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The purpose of the present paper is to describe the effects of electron-electron collisions on the stopping
power of plasmas of any degeneracy. Plasma targets are considered fully ionized so electronic stopping is only
due to the free electrons. We focus our analysis on plasmas which electronic density is around solid values
ne�1023 cm−3 and which temperature is around T�10 eV; these plasmas are in the limit of weakly coupled
plasmas. This type of plasma has not been studied extensively though it is very important for inertial confine-
ment fusion. The electronic stopping is obtained from an exact quantum mechanical evaluation, which takes
into account the degeneracy of the target plasma, and later it is compared with common classical and degen-
erate approximations. Differences are around 30% in some cases which can produce bigger mistakes in further
energy deposition and projectile range studies. Then we consider electron-electron collisions in the exact
quantum mechanical electronic stopping calculation. Now the maximum stopping occurs at velocities smaller
than for the calculations without considering collisions for all kinds of plasmas analyzed. The energy loss
enhances for velocities smaller than the velocity at maximum while decreases for higher velocities. Latter
effects are magnified with increasing collision frequency. Differences with the same results for the case of not
taking into account collisions are around 20% in the analyzed cases.
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I. INTRODUCTION

The energy loss of charged particles in a free electron gas
is of considerable interest to actual slowing-down problems.
This is a topic of relevance to understand the beam-target
interaction in the contexts of particle driven fusion �1,2�. The
energy losses of ions moving in an electron gas can be stud-
ied through the stopping power of the medium. Dielectric
formalism has become one of the most used methods to de-
scribe this stopping power. The use of this formalism was
introduced by Fermi �3�. Subsequent developments made it
possible to extend the dielectric formalism to provide a more
comprehensive description of the stopping of ions in matter
�4,5�. For dilute plasmas, the dielectric formulation of the
energy-loss rate was first studied by Pines and Bohm �6�,
Akhiezer and Sitenko �7�, and other scientists. A large num-
ber of calculations of electronic stopping forces of ions and
electrons in plasmas have been carried out since then using
the classical linear response function in the random phase
approximation �RPA� �see �8� for a complete list�. This ap-
proximation consists of considering the effect of the particle
as a perturbation, so that the energy loss is proportional to
the square of the particle charge. Then the theory of slowing-
down is simplified to a treatment of the properties of the
medium only, and a linear description of these properties
may be applied. The linear properties of an infinite gas of
free electrons can be described by its dielectric function.

The RPA is usually valid for high-velocity projectiles and
in the weak coupling limit of an electron gas, i.e., ��1. The
coupling parameter, �=

EF

�kF�EF+kBT� �9�, measures the ratio be-

tween potential and kinetic energies of the electrons at any
degeneracy of the plasma, where EF and kF are Fermi energy
and Fermi wave number, respectively, and T is the plasma
temperature. In this work we will study plasmas with ��1
so RPA is not sufficient and the collisions between the elec-
trons of the target gas have to be taken into account. RPA

predicts an infinite lifetime for target plasma plasmons,
whereas it is well-known that in real materials these excita-
tions are damped. It seems to be a straightforward substitu-
tion, the replacement of ��k ,�� by ��k ,�+ i��, where � rep-
resents the electron-electron collision frequency, but it is
erroneous, as it does not conserve the local particle number.
Mermin �10� and later Das �11� derived an expression for the
dielectric function taking account of the finite lifetime of the
plasmons and also preserving the local particle density. Re-
cently, an extended dielectric function has been considered
which conserves also momentum and energy �12–14�, but it
is somewhat involved and it has only small differences with
the Mermin dielectric function. In previous investigations for
solids, we determined � by fitting −Im��−1�0,�+ i��� to ex-
perimental optical energy loss functions �15–17�, but this
frequency must be calculated a priori for plasmas. Many
works have been devoted to calculate this frequency
�18–20�, but here we treat it as a free parameter as in other
investigations �21–23�.

Theoretical studies of the dielectric function are usually
focused on two main domains of plasma physics. �a� Dense
plasmas at low temperatures, usually described with degen-
erate electron gas models and the use of quantum mechanical
methods, as plasmas of interest for inertial confinement fu-
sion �ICF�. �b� Dilute plasmas at high temperatures, usually
described with nondegenerate electron gas models and the
use of a classical description; it includes the case of plasmas
of interest for magnetic confinement fusion �MCF�. The tran-
sition from nondegenerate to degenerate plasmas in the range
of high densities �ne�1023–1027 e cm−3� is a subject of
much interest for current studies of ICF. The approach to
those extreme conditions is being tested nowadays using ion
beams generated by lasers �24–30�.

