
Multiple flow transitions in a box heated from the side in low-Prandtl-number fluids

D. Henry and H. BenHadid
Laboratoire de Mécanique des Fluides et d’Acoustique, CNRS/Université de Lyon, Ecole Centrale de Lyon/Université

Lyon 1/INSA de Lyon, ECL, 36 avenue Guy de Collongue, 69134 Ecully Cedex, France
�Received 24 July 2006; revised manuscript received 1 June 2007; published 27 July 2007�

The determination of the flow transitions in a cavity heated from the side in low-Prandtl-number fluids has
been a challenge for many years. Contrarily to the Rayleigh-Bénard situation, these transitions occur in already
very intense convective flows, and the problem has been up to now mainly treated in two-dimensional situa-
tions. Thanks to a performing numerical method, the thresholds corresponding to the first flow transition in a
three-dimensional �3D� parallelepipedic cavity have been determined for a wide range of aspect ratios and
Prandtl number values. We obtain a kind of map of the transitions involved. Such a map of transitions is quite
usual for Rayleigh-Bénard or Marangoni-Bénard situations, but completely new for 3D cavities heated from
the side. The most striking result is the very frequent change of stability branches when the aspect ratios or
Prandtl number are changed, which indicates different flow structures triggered at the thresholds, either steady
or oscillatory, and breaking some of the symmetries of the problem.
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I. INTRODUCTION

Sidewall convection is a heat and mass transfer problem
of significance in both fundamental fluid mechanics and en-
gineering applications such as crystal growth �1�. In the case
of the flow in a parallelepipedic cavity, the basic flow is a
simple unicellular circulation. When the horizontal tempera-
ture gradient is increased, however, the flow becomes more
complex, undergoes bifurcations, and becomes unsteady and
eventually turbulence sets in for large temperature differ-
ences.

Our interest is in the first onset of the time dependence in
such convective flows, with relevance to metallic or semi-
conductor materials processing. In practical flows, instabili-
ties in the melt phase during crystal growth can be frozen
into the solid product and degrade the performance of semi-
conductor devices �2�. The melts are good thermal conduc-
tors, so that the Prandtl number Pr �the ratio of the viscous to
the thermal diffusivity� is small. This will support our choice
of small values of Pr ranging from 0 to 0.03. The other
important parameters of these situations are the aspect ratios
of the cavity �relative dimensions scaled by the dimensional
height� and the Grashof number Gr proportional to the ap-
plied temperature difference.

The transition to unsteady convection in low-Prandtl-
number fluids inside rectangular cavities has been experi-
mentally studied since the first work of Hurle et al. �3� in
1974. These studies concern large- �4,5� or moderate-
�3,6–12� aspect-ratio cavities containing mercury �Pr
�0.026� or gallium �Pr�0.019�. Typical temperature differ-
ences are 2.24 K for a 3.2 cm�1.6 cm�1 cm cavity �8�
and 12 K for a 5 cm�1.3 cm�1 cm cavity �12�; some non-
Boussinesq effects due to thermal conductivity and dynamic
viscosity variations along the length of the cavity are re-
ported in the second case, but they only affect the details of
the transition �12�. These studies generally give oscillatory
thresholds and temperature time series, and report the influ-
ence of either the aspect ratios, the Prandtl number, or an
externally applied magnetic field. The results obtained are

often difficult to analyze because of a lack of flow visualiza-
tions due to the opacity of the fluids involved, so that the
need for theoretical and numerical investigations is essential.

Theoretical or numerical predictions of the unsteady tran-
sition in such cavities have also been reported, first for the
one-dimensional parallel flow in an infinitely extended layer
�13–15�, then for the flow in two-dimensional cavities. The
difficulties raised in solving such a problem have led to the
organization of a GAMM workshop �16� where a numerical
benchmark problem was proposed. These predictions, al-
though interesting, are in fact of limited relevance for the
realistic confined cavities of interest here. Finally, the three-
dimensional numerical studies are few, because the flows and
the transitions are complex, which necessitates fine meshes
and high-performance numerical methods. Such studies are
focused on specific aspect ratios �17,18� or do not detail the
different transitions encountered when changing the aspect
ratios or the Prandtl number �19�.

Our study concerns convection in a three-dimensional
parallelepipedic cavity and is focused on the determination
of the thresholds corresponding to the first flow transition for
a wide range of aspect ratios and Prandtl number values. We
are able to discriminate the different transitions which occur.
They appear as different branches of stability thresholds cor-
responding to different flow structures triggered at the
thresholds.

