypergeometric functions
�16�,

F��,�,�,v� = 1 +
��

�
v + ¯ ,

dF

dv
=

��

�
F�� + 1,� + 1,� + 1,v� ,

v�1 − v�
dF��,�,�,v�

dv
= �� − ��F�� − 1,�,�,v�

− �� − � − �v�F��,�,�,v� .

�A10�

The values of parameters � and � for S and P waves for the
normal incidence are found from Eqs. �22� and �36�, respec-
tively,

�s = �s =
1 − N

2
, �p =

3 − N

2
, �p = − �1 + N

2
� .

�A11�

The product v�1−v� in Eq. �A1�, calculated for the planes
z= ±d /2, is equal to m2 /4. Parameters M1,2 �Eq. �29�� and
M3,4 �Eq. �37�� can be rewritten by means of Eqs.
�A10�–�A12� as

M1 = �1 − N�F3, M2 = − �1 − N�F4,

and

M3 = − �1 + N�F1, M4 = �1 + N�F2. �A12�

Now one can use Eq. �12� for transformation of the aforesaid
factors Qs �Eq. �30�� and Qp �Eq. �35��. Dividing both the
numerator and denominator of Eq. �30� by the quantity i�s,
and using the link between �s �Eq. �29�� and �p �Eq. �35��,
arising in a case �=0,

1 − N

�s
=

�p

1 + N
, �A13�

and using the relations �A12�, one obtains the link between
Qs and Qp in the case discussed,

Qp = − Qs. �A14�

The substitution of Eq. �A14� into the expression for Hp �Eq.
�A7�� yields the link between free parameters A and B,

A =
i�B

c
, �A15�

providing the fulfillment of condition Hxp=−Hys �Eq. �A1��.
The substitution of Eqs. �A14� and �A15� into the expression
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for Eyp �Eq. �A9�� and then comparing with Es �Eq. �A5��
shows that condition Exs=Eyp �Eq. �A1�� is fulfilled too.

Thus, the field components determined by means of gen-
erating functions �s and �p, governed by Eqs. �7�, �8�, and
�15�–�17�, and those ones, governed directly by Maxwell
equations �2� and �4�, coincide for the normal incidence.
Moreover, the substitution of Eq. �A12� into the formula for
Rs �Eq. �31�� and a comparison with Rp �Eq. �37�� yields
finally the physically clear result for normal incidence on the
gradient layer,

Rp = − Rs, 
Ts
2 = 
Tp
2. �A16�

The same substitution into the expression �43� for R2s yields
the similar results for normal incidence on a pair of layers,

R2p = − R2s, 
T2s
2 = 
T2p
2. �A17�

Thus, in case of normal incidence, the difference between the
solutions for S and P waves is vanishing; the regime of
propagation in the gradient layer in this case is the same for
both waves.
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