The Mermin dielectric function has been successfully ap-
plied to solids �dense degenerate electron gas� �31–33� and
for classical plasmas �nondegenerate electron gas� �34,35�. In
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this paper we extend our calculations to consider the effects
of electron-electron collisions in RPA for an electron gas of
any degeneracy. In the past, Skupsky �36�, Arista and Brandt
�37�, and Maynard and Deutsch �38� have considered the
calculation of the energy loss in a quantum mechanical
plasma of arbitrary degeneracy but without considering
damping due to these collisions. The final purpose of this
work is to include this theoretical model in our computer
code, TAMIM �transport of atomic and molecular ions in mat-
ter�, formerly MBC-ITFIP �39�. There is no doubt that a user-
friendly computer code to calculate the energy loss of ions in
plasmas of any degeneracy can be of great help to the scien-
tific community.

This paper is divided into two main sections. In Sec. II the
dielectric function of plasmas of any degeneracy which takes
into account plasma electron-electron collisions is obtained.
Then in Sec. III, we use the latter dielectric function to cal-
culate proton electronic stopping for a different kind of
plasma targets. The last section also evaluates the influence
of the collisions on the electronic stopping.

II. DIELECTRIC FUNCTION

In this section, we are going to develop the dielectric
function ��k ,�� in terms of the wave number k and of the
frequency � provided by a consistent quantum mechanical
analysis. The dielectric response of the electronic medium is
calculated in the random phase approximation �RPA�. We
use atomic units �a.u.�, e=�=me=1, to simplify formulas.
The RPA analysis yields to the expression �4�

��k,�� = 1 +
1

�2k2 � d3k�
f�k� + k��� − f�k���

� + i� − �Ek�+k�� − Ek���
, �1�

where Ek� =k2 /2. The temperature dependence is included
through the Fermi-Dirac function

f�k�� =
1

1 + exp�	�Ek − 
��
, �2�

where 	=1/kBT and 
 is the chemical potential of the
plasma with electron density ne and temperature T. In this
part of the analysis we assume the absence of collisions so
the damping constant approaches zero, �→0+.

The degeneracy of the plasma depends on its temperature
and is measured through the degeneracy parameter D which
is the inverse of the reduced temperature �,

D �
1

�
�

EF

kBT
. �3�

Then obviously, degenerate plasmas are those for which D
�1 and for nondegenerate plasmas we have D�1. The
chemical potential 
 depends on D through the expression

2

3
D3/2 = F1/2�	
� = �

0

 x1/2

1 + exp�x − 	
�
dx , �4�

where F1/2 is the Fermi integral of order 1 /2.
The dielectric function can be separated into its real and

imaginary parts

��k,�� = �r�k,�� + i�i�k,�� . �5�

�r�k ,�� can be directly obtained from Eq. �1� �40�,

�r�k,�� = 1 +
1

4z3�kF
�g�u + z� − g�u − z�� , �6�

where g�x� corresponds to

g�x� = �
0

 ydy

exp�Dy2 − 	
� + 1
ln� x + y

x − y
� , �7�

and u=� /kvF and z=k /2kF are the common dimensionless
variables �4�. vF=kF=	2EF is Fermi velocity in a.u.

In the limit of high degeneracy, D�1,

g�x� � x +
1

2
�1 − x2�ln�1 + x

1 − x
� , �8�

which substituted in Eq. �6� gives the Lindhard dielectric
function for a degenerate plasma �4�. In the opposite limit,
high temperatures, D�1,

g�x� �
2

3
D1/2��D1/2x� , �9�

where ��x� is the plasma dispersion function �41�

��x� =
1

	�
�

−

 exp�− p2�
x − p

dp , �10�

recovering the results for classical plasmas �35,42�.
The function �i�k ,�� also follows from Eq. �1� �40�,

�i�k,�� =
1

8z3kF
� ln
1 + exp�	
 − D�u − z�2�

1 + exp�	
 − D�u + z�2�� . �11�

Although this is an exact result for all plasma degeneracies,
it has very interesting limiting values for the plasmas of
cases �a� and �b�. For high degenerate plasmas D�1, 	

�D then

�i�k,�� �
1

8z3kF
� ln
1 + exp�D�1 − �u − z�2�

1 + exp�D�1 − �u + z�2�� , �12�

and for D→

�i�k,�� � �
1

8z3kF

�

EF
, �u ± z�2 � 1,

1

8z3kF
�1 − �u − z�2� , �u − z�2 � 1 � �u + z�2

0, 1 � �u − z�2
� ,

�13�

giving rise to the case of a degenerate plasma �4�. For non-
degenerate plasmas D�1, and �→0 Eq. �11� transforms
into