II. MATHEMATICAL MODEL AND NUMERICAL
TECHNIQUES

A. Mathematical model

The mathematical model consists of a rectangular paral-
lelepiped cavity filled with low-Pr fluids and heated from the
side. The cavity has aspect ratios Ax=L /h and Ay = l /h,
where L is the length of the cavity �along x�, h is its height
�along z�, and l is its width �along y�, as shown schematically
in Fig. 1. The vertical end walls are isothermal and held at

different temperatures T̄h at the right, hot end wall and T̄c at
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the left, cold end wall, whereas the sidewalls are adiabatic.
The fluid is assumed to be Newtonian with constant physical
properties �kinematic viscosity �, thermal diffusivity �, den-
sity ��, except that, according to the Boussinesq approxima-
tion, the fluid density is considered as temperature dependent

in the buoyancy term with a linear law �=�m�1−��T̄− T̄m��,
where � is the thermal expansion coefficient and T̄m a refer-

ence temperature taken as the mean temperature �T̄h+ T̄c� /2.
The convective motions are then modeled by the Navier-
Stokes equations coupled to an energy equation. Using h,

h2 /�, � /h, ��2 /h2, and �= �T̄h− T̄c� /Ax as scales for length,
time, velocity, pressure, and temperature, respectively, these
equations take the following form:

� · u = 0, �1�

�u

�t
+ �u · ��u = − �p + �2u + GrTez, �2�

�T

�t
+ �u · ��T =

1

Pr
�2T , �3�

with boundary conditions given by �T /�z=0 on z= ±1/2 and
�T /�y=0 on y= ±Ay /2, T=−Ax /2 on x=−Ax /2 and T
=Ax /2 on x=Ax /2, and u=0 on all boundaries. The dimen-
sionless variables are the velocity vector u= �u ,v ,w�, the

pressure p, and the temperature T= �T̄− T̄m� /�, ez is the unit
vector in the vertical direction, and the nondimensional pa-
rameters are the Grashof number Gr=�g�h3 /�2 and the
Prandtl number Pr=� /�.

Under the approximation of the model, the steady convec-
tive flows obtained at moderate Gr in such cavity �18�
present different symmetries: a reflection symmetry Sl with
respect to the longitudinal Vl plane �left-right symmetry� and
a �-rotational symmetry Sr about the transverse y axis. These
symmetries are defined, respectively, as

Sl: �x,y,z,t� → �x,− y,z,t�, �u,v,w,T� → �u,− v,w,T� ,

�4�

Sr: �x,y,z,t� → �− x,y,− z,t� ,

�u,v,w,T� → �− u,v,− w,− T� . �5�

The combination of these two symmetries gives a symmetry
Sc with respect to the center point of the cavity �Sc=Sl ·Sr�.

When increasing Gr, bifurcations to new flow states �steady
or oscillatory� will occur, at which some of these symmetries
will usually be broken.

B. Numerical techniques

The governing equations of the model were solved in the
three-dimensional domain using a spectral element method,
as described in �20�. The spatial discretization is obtained
through Gauss-Lobatto-Legendre points distributions; the
time discretization is carried out using a semi-implicit split-
ting scheme where, as proposed by Karniadakis et al. �21�,
the nonlinear terms are first integrated explicitly, the pressure
is then solved through a pressure equation enforcing the in-
compressibility constraint �with a consistent pressure bound-
ary condition derived from the equations of motion�, and the
linear terms are finally integrated implicitly. This time inte-
gration scheme is used for transient computations with the
third-order accurate formulation described in �21�. But in its
first-order formulation, it is also used for steady state solving
�22� and calculation of bifurcation points �23,24� through a
Newton method. These methods which are essential for our
study are succinctly described in the following.

The first-order time scheme can be written in the abbre-
viated form

X�n+1� − X�n�

�t
= N�X�n�,Gr� + LX�n+1�. �6�

Here, X represents all of the spatially discretized fields
(u�u ,v ,w� ,T), and N and L represent the spatially dis-
cretized nonlinear and linear operators. We can also consider
a slightly modified scheme which is expressed as

X�n� − X�n�

�t
= N�X�n�,Gr� + LX�n+1� �7�

or, after some algebra, can be rewritten as

X�n+1� − X�n� = − L−1�N�X�n�,Gr� + LX�n�� . �8�

Now we consider the steady-state problem

0 = N�X,Gr� + LX . �9�

To use Newton’s method on Eq. �9�, at each step we must
solve

�NX�X,Gr� + L�	X = − �N�X,Gr� + LX� ,

X ← X + 	X , �10�

where NX�X ,Gr� is the Jacobian of N with respect to X
evaluated at X and Gr. Instead of solving �10�, we solve

− L−1�NX�X,Gr� + L�	X = − �− L−1��N�X,Gr� + LX� .

