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We propose a mechanism for generating snakelike motion in a micrometer-scale, responsive, synthetic
material, which thereby undergoes net movement in a fluid �i.e., swimming�. By responsive material, we refer
to a material that can expand or contract in response to a chemical concentration change. The concentrations of
the chemical species are modeled by simple reaction-diffusion equations with suitably chosen source terms.
Using linear stability analysis, we isolate the key properties of the material and reaction rate parameters.
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I. INTRODUCTION

Recently, much attention has been paid to locomotion at
low Reynolds number �1�, or, in other words, “swimming” at
the micrometer scale. This is of importance not only for un-
derstanding how biological microorganisms move, but also
for designing synthetic materials that can undergo active or
self-propelled motion within a fluid. A number of studies
have enhanced our understanding of how micrometer-scale
objects can achieve movement through periodic distortions
in their shape. For instance, Najafi and Golestanian �2� de-
veloped a method �proposed earlier by Purcell �3�� in which
three spheres are coupled together in a line, and the distances
between them are varied in a periodic, nonreciprocal manner
to produce motion. Furthermore, Stone and Samuel �4� ex-
amined how the velocity of surface distortions can be related
to a microorganism’s speed, and Avron et al. �5� used con-
formal mapping techniques to determine optimal solutions
for a particular class of two-dimensional swimmers. �In this
context, “swimmer” refers to an object that can achieve
movement through a periodic change in its shape.�

In 2005, Dreyfus et al. �6� constructed the first man-made
microscopic swimmers. These consisted of a microscopic
filament, made up of linked superparamagnetic colloids, with
a red blood cell attached at one end. By actuating the device
with an external magnetic field, the researchers could pro-
duce distorting waves that propagated down the filament
length and thus drive the system to swim. At present, no
experimental swimmer has been made whose deformation
results from internally generated stresses. One of the diffi-
culties lies in the fact that making mechanical devices on the
micrometer scale is not easy due to the tiny sizes involved.
In this paper, we propose a swimming device that is me-
chanically very simple, at the expense of introducing some
chemical complexity. In particular, the swimming mecha-
nism couples reaction-diffusion equations to a responsive
material to induce the required swimming shape changes.

The model we use for the chemistry is generic �see, for
example, Ref. �7��. Oscillatory biochemical reactions form
the basis for numerous physiological processes �8,9�. There
has been remarkable progress achieved during the last two

decades in understanding the general mechanisms of oscilla-
tory chemical reactions. For instance, Esptein et al. �10� dis-
cuss various pathways to synthesis of chemical oscillations
that obey specific requirements. This paper proposes a swim-
ming mechanism that couples a special type of oscillatory
chemical wave with a responsive material to induce the re-
quired swimming shape changes.

In order to explain this more clearly, we point to the main
result, shown in Fig. 1. This depicts the motion of a long,
thin piece of a responsive material performing periodic de-
formations in its shape. The material itself is permeable to
the surrounding fluid, and a number of chemical species exist
within the system. Two processes act to alter the chemical
concentrations as a function of time within the material: re-
actions between chemicals and diffusion. Together, these
processes can give rise to a spatially nonuniform, dynami-
cally changing chemical concentration profile. This is illus-
trated in Fig. 1 by the shading within the material, which
represents the variation in one chemical component, denoted
by ca. The material locally expands or contracts in response
to variation in ca, and this produces deformations in its
shape. �An example of such a material is a chemoresponsive
hydrogel �11�.� When coupled to the surrounding fluid, these
deformations result in net motion along a specific direction,
i.e., from left to right in this example. The motion is similar
to that of an eel or snake moving in water, and, by analogy,
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FIG. 1. �Color online� Time evolution of the material shape over
half a periodic cycle. A wave propagates in time down the snake
body from bottom to top, and this propels the snake downward
�note that the last frame is displaced below the first�. The shading
within the snake indicates the concentration profile ca. Since the
material is responsive to this chemical, then bright areas denote
expanded material and dark areas contracted material. Note that the
chemical waves on either side of the snake have opposite phases.
We refer to this motion as the swimmer solution.
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we will refer to this piece of material as a snake. The chemi-
cal composition of the surrounding fluid provides the con-
stituents to sustain the chemical reactions within the mate-
rial. In this way, the potential chemical energy is transferred
into the kinetic energy necessary to make the snake move.