�i�k,�� =
�ne

k3 �2�	�3/2 exp�−
�2	

2k2 � , �14�

which is the classical result �35,42�.
We will see in Sec. III that for ion stopping consider-

ations, it is worth defining the energy loss function �ELF�,
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ELF � Im� − 1

��k,��� . �15�

Figure 1 shows the ELF’s dependence with � /�p when
k /kF=1, for a T=10 eV and ne=1023 cm−3 plasma. �p

=	4�ne is the plasma frequency. The exact calculation is
achieved from Eqs. �7� and �11� which takes into account the
degeneracy of the electron plasma, in this case the degen-
eracy parameter is D=0.785. The last curve is compared
with the ELFs obtained for the limiting cases of high degen-
eracy D�1 and high temperatures, D�1. For high degen-
eracies we use the quantum mechanical approach of Eqs. �8�
and �13� while for the high temperatures we employ the clas-
sical approach of Eqs. �9� and �14�. As we can see the clas-
sical approximation is closer to the exact case which contem-
plates the degeneracy of the plasma. This can be a rough
method to check if any approximation, quantum or classical,
is well-suited for a specific case.

As mentioned in the Introduction, the random phase ap-
proximation �RPA� predicts an infinite life for plasmons,
whereas it is well-known that in real materials these excita-
tions are damped. Thus it is easy to think of substituting � by
�+ i� in the RPA dielectric function, obtaining the relaxation
time approximation �RTA�, where � represents the electron-
electron collision frequency. This method is erroneous as it
does not conserve the local particle number or density. Mer-
min dielectric function �10� is derived using an expansion of
the local equilibrium distribution function to conserve the
local particle number

�M�k,�� = 1 +
�� + i�����k,� + i�� − 1�

� + i����k,� + i�� − 1�/���k,0� − 1�
,

�16�

where ��k ,�+ i�� is the RPA dielectric function from Eq. �5�
in the RTA case. It is easy to see that when �→0, the Mer-
min function reproduces the RPA one. We checked in �35�
that the Mermin method is the most appropriate for calculat-
ing the energy loss. In general, collision frequency � is con-

tributed from electron-electron and electron-ion collisions;
but in this paper we take into account only the electron-
electron collisions, in order to avoid considering a depen-
dence of the stopping with the charge and mass of the target
ions. Also � will be considered as a free parameter to see the
evolution of the dielectric function and the electronic stop-
ping with the collision frequency. Its values will be chosen
close to the ones according to the theory of Braginskii-
Spitzer �43,44�,

� = ��D� =
16	2D3/2 ln ne

1/2/D3/2

9�	�
�a.u.� , �17�

where ln ne
1/2 /D3/2 is the Coulomb logarithm. As we see, �

only depends on the degeneracy of the plasma.
Figure 2 shows the Mermin energy loss function depen-

dence with � /�p when k /kF=1, for a T=10 eV and ne
=1023 cm−3 plasma �D=0.785�. In this case, we choose a
value from Eq. �17�, �=4 fs−1. The solid line represents the
Mermin ELF taking into account the degeneracy of plasma,
the dashed line corresponds to the Mermin ELF using the
high degeneracy limit of the dielectric function, and the dot-
ted line is the Mermin ELF considering the classical approxi-
mation of the dielectric function. Compared with Fig. 1 the
three new ELFs turn out to be lower, wider, and their
maxima move backwards to small � when collision fre-
quency is considered through the Mermin response function.
This fact is more noticeable in the high degeneracy limit. Of
course, here again, classical approximation is closer to the
exact case but the differences have diminished due to the
collisions. At any rate we will consider the Mermin function
with the exact degeneracy and collision frequency as the
most appropriate dielectric response for calculating the ion
stopping in the next section.

III. ELECTRONIC STOPPING

In the dielectric formalism, the formula for calculating the
ion electronic stopping in any target is very well-known. The

FIG. 1. �Color online� RPA energy loss function dependence
with � /�p when k /kF=1, for a T=10 eV and ne=1023 cm−3 plasma
�D=0.785�. It is compared with degenerate and classical limits.