�11�

The operator −L−1 serves as a preconditioner �i.e., approxi-
mate inverse� for N+L, greatly accelerating iterative inver-
sion.

If we solve the linear system �11� by an iterative conju-
gate gradient method, we need only provide the right-hand
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FIG. 1. Geometry of the differentially heated cavity.

D. HENRY AND H. BENHADID PHYSICAL REVIEW E 76, 016314 �2007�

016314-2



side and the action of the matrix-vector product constituting
the left-hand side. Referring to Eq. �8�, we see that the right-
hand side of Eq. �11� can be obtained by carrying out the
adapted time step and the matrix-vector product by carrying
out a linearized version of the same time step. We emphasize
that the Jacobian matrix is never constructed or stored. The
GMRES algorithm from the NSPCG software library �25� is
used as iterative solver.

The direct calculation of bifurcation points is more com-
plex but follows the same ideas. We give the case of the
steady bifurcation point as an example. At such a point, X is
a solution to Eq. �9� and the Jacobian is singular, with a null
vector h whose lth component will be normalized to 1:

N�X,Gr� + LX = 0, �12�

�NX�X,Gr� + L�h = 0, �13�

hl − 1 = 0. �14�

One Newton step for solving Eqs. �12�–�14� is

�NX�X,Gr� + L 0 NGr�X,Gr�

NX,X�X,Gr�h NX�X,Gr� + L NX,Gr�X,Gr�h

0 el
T 0

�� 	X

	h

	Gr
�

= − � N�X,Gr� + LX

�NX�X,Gr� + L�h

0
� ,

X ← X + 	X ,

h ← h + 	h ,

Gr ← Gr + 	Gr. �15�

In this system, NGr is the Jacobian of N with respect to Gr,
NX,X is the double Jacobian of N with respect to X, NX,Gr is
the Jacobian of N with respect to both X and Gr, and el

T is
the transpose of the lth unit vector. Preconditionned as Eq.
�11�, this system can still be solved by conjugate gradient
iterations. As before, the different terms of the right-hand
side and of the matrix-vector product are obtained by minor
modifications of the first-order time integration scheme.
�See, for example, �24� for more details.�

Finally, in order to initiate the calculation of bifurcation
points, we have to calculate leading eigenvalues—those with
largest real part and thus responsible for initiating
instability—and their corresponding eigenvectors. To do so,
we use Arnoldi’s method from the ARPACK library. As de-
scribed in �22�, by time stepping the linearized equations of
the problem �linearized version of Eq. �6�� with a small time
step, we are able to calculate the exponential of the leading
eigenvalues through the Arnoldi method with good accuracy.
In this way, with a time step equal to 10−5, we have com-
puted the ten first real or complex leading eigenvalues and
their corresponding eigenvectors.

III. RESULTS

Our results concern various cavities ranging from Ax=2 to
Ax=5 and from Ay =1 to Ay =6. For all these cavities, the
same refined mesh comprising 47�49�27 points �in the x,
y, and z directions, respectively� was chosen. It gives a very
good precision for the threshold calculations in any case �see
the precision tests given in Table I for Ax=4, Ay =6�.

We have focused our study on the precise determination
of the instability thresholds with characterization of the types
of instabilities involved when changing both aspect ratios
and the Prandtl number. More precisely, for Pr=0.01 we
have first changed the longitudinal aspect ratio Ax from 2 to
5 for a cavity with a large transverse extension �Ay =6�. For
the same value of Pr and Ax=4, we have widely changed the
transverse confinement with Ay varying from 6 to 1. Finally,
the effect of the Prandtl number �10−7
Pr
0.03� has been
studied for the cavity Ax=4, Ay =2 already considered by
Henry and Buffat �18�. The step used for changing both as-
pect ratios is 0.1, whereas it is 0.001 for Pr. A preliminary
calculation of the ten leading eigenvalues and eigenvectors
for the same aspect ratios and Prandtl numbers has guided
our threshold calculations and allowed us to obtain clear and
sound results.