The paper is arranged in the following order. In Sec. II,
we describe the model that is used to describe the dynamical
evolution of the chemical concentrations within the respon-
sive material. The numerical simulation results obtained
from this model are outlined in Sec. III. By using linear
stability analysis, we determine the necessary properties for
the material and the chemical reactions to generate swim-
ming motion. Finally, in Sec. IV, we summarize our findings.

II. MODEL

In this paper, we do not explicitly model the movement of
the snake. It has been previously demonstrated that sinu-
soidal wave propagation down a filament leads to swimming
motion �13�. To generate this shape change in a responsive
material, it is necessary to induce a chemical distribution
similar to that depicted in Fig. 1. That is, the chemical con-
centration of ca varies periodically down the snake and is
high on one side of the snake and low on the other side,
causing the material to bend. The focus of this work is to
determine how such a time-varying chemical distribution can
be obtained.

The dynamics of the chemical concentrations are given by

dc�

dt
= D�

s d2c�

ds2 + D�
p d2c�

dp2 + S�, �1�

where we have introduced the coordinates s and p, which are
defined to be the distance along and across the snake, respec-
tively. In general, we assume that the diffusion rate along the
snake, D�

s , is not necessarily the same as that across it, D�
p .

Later, we show that this is a key feature for the formation of
the swimming snake solutions.

We assume that the system contains four chemical spe-
cies. The source terms in Eq. �1� are written as

Sa = f�− cb + Bca�R2 − �ca
2 + cb

2�� − Acc� , �2�

Sb = f�ca + Bcb�R2 − �ca
2 + cb

2�� − Acd� , �3�

Sc = ��ca − cc� , �4�

Sd = ��cb − cd� . �5�

These equations are constructed from a number of necessary
pieces. The first terms inside the curly brackets in Eqs. �2�
and �3� result in an oscillatory reaction between the ca and cb
chemical species. This corresponds to circular trajectories on
the phase portrait in the ca/cb plane. The second terms in the
curly brackets �containing the parameter B� ensure that all
trajectories converge onto a single circular curve, which is a
stable limit-cycle attractor of radius R. Figure 2 shows the
phase portrait arising from these two terms. The origin in
Fig. 2 is taken to be the natural concentration of chemical
species when no reactions are taking place; hence, negative

values of c� do not correspond to unphysical, negative con-
centrations.

The parameter f in Eqs. �2� and �3� introduces an asym-
metry in the system that dictates the direction in which the
snake moves. We take f to have a simple linear profile in the
s direction.

f = f̄ +
df

ds
s , �6�

where f̄ and df /ds are both constants. We chose

�df /ds�L� f̄ , where L is the length of the snake, such that
the value of f is only slightly higher at the head of the snake
than that at the tail �typically �2% in the simulations�. The
factor f can be interpreted in a number of ways. It can, for
example, be thought of as a chemical gradient in the sur-
rounding fluid that helps to catalyze the reactions, or as a
temperature differential between the head and tail of the
snake. In any case, this gradient is introduced or initiated
through some external conditions.

In the absence of diffusion, f is the angular frequency of
oscillations around the limit cycle �that is, the frequency of
the chemical oscillations in the system�. Since we define f to
have a small, positive gradient in the s direction, then the
“head” will tend to naturally �that is, without diffusion� os-
cillate at a slightly higher frequency than the “tail.” How-
ever, diffusion acts to couple all parts of the snake, such that

they oscillate at the same frequency f̄ �14�, and not f . The

discrepancy between f and f̄ results in different regions of
the snake having different phases �. This is represented by
the squares in Fig. 2, which give a snapshot in time of the
chemical composition of 11 points in the snake, ordered in
equally spaced intervals from head to tail. �These results
were obtained by numerically solving Eq. �1�, as described
later.� In this example, the chemical concentration ca is
around 0.8 at the head, drops to −1 in the middle, and goes
back up to 0.8 at the tail. In other words, it has a wave profile

FIG. 2. Phase portrait in the ca/cb plane for Eq. �1� �while ne-
glecting diffusion�, using the source terms in Eqs. �2�–�5�. The
black dots show two initial conditions, and the dashed lines show
how these trajectories converge onto a single, stable limit-cycle
attractor, denoted by the solid line. The squares show the relative
phases of 11 different points in the snake, ordered from head to tail,
for the long-wavelength solution. The stable limit cycle has a radius
of R.
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going down the snake body. In time, this wave propagates
from the head to the tail. �It has been previously pointed out
that the oscillator with the highest frequency entrains others
with which it interacts �12�.�

The above discussion has shown that the first two terms in
Eqs. �2� and �3� can produce long-wavelength chemical
waves propagating down the snake �when solving Eq. �1��.
This is, however, not what is required for swimming. The
pictures in Fig. 1 show that it is also necessary for the phase
of the wave on one edge to be opposite to that on the other.
It is this behavior that causes the snake to bend and, conse-
quently, undergo net movement. For this reason, the last
terms in Eqs. �2� and �3�, and the chemical species cc and cd,
are introduced. As will become apparent below, these terms
suppress the solutions that are independent of p, thus allow-
ing the appearance of the required swimming behavior.