FIG. 2. �Color online� Mermin energy loss function dependence
with � /�p when k /kF=1, for a T=10 eV and ne=1023 cm−3 plasma
�D=0.785�. It is compared with degenerate and classical limits. The
collision frequency is �=4 fs−1.
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electronic stopping for a swift pointlike ion with charge Z
traveling with constant velocity v through a target plasma
defined by its energy loss function is

Se�v� =
2Z2

�v2�
0

 dk

k
�

0

kv

d�� Im
 − 1

��k,��� �a.u.� , �18�

where Im� −1
��k,�� � is any of the energy loss functions stated

before. For proton velocities v�vth, where vth is the thermal

velocity of the target electrons, the perturbation parameter
�=Z /v is smaller than one, so the electronic stopping can be
determined using the random phase approximation �RPA�.

Figure 3 represents the proton electronic stopping as a
function of the proton velocity in a T=10 eV and ne

=1023 cm−3 plasma, not considering damping and normal-
ized to S0= �ZkF�2. The coupling parameter value is obtained
from plasma temperature and electron density �=0.184�1
which indicates that we are in the limit of weak coupling
plasmas. The electron stopping is compared to the Bethe
formula at high velocities. Regarding plasma degeneracy,
D=0.785, the stopping graph is contrasted with the high de-
generacy limit, Eqs. �8� and �13�; and with the classical limit,
Eqs. �9� and �14�. Classical approximation is better than the
high degeneracy one, but differs too much from the exact
result. The maximum relative error is about 27% at v
=1.898vth which is an important discrepancy to bear in mind
in future energy deposition and proton range calculations.

Then we are going to see quite well the low and the high
degeneracy limits approach the exact quantum mechanical
result for plasmas of different degeneracy. Figure 4 displays
the same graphs as in Fig. 3 but for different plasma tem-
peratures and densities, i.e., for different values of the degen-
eracy parameter D. Case �a� corresponds to a T=100 eV and
ne=1023 cm−3 plasma with D=0.079. Case �b� corresponds
to a T=1 eV and ne=1023 cm−3 plasma with D=7.854. Case
�c� corresponds to T=10 eV and ne=1022 cm−3 plasma with
D=0.169; and finally case �d� corresponds to T=10 eV and
ne=1024 cm−3 plasma with D=3.645.

FIG. 3. �Color online� RPA proton electronic stopping as a func-
tion of proton velocity in a T=10 eV and ne=1023 cm−3 plasma
�D=0.785�. It is compared to the Bethe formula at high velocities
and to degenerate and classical limits. Stopping forces are normal-
ized to S0= �ZkF�2.

FIG. 4. �Color online� The same as in Fig. 3 but for different kinds of plasma targets: �a� T=100 eV and ne=1023 cm−3 �D=0.079�, �b�
T=1 eV and ne=1023 cm−3 �D=7.854�, �c� T=10 eV and ne=1022 cm−3 �D=0.169�, and �d� T=10 eV and ne=1024 cm−3 �D=3.645�.
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The high degeneracy limit is the same for all plasma cases
with the same electron density as this approximation does
not depend on temperature. As an example we can analyze
proton electronic stopping in three plasmas with the same
electron density ne=1023 cm−3, Figs. 3, 4�a�, and 4�b�. We
see that by diminishing temperature, i.e., by increasing the
degeneracy parameter, the exact stopping approaches to the
high energy limit, but differences are still significant. For a
plasma with the highest degeneracy parameter, D=7.854, the
relative error is around 10%. On the other hand, by increas-
ing temperature the degeneracy parameter decreases and the
exact stopping approaches to the classical limit. For a suffi-
cient low value of it, D=0.079, the classical approximation
still differs from the exact value, 10% at v=1.695vth. These
last facts could indicate, for example, that we will make a
significant error of the temperature increase of an ICF target
due to protons ignition if we calculate their energy loss from
any of the common latter approximations.

Next we will study how proton electronic stopping varies
with electron density of plasmas with the same temperature
T=10 eV. Figure 4�c� corresponds to an electron density of
ne=1022 cm−3, Fig. 3 corresponds to ne=1023 cm−3, and Fig.
4�d� to ne=1024 cm−3. As electron density increases, the de-
generacy parameter also increases. For the lowest value ana-
lyzed ne=1022 cm−3, corresponding to D=0.169, the exact
calculation looks like the classical result while the highest
ne=1024 cm−3, with D=3.645, looks like the high degen-
eracy limit. In the intermediate case, ne=1023 cm−3 and with
D=0.785, approximates better to the classical result. How-
ever, again, there are substantial differences with the exact
calculation in the three examples.