A. Instability thresholds

The instability thresholds are first given as a function of
Ax in Fig. 2�a�. In this figure as in the other figures giving
thresholds, different symbols have been used to characterize
the symmetries of the eigenvector involved in the corre-
sponding transition. More precisely, squares have been used
to indicate eigenvectors with the Sl �left-right� symmetry
�Sl modes�, circles for eigenvectors with only the Sc �center�
symmetry �Sc modes�, triangles for eigenvectors with the
Sr ��-rotational� symmetry �Sr modes�, and crosses for
eigenvectors having kept all the symmetries �which we
will call the S symmetries and the corresponding modes
S modes�. Moreover the curves are plotted with a solid line
for the steady transitions and with a dashed line for the os-
cillatory transitions.

For a cavity with a large transverse extension �Ay =6�,
varying Ax from 2 to 5 leads to great changes in the threshold
values and in the type of instability involved at the transition
�Fig. 2�a��. The thresholds increase from 13 897 for Ax=5 to
39 931 for Ax=2, showing a clear stabilization of the convec-
tion by the confinement in the x direction. For Ax=5, despite
a slower variation of the thresholds, we have still not reached
a clear asymptotic value which would be characteristic of
long cavities. The more striking observation is the frequent
change of instability mode when Ax is modified. For Ax be-

TABLE I. Mesh refinement tests of numerical accuracy of the
critical Grashof number corresponding to the first steady transition
for Ax=4, Ay =6, and Pr=0.01.

Mesh 39�41�19 43�45�23 47�49�27 51�53�31

Grc 20435.537 20431.687 20431.652 20431.526
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tween 2 and 3.9, the instability is oscillatory, triggered by an
Sl mode �keeping the left-right symmetry� for Ax=2 and for
3.2
Ax
3.9 and by an Sc mode �keeping the central sym-
metry� for 2.1
Ax
3.1. Beyond Ax=4, the instability is sta-
tionary, with two modes which are very close to one another
and become successively the critical mode, as is shown more
clearly in Fig. 3 where both thresholds are plotted relatively
to their mean value. Considering the range of Ax where the
steady modes are the critical modes �Ax�4�, it is observed
that the Sc mode is dominant for Ax=4 and for 4.5
Ax

�4.6 and that the Sl mode is dominant for 4.1
Ax�4.5 and
for 4.6
Ax
5. Moreover, the maximum difference in Gr
between the two modes is found to be less than 140. Finally,
concerning the angular frequencies of the oscillatory modes
�Fig. 2�b��, they globally decrease as the thresholds decrease
with increasing Ax, going from values around 160 for Ax=2
to values close to 50 for Ax around 4.

Still for Pr=0.01, the longitudinal aspect ratio is now
fixed to Ax=4 and the transverse extension is decreased from
Ay =6 to Ay =1. The corresponding instability thresholds are
given as a function of Ay in Fig. 4�a�. We see that the thresh-
olds globally increase when the transverse extension is de-
creased �increase of the confinement�, with a rather slow and
quite regular increase for Ay between 6 and 2 and a stronger
increase below Ay =2 becoming very steep around Ay =1. The
types of transitions involved are here also numerous, which
gives nonsmooth threshold curves. A steady transition is
found to occur in a wide range of values of Ay, for 3�Ay

6, around Ay =2, and also for Ay =1. As previously when
Ax was changed, this steady transition corresponds either to
an Sc mode or to an Sl mode. As can be seen more precisely
in Fig. 5, the two modes are alternatively critical for 3�Ay

6 �Fig. 5�b��, whereas the Sl mode is critical for 1.7
Ay

2.3 �Fig. 5�a�� and the Sc mode for Ay =1.

Oscillatory transitions are also found for 2.4
Ay 
3 and
for 1.1
Ay 
1.6, but they correspond to two other modes
�Fig. 5�a��. In the first range of Ay, the oscillatory transition
occurs without loss of symmetry �S mode�, whereas in the
second range it corresponds to a mode only keeping the
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�-rotational symmetry about the y axis �Sr mode�. Concern-
ing the angular frequencies of these oscillatory modes �Fig.
4�b��, they follow the variation of the thresholds for each
mode. If we now only consider the critical values of angular
frequency, when Ay is decreased, they are found to slowly
increase from 188 to 202 for the S modes and to vary from
192 down to 185 and then more steeply up to 215 for the Sr
modes. Finally, considering the global variation of the
thresholds �Fig. 4�a��, we see that, despite a slower decrease
of the thresholds when Ay is increased, even for Ay =6 �quite
large transverse extension� a clear asymptotic value, which
would be characteristic of pure two-dimensional situations
independent of this transverse extension, has not been
reached.