III. RESULTS

The dynamic equations �1� are solved using a finite dif-
ference method on a square grid of lattice size Ls=100 and
Lp=5. In the following analysis, we neglect the effects of
distortions in the snake shape on the diffusion constants. We
use a no-flux boundary condition on the snake edges
�dc� /ds=dc� /dp=0�. This scenario can be interpreted as the
snake being coated in a semipermeable membrane. This
membrane would allow small molecular weight molecules,
such as water, and a chemical energy supply to enter and
leave, but block the flux of the active chemical species c�,
which we assume to be larger than the pore size.

For simplicity, we assume that the diffusive constants
obey Da

s =Db
s =Da,b

s , Da
p=Db

p=Da,b
p , Dc

s =Dd
s =Dc,d

s , and Dc
p

=Dd
p=Dc,d

p , such that the model is symmetric between the a
and b species, and between the c and d species. Initially, the
chemical concentrations are set to c�=1 plus a small random
perturbation. The system is dynamically evolved for 105 time
steps of size �t=0.005 �by numerically integrating Eq. �1��,
allowing the long-time behavior to be measured. By varying
the parameters in the model, we find that the system exhibits
five different types of behavior, two of which result in swim-
ming motion. The details of each of these are described be-
low.

The first, shown in Fig. 3�a�, represents the fixed point
solution ca=cb=cc=cd=0. This corresponds to a constant
chemical concentration in the system, and thus the snake
does not move. In all of the diagrams in Fig. 3, the shading
represents the concentration of ca across the system. Since
the stable limit cycle is a loop of radius R in the phase
portrait Fig. 2, then ca varies between ca=R and −R. Thus,
we choose white areas in Fig. 3 to represent ca=R, and black
areas to represent ca=−R.

The second solution is a long-wavelength wave that
propagates in the negative s direction, and is constant in the
p direction. Figure 3�b� shows the time evolution of this
wave over one cycle. By observing these patterns, we can
use a combination of deduction and trial and error to obtain
�for small amplitudes� the functional form of this solution as

(a)

(b)

(c)

(d)

(e)

FIG. 3. Density of chemical species ca as a function of s, the
distance down the snake, and p, the distance across the snake.
Bright areas represent ca=R, and dark areas ca=−R. Note that the p
axis has been elongated to enhance clarity. �a� The fixed point so-
lution. Here, the chemical concentration is constant, ca=0, and was
generated using the parameters A=3, B=2, �=6, Dc,d

s =1, and
Dc,d

p =5. �b� The time evolution of the long-wavelength solution as
one wave propagates down the snake body �A=3, B=2, �=2,
Dc,d

s =1, and Dc,d
p =5�. �c� The time evolution of the swimmer solu-

tion as one wave propagates down the snake body �A=3, B=2, �
=4, Dc,d

s =1, and Dc,d
p =25�. �d� A snapshot of the partial swimmer

solution �A=3, B=3, �=2, Dc,d
s =1 and Dc,d

p =25�. �e� A snapshot of
the short-wavelength solution �A=3, B=3, �=2, Dc,d

s =25, and
Dc,d

p =25�.
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ca = � cos� f̄ t + �� ,

cb = � sin� f̄ t + �� ,

cc = �� cos� f̄ t + �� + �� sin� f̄ t + �� ,

cd = �� sin� f̄ t + �� − �� cos� f̄ t + �� , �7�

where the phase angle is given by

� =
1

2Da,b
s

df

ds
�	L

2

2

s −
s3

3
� . �8�

Expressions for �� and �� are obtained by substituting these
equations into Eq. �1�, and using the source terms in Eqs.
�2�–�5�. For instance, the separate cosine and sine parts of the
time evolution equation for the component cc become

d��

dt
+ f̄�� = �− 	d�

ds

2

�� +
d2�

ds2 ���Dc,d
s + ��� − ��� , �9�

− f̄�� = − �d2�

ds2 �� + 	d�

ds

2

���Dc,d
s − ���. �10�

The first term on the right-hand side of Eq. �10� can be

neglected because of the condition �df /ds�L� f̄ stated ear-
lier �see Eq. �6��. To proceed further, it is necessary to as-
sume that the second term is also small, which leads to the
constraint