Once we have seen the errors we make when we use high
degeneracy or classical limits to calculate electronic stop-
ping, we are going to study the error due to the fact of in-
cluding or not including target electron-electron collisions in
this calculation. We introduce the collision frequency � as a
free parameter in Eq. �18� through Mermin dielectric func-
tion, Eq. �16�. Figure 5 shows proton stopping as a function
of its velocity in a plasma with electron density ne

=1023 cm−3 and temperature T=10 eV. These graphs are ob-
tained by using the quantum mechanical dielectric function
considering the exact degeneracy, D=0.785, since, as we
have seen above, the classical and high degeneracy approxi-
mations induce to a relative error. The solid line corresponds
to the frequency value �=0, that is to say, not considering
collisions as in Fig. 3. The dashed line is the result for �1
=4 fs−1 and the dotted line for �2=8 fs−1. These parameter
values are close to the value obtained from Eq. �17�. It is
observed that the electronic stopping curves narrow, their
maximum values increase, and they are situated at lower
velocities when � increases. When the curves narrow, the
result for velocities lower than the velocity at maximum en-
hances while for higher velocities drops significantly. Differ-
ences between not considering collisions and considering
them, in the case of �1=4 fs−1, are about 6% for lower ve-
locities than the velocity at the maximum.

In the next figure, we observe the effects of electron-
electron collisions on the electronic stopping for plasmas of
different degeneracy. We also study how the stopping
evolves with increasing collision frequency. Figure 6 dis-
plays the same calculations as in Fig. 5 but for different
plasma targets and for different values of the electron-
electron collision frequency �. Case 6�a� corresponds to a
T=100 eV and ne=1023 cm−3 plasma with �=0.031. Case
6�b� corresponds to a T=1 eV and ne=1023 cm−3 plasma
with �=0.372. Case 6�c� corresponds to T=10 eV and ne
=1022 cm−3 plasma with �=0.131; and finally case 6�d� cor-
responds to T=10 eV and ne=1024 cm−3 plasma with �
=0.153. For all four cases the maximum occurs at smaller or
similar velocities than for the calculations without including
collisions. New values considering collisions enhance for ve-
locities smaller than the velocity at maximum and smoothly
decreases for higher velocities. These effects for plasmas
with the same density, ne=1023 cm−3, case 6�a�, Fig. 5, and
case 6�b�, are more pronounced as the target plasma is
colder. These effects for plasmas with the same temperature,
T=10 eV, case 6�c�, Fig. 5, and case 6�d�, are less significant
increasing plasma density. It looks like that these effects are
more remarkable as target plasma is more degenerate and
coupled but not when we increase plasma density, because at
the same time we are increasing the main characteristic fre-
quency of the plasma, the plasma frequency, �p. When we
continue increasing the collision frequency latter effects are
magnified except for the most dense plasma case, 6�d�,
where these effects are not notable. It seems that when we
increase collision frequency the first effect is enhancing the
stopping maximum narrowing the graph at the same time. If
we continue increasing the collision frequency the stopping
maximum finally decreases expanding the graph again. For
the �1=4 fs−1 value, deviations are around 20% compared
with the not damping result in the case of the least dense
plasma analyzed, case 6�c�.

IV. CONCLUSIONS

In this work, the effects of target electron-electron colli-
sions in the electronic stopping of protons in plasmas of any
degeneracy has been examined. The electronic stopping is

FIG. 5. �Color online� Proton electronic stopping as a function
of its velocity in a T=10 eV and ne=1023 cm−3 plasma ��=0.184�
for different values of the electron-electron collision frequency.
Stopping forces are normalized to S0= �ZkF�2.
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due to the free electrons as plasma targets are considered
fully ionized. Their electronic density is around solid values
ne�1023 cm−3 and their temperature around T�10 eV,
which are very interesting for ICF.

To calculate the electronic stopping, we have used the
exact quantum mechanical analysis which takes into account
the degeneracy of the target plasma. It has been checked that
if we employ classical or degenerate approximations instead,
we obtain a considerable error. This error could be around
30% in some cases which can produce bigger mistakes in
later energy deposition and projectile range studies.

Moreover, we have considered electron-electron collisions
in the exact quantum mechanical calculation. For all plasma
cases the maximum appears at smaller velocities than for the
calculations without considering collisions. The stopping re-
mains equal or enhances for velocities smaller than or equal
to the velocity at maximum while decreases a great deal for

higher velocities. Increasing collision frequency parameter
magnifies later effects. Differences with the same results but
not taking into account these collisions are about 20%.

The main conclusion of this work is that proton electronic
stopping in these kinds of target plasmas cannot be calcu-
lated realistically without using the exact quantum mechani-
cal analysis that considers the degeneracy of the plasma, and
without contemplating electron-electron collisions.
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