Finally, the effect of the Prandtl number �10−7
Pr

0.03� is studied for the cavity with aspect ratios Ax=4 and
Ay =2. The corresponding instability thresholds are given as a
function of Pr in Fig. 6�a�. We see that for Ax=4 and Ay =2,
the first transition is a steady transition in a wide range of Pr
values between 0.0001 and 0.016. This steady transition cor-
responds to an Sl mode and the corresponding thresholds
increase when Pr is increased. For larger values of Pr
�0.017
Pr
0.03�, the first transition is oscillatory with an-
gular frequencies around 87 �Fig. 6�b�� and corresponds to
an Sc mode only keeping the symmetry with respect to the
center of the cavity, in agreement with the results found by
Henry and Buffat �18� for the same cavity and Pr=0.026,
results which were favorably compared with the experimen-
tal data given in �4,7,8�. In �18�, the authors also found a
similar oscillatory transition but with a much smaller fre-

quency, for the limit case Pr=0. We confirm this result, as we
find an oscillatory transition corresponding to an Sc mode
with an angular frequency close to 17 for very small values
of Pr. But our results also show that this oscillatory transition
obtained at Pr=0 is in fact critical only for very weak values
of Pr, more precisely for Pr�0.0001 �Fig. 7�. For such a
cavity, contrarily to what could be expected or at least hoped,
the transition observed at Pr=0 is then not at all characteris-
tic of the transitions which occur in the whole range of weak
values of Pr corresponding to liquid metals.
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B. Analysis of the flows

1. Basic flow states

The structure of the basic flows at the critical thresholds
is illustrated in Figs. 8 and 9. Different aspect ratios covering
our domain of study are chosen. Figure 8 displays the iso-
values of the vertical velocity in the horizontal Hl plane and
Fig. 9 the velocity vectors in the vertical Vl plane. The flow
is found to be quite invariant in the transverse direction y
�except close to the front and back boundaries� when the
aspect ratio Ay is increased �Fig. 8�. This invariance is how-
ever not perfect, even for the large boxes with Ay =6 �Figs.
8�a� and 8�b��, which may explain that an asymptotic value
for the thresholds is still not reached when Ay is increased up
to 6.

Another interesting feature depicted in Fig. 8 is that, ex-
cept for Ay =1, two maxima and two minima are found for
the vertical velocity in the Hl plane. This means that in these
cases, the flow structure is no longer the simple unicellular
circulation found at small Gr but rather corresponds to a
centered roll-like structure inside the long-scale circulation.
This roll-like structure is clearly visible in the Vl plane �Figs.
9�a�, 9�b�, 9�d�, and 9�e�� and is particularly marked for Ax
=3, Ay =6, and Ax=4, Ay =4 �Figs. 9�a� and 9�e��, two cases
which are not much transversally confined and for which the
thresholds are not too small. More details on the variation of
the flow structure with the aspect ratios Ax and Ay can be
obtained from the vertical velocity profiles along the longi-

tudinal x axis given in Fig. 10. For Ay =6 and 2
Ax
5 �Fig.
10�a��, the positive and negative peaks of w located near the
center of the cavity and corresponding to the roll-like struc-
ture are well pronounced. Two other peaks corresponding to
the long-scale circulation are present close to the right and
left end walls, except for Ax=2 �the shortest cavity� where
the long-scale circulation is less distinguishable from the roll
structure. For Ax=4 and 1
Ay 
6 �Fig. 10�b��, the peaks
corresponding to the long-scale circulation and those of the
roll-like structure are well distinct, except for Ay =1 where
the roll-like structure is not present. Moreover, the continu-
ous variation of the profiles with Ay still indicates that no
asymptotic behavior can be expected even up to Ay =6. Note
that in spite of these evolutions, the basic flows keep the S
symmetries which are characteristic of the steady flows at
small Gr.