	L2

8

df

ds

2 Dc,d

s

Da,b
s 2 � � . �11�

This states, to a first approximation, that it is possible to
neglect diffusion in the s direction. This is intuitively clear,
because diffusion over long distances down the body of the
filament is very slow compared to the chemical relaxation
time scale �−1. With these approximations, Eq. �10� becomes

��=�� f̄ /�. We assume the case when �� f̄ , and thus �� is a
small quantity, and terms containing this are subsequently
neglected.

In linear stability analysis, we are interested in states that
are near the critical point, so their chemical amplitudes are
either growing or shrinking very slowly. Thus, the first term
on the left-hand side of Eq. �9� can be ignored. The first term
on the right-hand side is also small, because of the condition
Eq. �11�, leaving ��=�. In this regime the chemical concen-
tration of cc is strongly coupled to follow ca.

An analysis of the cosine and sine parts of the time evo-
lution equation for ca gives

d�

dt
= − 	d�

ds

2

�Da,b
s + 	 f̄ +

df

ds
s
�BR2 − A�� , �12�

− f̄� = −
d2�

ds2 �Da,b
s − 	 f̄ +

df

ds
s
� , �13�

where the �� terms have been ignored. Substitution of Eq. �8�
into Eq. �13� shows that this equality is true. Assuming that

the first term on the right-hand side of Eq. �12� is small, then

	L2

8

df

ds

2 1

Da,b
s � f̄ , �14�

which is a stricter condition than �11�, now stating that dif-
fusion times must be much slower than the oscillation period
of the chemicals. This leaves the time evolution of the per-
turbation amplitude given by

d�

dt
= �� , �15�

where the growth rate is

� = f̄�BR2 − A� . �16�

Note that the phase of the wave � �see Eq. �8�� does not
change linearly down the snake. Rather, d� /ds follows a
parabolic path, which is zero at the ends �s= ±L /2� and at a
maximum in the middle �s=0�. This can be seen clearly in
Fig. 2, by virtue of the fact that the squares are more spaced
out in the middle of the snake than at the head or the tail.

The third solution, depicted in Fig. 3�c�, is that required
for swimming motion. When this concentration profile is
coupled to a responsive material it induces the conforma-
tional change illustrated in Fig. 1, i.e., it generates snakelike
distortions. Again, through deduction and trial and error, we
find that the chemical behavior can be described by the fol-
lowing equations:

ca = � cos� f̄ t + ��sin�kpp� ,

cb = � sin� f̄ t + ��sin�kpp� ,

cc = ��� cos� f̄ t + �� + �� sin� f̄ t + ���sin�kpp� ,

cd = ��� sin� f̄ t + �� − �� cos� f̄ t + ���sin�kpp� , �17�

where kp=� /W and W is the width of the snake. This is the
same as solution number 2 �Eq. �7��, with the exception of
containing a final multiplicative sine term. This changes ��
and ��, to now give

�� =
�

1 + kp
2Dc,d

p /�
,

�� =
�� f̄

� + Dc,d
p kp

2 , �18�

with a growth rate �see Eq. �15��

� = − Da,b
p kp

2 + f̄	BR2 −
A

1 + Dc,d
p kp

2/�

 . �19�

The fourth solution is termed the partial swimmer solu-
tion, as it does result in swimming motion, but it is less
efficient. A snapshot is show in Fig. 3�d�. It is characterized
by its asymmetric nature; regions of alternating high and low
concentration of ca link diagonally across the body. This can
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be thought of as an intermediate between solutions 2 and 3.
It was not possible to obtain a small-amplitude solution for
this behavior.

Finally, the fifth solution consists of waves of short wave-
length, moving parallel to the snake axis s in both directions.
This is illustrated in Fig. 3�e�. In the regions s=0–50 and
s=80–9, the waves travel right, and in the range s=50–80,
they travel left. As these waves collide, we see defects. Also,
the waves are distorted at the end points to accommodate the
boundary conditions. Mathematically, they are described by

ca = � cos� f̄ t ± kss� ,

cb = � sin� f̄ t ± kss� ,

cc = �� cos� f̄ t ± kss� + �� sin� f̄ t ± kss� ,

cd = �� sin� f̄ t ± kss� − �� cos� f̄ t ± kss� . �20�

By substitution, we find this is a solution of Eq. �1�, with ks
replacing kp, and Dc,d

s replacing Dc,d
p in Eq. �18�. The growth

rate in this case is given by

� = − Da,b
s ks

2 + f̄	BR2 −
A

1 + Dc,d
s ks

2/�

 . �21�

Note that the value of ks is not specified. In other words, Eq.
�20� is a solution for arbitrary wave number. In the linear
stability analysis below, we numerically calculate the value
of ks that maximizes �.