Such an evolution of the steady flows was already men-
tioned by Henry and Buffat �18� for a cavity with aspect
ratios Ax=4 and Ay =2. The authors indicate that the appear-
ance of the roll-like structure is the sign of an imperfect
bifurcation which is connected to the steady transition to-
wards transverse rolls found by stability analysis of the par-
allel flow in the infinitely extended side-heated cavity �Laure
�14�, Kuo and Korpela �15��. These stability analyses indi-
cate that this steady transition occurs first up to Pr=0.033 for
adiabatic boundaries �which includes all the cases treated in
the present study� and that the thresholds are about Grc
=7943, 8077, and 8520 for Pr=0.001, 0.01, and 0.03, respec-
tively.

Our results show that this imperfect bifurcation towards a
roll-like structure affects most side-heated cavities in the
low-Prandtl-number domain, except the highly transversally
confined cavities �Ay around 1 or below� and perhaps the

(a) (b) (c) (d) (e)

FIG. 8. Basic steady flows at the critical thresholds: isovalues of
the vertical velocity in the Hl plane �black and white lines for posi-
tive and negative isovalues, respectively�. �a� Ax=3, Ay =6, �b� Ax

=5, Ay =6, �c� Ax=4, Ay =1, �d� Ax=4, Ay =2, and �e� Ax=4, Ay =4.
The view is from above and the direction x is horizontal in the
pictures �Pr=0.01�.

(a) (b)

(c) (d) (e)

FIG. 9. Basic steady flows at the critical thresholds: velocity
vectors in the Vl plane. �a� Ax=3, Ay =6, �b� Ax=5, Ay =6, �c� Ax

=4, Ay =1, �d� Ax=4, Ay =2, and �e� Ax=4, Ay =4 �Pr=0.01�.
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FIG. 10. Basic steady flows at the critical thresholds: vertical velocity profiles �scaled by �Gr� /h� along the longitudinal x axis. �a�
Profiles for Ay =6 and Ax=2, 2.5, 3, 3.5, 4, 4.5, and 5 �a solid curve is used for Ax=2, and the intensity of the peak close to the center
decreases as Ax is increased�. �b� Profiles for Ax=4 and Ay =1, 1.6, 2, 2.6, 3.2, 4, 4.6, 5.4, and 6 �a solid curve is used for Ay =1, and the
intensity of the peak close to the center increases as Ay is increased� �Pr=0.01�.
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very short cavities. The important consequence is that the
transitions we have found in this paper for the three-
dimensional cavities generally occur on a basic roll-like flow
structure and not on a simple, almost parallel unicellular cir-
culation, so that these transitions cannot be predicted by any
parallel flow approximation. Finally, we can mention that the
roll-like structure was not found by Hof et al. �12� for a
transversally confined cavity with aspect ratios Ax=5 and
Ay =1.3; this result is consistent with our observations.

2. Critical modes and symmetries

The symmetries have been shown to play an important
role in the observed transitions in the three-dimensional lat-
erally heated cavity. Indeed, these transitions break or not the
different symmetries of the system, so that four modes with
different symmetries �S symmetries, Sc symmetry, Sl symme-
try, Sr symmetry� could be theoretically obtained. The calcu-
lations we performed for different values of Ax, Ay, and Pr
allowed us to obtain these four types of modes for the oscil-
latory transitions and only the Sc and Sl modes for the steady
transitions. The structure of these modes at their critical
thresholds is shown in Fig. 11 in the case of oscillatory tran-
sitions by plots of the vertical velocity in the Hl plane. We
recall that a mode �eigenvector� is symmetric with respect to
some of the symmetries of the basic flow, but is also anti-
symmetric with respect to the other symmetries of the basic
flow which are broken �18�. Moreover, according to �4� and
�5�, the vertical velocities have the same sign at points re-
flected about the Vl plane in the case of the Sl symmetry and
opposite signs at points separated by a � rotation about the
transverse y axis in the case of the Sr symmetry. This ex-
plains why for the S mode �no symmetry breaking, Fig.
11�d�� we find the changes of signs just described. For the Sc
mode �breaking of both Sl and Sr symmetries, Fig. 11�a�� the
changes of signs are opposite, i.e., the Vl plane separates
opposite-sign zones and the y axis same-sign zones. For the
Sl mode �breaking of the Sr symmetry, Fig. 11�b�� same-sign
zones are found on both sides of the Vl plane and y axis,
which gives a fully symmetric pattern in this case. Finally,
for the Sr mode �breaking of the Sl symmetry, Fig. 11�c��
both the Vl plane and y axis delimit opposite-sign zones.