To understand under what circumstances each of these
five solutions is selected by the system, we construct the
phase diagrams shown in Figs. 4–6 �which are obtained nu-
merically, as described below�. For instance, Fig. 4 shows
the effect of varying the parameters A and B, while keeping
all others fixed ��=2, Dc,d

s =1, and Dc,d
p =25�. In all the dia-

grams we set Da,b
s =Da,b

p =1 and R=1. Each of these diagrams
is divided into a grid of 80	60 points. At each of these
points, the dynamic equations �Eq. �1� using the source term
in Eqs. �2�–�5�� are integrated until the long-time behavior is
achieved �in exactly the same way as for Fig. 3�. Then the
time average of the trajectory radius, defined to be r̄
= ��ca

2+cb
2��t, is measured in two places: one in the middle

of the snake, at position �L /2 ,W /2�, and the other on the
side of the snake, at position �L /2 ,0�. Note that r̄ is a mea-
sure of the magnitude of chemical oscillations in the system.
The results are shown in Figs. 4�a� and 4�b�, respectively.
Black shading represents a time average of zero, and white
represents a time average of R.

Using these two diagrams, it is possible to identify differ-
ent regimes of behavior. For example, the fixed point solu-
tion clearly has a time average of zero, so it is black in both
diagrams. For the swimmer solution in Eq. �17�, r̄ is high on
the lateral edge of the snake. This is indicated by the fact that
the point s=50, p=0 in Fig. 3�c� exhibits large oscillations in
concentration of ca in time �correspondingly cb also oscil-
lates�. However, this figure also shows that in the center of
the snake, at the point s=50, p=2.5, ca is zero �as is cb�, and
hence r̄=0. These two properties are reflected in the phase

diagrams by the point corresponding to the particular choice
of system parameters �A=3 and B=2� being light in Fig.
4�a�, and dark in Fig. 4�b�.

Figure 4�c� shows the result of linear stability analysis.
This is found by calculating which of the growth rates �Eqs.
�16�, �19�, and �21�, or �=0 for the fixed point� is largest for
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FIG. 4. Phase diagrams in the A-B plane, using the fixed param-
eters �=2, Da,b

p =Da,b
s =Dc,d

s =1, and Dc,d
p =25. The shading indicates

the time average of the trajectory radius, ��ca
2+cb

2��t, �a� at the
middle of the snake at point �L /2 ,W /2�, and �b� on the side of the
snake at point �L /2 ,0�. �c� The phase diagram based on simple
linear stability analysis.
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a given parameter set. This method gives exact boundaries
for the onset of an instability �e.g., between the fixed point
and swimmer or long-wavelength regions� and approximated
boundaries between two growing solutions �e.g., between the
swimmer and long-wavelength areas�. By comparing Fig.

4�c� with Figs. 4�a� and 4�b�, we find that the linear stability
analysis can qualitatively describe the regions in the diagram
in which we observe fixed point, long-wavelength, and
swimmer motion. Note that we could not obtain an analytical
expression for the behavior of the partial swimmer; hence
this does not appear in Fig. 4�c�.

The role of cc and cd, can be interpreted in a simplified
way. In the absence of diffusion, Eq. �1�, with source term
Eq. �4�, tends to change cc such that it approaches cc=ca, on
a time scale given by �−1. However, the effect of diffusion is
to smooth out any variation in concentration. Specifically,
this averaging effect is over a length scale given by Dc,d

s,p /�.
In other words, what cc actually represents is the average of
ca over an approximate ellipsoidal region, with principle ra-
dii in the s and p directions given by Dc,d

s /� and Dc,d
p /�,

respectively. For the swimmer solution to exist, Dc,d
p has to

be significantly larger than Dc,d
s �this will become more ap-

parent later when we analyze Fig. 6�. For example, Dc,d
p

=25 and Dc,d
s =1 in Fig. 4. This means that the averaging is

predominantly in the p direction. If Dc,d
p /�
W, as in Fig.