These four types of modes will trigger different oscilla-
tory flow structures beyond the thresholds. These structures
are illustrated in Figs. 12 and 13 by oscillatory evolutions
obtained close above the thresholds by time integration and
plotted at 2 times half a period apart. As expected, these
structures have the symmetries kept by the corresponding
critical mode, and the time evolution gives specific spatial
variations connected to these symmetries. Moreover, as was
already indicated by Henry and Buffat �18�, the broken sym-
metries are preserved between states separated by half a pe-
riod �Figs. 12�a�, 12�b�, and 13�a��. In the particular case
shown in Fig. 13�b�, there is no loss of symmetry and the
states separated by half a period have no relation between
them.

Finally, in the wide range of parameters where the first
transition is steady, the oscillatory transition will only appear
as a secondary instability on the steady solution branches
which bifurcate from the basic branch at the steady transition
point. As some of the original symmetries of the system are
lost at the first steady transition, these secondary oscillatory
instabilities will still be different from those already men-
tioned. As an example, we give the oscillatory flow obtained
at Gr=24 000 for Ax=4, Ay =6, and Pr=0.01 in Fig. 14. In
this case, the first steady transition only keeps the central
symmetry, and the oscillatory transition which occurs at
Grc=23336 on the steady bifurcated branches does not break
any symmetries and then keeps this central symmetry.

C. Energy budgets at the transitions

It is interesting to know the physical mechanisms in-
volved in these transitions. This information can be obtained

(a) (b) (c) (d)

FIG. 11. Real part of the critical oscillatory modes: �a� with the
Sc symmetry �Ax=3, Ay =6, Grc=24 456�, �b� with the Sl symmetry
�Ax=3.5, Ay =6, Grc=21 542�, �c� with the Sr symmetry �Ax=4,
Ay =1.6, Grc=36 974�, and �d� with all the S symmetries �Ax=4,
Ay =2.6, Grc=27 663�. Isovalues of the vertical velocity in the Hl

plane �black and white lines for positive and negative isovalues,
respectively�. The direction x is horizontal in the pictures �Pr
=0.01�.

(a) (b)

FIG. 12. Oscillatory flows obtained above the oscillatory critical
thresholds: �a� with the Sc symmetry �Gr=25 000, Ax=3 �Grc

=24 456��, �b� with the Sl symmetry �Gr=23 000, Ax=3.5 �Grc

=21 542��. Views of the longitudinal velocity �along x� in the Hl

plane at 2 times half a period apart. The direction x is horizontal in
the pictures �Ay =6, Pr=0.01�.

(a) (b)

FIG. 13. Oscillatory flows obtained above the oscillatory critical
thresholds: �a� with the Sr symmetry �Gr=38 000, Ay =1.6 �Grc

=36 974��, �b� with all the S symmetries �Gr=28 000, Ay =2.6
�Grc=27 663��. Views of the longitudinal velocity �along x� in the
Hl plane at 2 times half a period apart. The direction x is horizontal
in the pictures �Ax=4, Pr=0.01�.
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from the calculation at threshold of the fluctuating kinetic
energy budget associated with the perturbations �critical
eigenvector�. The basic steady solution at threshold
�u ,v ,w ,T��x ,y ,z� (or �ui ,T��xi�) and the critical eigenvector
�u� ,v� ,w� ,T���x ,y ,z� (or �ui� ,T���xi�) both enter the equa-
tion of energy budget giving the rate of change of the fluc-
tuating kinetic energy defined as k=Re�ui�ui�

* /2� �Re and the
superscript � denote the real part and the complex conjugate,
respectively�. After volume integration, an equation for the
rate of change of the total fluctuating kinetic energy �K
=	
kd
� can be written:

�K

�t
= Eshear + Evisc + Ebuoy, �16�

where

Eshear = Re
− �



uj�
�ui

�xj
ui�

*d
� ,

Evisc = Re
− �



�ui�

�xj

�ui�
*

�xj
d
� ,

Ebuoy = Re
Gr�



T�ui�
*	i3d
� .

Eshear represents the production of fluctuating kinetic energy
by shear of the basic flow, Evisc the viscous dissipation of
fluctuating kinetic energy, and Ebuoy the production of fluc-
tuating kinetic energy by buoyancy. At threshold, the critical
eigenvector is associated with an eigenvalue with zero real
part. This implies that �K /�t is equal to zero at marginal
stability. Finally, we normalize Eq. �16� by −Evisc= 
Evisc
,
which is always positive, to get an equation involving nor-
malized energy terms E�=E / 
Evisc
 at threshold:

Eshear� + Ebuoy� = 1. �17�

The total shear and buoyancy contributions are plotted in
Fig. 15, together with the nine components of the shear con-
tribution, for Ay =6 and different values of Ax �Fig. 15�a��
and for Ax=4 and different values of Ay �Fig. 15�b��. From
these figures, it is clear that the dominant production of fluc-
tuating kinetic energy is due to the shear of the basic flow.
This term is close to 1 in all cases and thus balances the
viscous dissipation term, whereas the buoyancy contribution,
slightly stabilizing, remains very weak. A detailed analysis of
the different shear contributions clearly indicates that the
production of fluctuating kinetic energy by shear of the basic
flow is essentially due to the term �w�� �u

�z
�u�*�. This term is

really dominant with values between 0.9 and 1.5. The term
�w�� �w

�z
�w�*� is also destabilizing, but its maximum value,

obtained for small Ax, is less than 0.2. The other shear terms
are either very weak or stabilizing. The main stabilizing
terms �u�� �u

�x
�u�*� and �u�� �w

�x
�w�*� have minimum values

which stay above −0.5 and −0.3, respectively.
The above results demonstrate that for all the studied

cases covering a wide range of aspect ratios and Prandtl
number values, the flow transition is triggered by the shear of
the basic flow and primarily by the variation of the basic
horizontal velocity with respect to the vertical direction. This

FIG. 14. Oscillatory flow obtained for Gr=24 000, Ax=4, Ay

=6, and Pr=0.01. This flow is triggered at a Hopf bifurcation point
�Grc=23 336� which appears on a secondary steady branch bifur-
cating from the steady basic branch at Grc=20 432. Views of the
longitudinal velocity �along x� in the Hl plane at 2 times half a
period apart. The direction x is horizontal in the pictures.
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FIG. 15. Fluctuating kinetic energy balance at the critical thresholds: �a� for Ay =6 and different values of Ax and �b� for Ax=4 and
different values of Ay �Pr=0.01�. The energy contributions have been normalized by the viscous dissipation. Solid lines represent the total
production by shear �thick lines� and the buoyancy contribution �thin lines�. The different shear contributions are given as dotted lines, except
the four largest, those connected to ��u /�x� and ��u /�z� given as dashed lines �thin and thick, respectively� and those connected to ��w /�x�
and ��w /�z� given as long-and-short-dashed lines �thin and thick, respectively�.
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remains valid despite the large variations of the thresholds
and the very frequent change of flow structures at the thresh-
olds. Note that the dominating destabilizing influence of
�w�� �u

�z
�u�*� was already mentioned in Henry and Buffat �18�

and Hof et al. �12� for side-heated cavities with aspect ratios
Ax=4, Ay =2 and Ax=5, Ay =1.3, respectively.

IV. CONCLUSION

Thanks to a performing three-dimensional continuation
method allowing an accurate simulation of flows and direct
calculation of bifurcation points, we have been able to obtain
a kind of map of the transitions for a laterally heated paral-
lelepipedic cavity in a wide range of characteristic param-
eters. The types of transitions very often change when aspect
ratios and Prandtl number are modified; this determines mul-
tiple branches of stability thresholds characterized by their
steady or oscillatory character and by the symmetries of the
critical mode involved.

The transitions generally occur on basic flows involving a
roll-like structure inside the long-scale circulation. This
structure is the result of an imperfect bifurcation connected

to the destabilization of the parallel flow solution in an infi-
nitely extended side-heated cavity.

Concerning the oscillatory transitions, the four types of
transitions corresponding to the different possible symme-
tries in the system have been obtained. In the case where a
steady transition occurs first, the oscillatory transition occurs
farther on the bifurcated steady branch and is still of another
type. Concerning the effect of the Prandtl number, the main
result is that the behavior obtained in the limit case Pr=0 is
not representative of what occurs in the whole range of weak
values of Pr corresponding to liquid metals. Our result is
particularly striking as the behavior obtained at Pr=0 is not
valid beyond Pr=0.0001.

Finally, it has been shown that the flow transitions arise in
all cases because of shear effects and primarily the vertical
shear of the longitudinal flow.
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