4, then cc can be thought of simply as the average of ca
across the snake in the p direction, cc��ca�p. If we consider
the swimmer solution �Eq. �17��, then we find cc,d��ca,b�p

�0 �although not exactly zero�, so the A terms in Eqs. �2�
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FIG. 5. Phase diagrams in the Dc,d
p -� plane, using the fixed

parameters A=3, B=2, and Da,b
p =Da,b

s =Dc,d
s =1. The shading indi-

cates the time average of the trajectory radius, ��ca
2+cb

2��t, �a� at
the middle of the snake at point �L /2 ,W /2�, and �b� on the side of
the snake at point �L /2 ,0�. �c� The phase diagram based on simple
linear stability analysis.
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FIG. 6. Phase diagram in the Dc,d
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p =Da,b
s =1. �a� The shading

indicates the time average of the trajectory radius, ��ca
2+cb

2��t, on
the side of the snake at point �L /2 ,0�. �b� The phase diagram based
on simple linear stability analysis.
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and �3� have little effect. However, for the long-wavelength
solutions �Eq. �7��, we find cc�ca and cd�cb; hence, the A
term now acts against the B term to reduce the radius of the
trajectories, and, if sufficiently large, removes the stable limit
cycle altogether. Put simply, the A term destabilizes the long-
wavelength solution with respect to the swimmer solution,
allowing the swimmer solution to be the one actually ob-
served.

Figure 5 shows the corresponding diagrams for varying �
and Dc,d

p , while keeping A=3, B=2, and Dc,d
s =1 fixed. No

swimmer solution exists for Dc,d
p �8 �this can be most clearly

seen in Fig. 5�a�, in which the swimmer region does not
extend below Dc,d

p =8�. This reflects a more general feature of
these equations, which is the requirement that Dc,d

p �Da,b
p for

swimmer solutions to exist �recall that Da,b
p =1�.

If �� f̄ , then the values of cc and cd change so slowly that
they no longer track the values of ca and cb, and tend to get
averaged out to zero in time. In this limit, the long-
wavelength solutions are no longer unstable, and so they can
be observed on the lower part of the diagram in Fig. 5�a�. On
the other hand, if � is very large, then the condition
Dc,d

p /�
W, necessary for the swimmer solutions to exist, is
violated. This condition can be rearranged into the form
Dc,d

p 
W2�, which is represented in Fig. 5�a� by the line
dividing the swimmer and fixed point regions.

Figure 5�c� shows the result of linear stability analysis.
�As before, this is found by calculating which of the growth
rates, Eqs. �16�, �19�, and �21� or �=0 for the fixed point, is
largest.� We note that, although it does capture the qualitative
shape of the phase diagram correctly, there is a significant
discrepancy when compared to the numerical results in Figs.
5�a� and 5�b�. This difference reflects the nonlinear nature of
the actual solutions observed, and the violation of assump-
tions used in deriving the analytic results. �In particular, the

condition �� f̄ is violated as � becomes small.�
Figure 6�a� shows how the system’s behavior depends on

the diffusion of the cc,d components along the snake axis,

Dc,d
s , and perpendicular to the snake axis, Dc,d

p . There are two
important points to be made. First, the diffusion in the per-
pendicular direction must be at least eight times that of the
two oscillatory components �in this example Da,b

p =1�. Below
this value, the system approaches the fixed point in the bot-
tom left-hand corner of the diagram. Second, the diffusion in
the perpendicular direction for the c and d components has to
be always larger than that in the parallel direction. That is,
the line Dc,d

s =Dc,d
p on the phase diagram always passes

through the nonswimming, short-wavelength solution. For
completeness, we include the linear stability diagram in Fig.
6�b�, which shows good agreement with Fig. 6�a�.

IV. SUMMARY

To summarize, we have demonstrated that it is possible to
obtain swimmers, such as that illustrated in Fig. 1, by cou-
pling reaction-diffusion equations to a chemically responsive
material. We suggest a simple model, and obtain a number of
constraints on the system parameters. First, two of the
chemical components must form an oscillatory reaction �see
Fig. 2�. The oscillation period must be fast in order for rapid
swimming. Second, the frequency of oscillations must be
slightly higher at the head of the snake than that at the tail.
This determines the direction of swimming. Third, there
must exist one, or more, other components that suppress the
chemical oscillations �this role was played by cc and cd in
Eqs. �2� and �3��. These components must have a much
higher diffusion rate �as illustrated in Fig. 5�, and preferen-
tially diffuse in the direction perpendicular to the snake axis
�shown in Fig. 6�.
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