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Based on our previous experimental study, we present a one-dimensional phenomenological model of a
thermal blanket floating on the upper surface of a thermally convecting fluid. The model captures the most
important interactions between the floating solid and the fluid underneath. By the thermal blanketing effect, the
presence of the solid plate modifies the flow structure below; in turn, the flow exerts a viscous drag that causes
the floating boundary to move. An oscillatory state and a trapped state are found in this model, which is in
excellent agreement with experimental observations. The model also offers details on the transition between
the states, and gives useful insights on this coupled system without the need for full-scale simulations.
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I. INTRODUCTION

A large number of works have been devoted to the inves-
tigation of turbulent Rayleigh-Bénard convection �1–4�, a
phenomenon that occurs when a fluid is heated from below
and cooled from above and is enclosed within rigid bound-
aries. One of the central issues of these studies is to deter-
mine the overall efficiency of heat transport through the
fluid, which depends on the temperature difference between
the top and the bottom, the thermal properties of the chosen
fluid, the shape of the container �5–7�, and also the mechani-
cal and thermal properties of the boundaries �8–11�.

In turbulent thermal convection, coherent structures
emerge despite the turbulent features of the flows. One of
these structures is a large-scale circulation �LSC� that is
driven by and, in turn, entrains the thermal plumes that de-
tach from the two horizontal boundary layers �12�. This flow
structure has attracted wide attention since it is able to
change the statistical properties of the thermal fluctuations of
the driven system �13�. Recent elaborate experiments studied
the rotation and cessation dynamical states of these large-
scale flows in a rigid cylindrical enclosure �14,15�.

As a ubiquitous phenomenon in nature, thermal convec-
tion often interacts with movable structures. It is of funda-
mental interest to study the dynamic behavior of a convec-
tive fluid that is coupled to a mobile boundary. In particular,
we study a convective fluid with a freely-moving boundary
on top of the fluid surface. We seek to find out if the flow
structure and its temporal behavior remain qualitatively the
same as that with rigid boundaries and if the interaction be-
tween the mobile boundary and the convective fluid leads to
new dynamical states.

One similar problem that concerns a freely moving
boundary coupled with turbulent thermal convection is the
geophysical phenomenon of mantle convection interacting
with overlying continents �16�. A mechanism involving a
large insulating plate drifting upon cellular convective flows
has been suggested as a laboratory model in studying conti-
nental drift �17�. This phenomenon was also modeled experi-
mentally as a freely moving heat source that floats on top of
a fluid �18,19�. Recent numerical simulations of such inter-

actions have revealed rich dynamics including interesting pe-
riodic states of continental motion and intermittent continen-
tal collisions and breakups �20–23�.

Our previous experiments studied the interaction between
a single floating boundary and a turbulent convecting fluid
�24–26�. Despite the turbulent nature of the flows, we found
that the motion of the floating boundary is relatively simple
and can be well classified into two states: an oscillatory state
with small floating boundaries, and a trapped state with
larger floating boundaries.

We attempt to model the essential physical mechanism
that leads to the emergence of these two states. Indeed, direct
full-scale simulation of turbulent thermal convection with a
freely moving boundary is quite challenging. For one, the
dynamics of high Rayleigh number convection depends
heavily on the fine details at the thin boundary layers, re-
gions with most thermal activity. For another, the problem
involves thermal and mechanical coupling of the turbulent
fluid with a time-dependant boundary condition �20–23�.

Instead, based on our experimental observations �Sec. II�,
we develop a phenomenological model to describe the one-
dimensional motion of the freely moving top boundary. The
model starts with a description of the convection system
�Sec. III�, where we include the crucial elements of the
boundary-fluid interaction. The viscous drag applied by the
underlying large-scale circulations drives the floating bound-
ary. In turn, the floating boundary acts like a thermal blanket
for the fluid, and rearranges the flow pattern in the convec-
tive bulk due to heat flux redistribution.

We then present in Sec. IV the results of the model, which
includes the motion of the floating boundary and the corre-
sponding evolution of the flow pattern. A dynamical transi-
tion is identified: the free-boundary motion changes from an
oscillatory state to a trapped state as the boundary size ex-
ceeds a critical size. This result is compared with our experi-
mental data. Our simple model predicts both the oscillation
periods in oscillatory state and the convergent rates in the
trapped state. They depend sensitively on the floating bound-
ary size.

The stability of the model is further analyzed in Sec. V.
The equation of motion is analyzed as a linear delayed-
differential equation �DDE�, which is then solved in closed
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form. There, stable solutions correspond to the trapped state
and unstable solutions correspond to the oscillatory state.
The critical condition for the dynamical transition is obtained
analytically.

In the appendixes, we discuss several constants used in
the model that we determine from our previous experimental
results. How the critical boundary size depends on these con-
stants is shown in phase diagrams.

II. THE EXPERIMENTAL OBSERVATIONS

In our recent experiments �25,26�, a rigid, freely-moving
boundary floats on the surface of a Bénard convection cell.
There is thus a heterogeneous thermal boundary condition at
the top surface of the fluid. The convection cell is a rectan-
gular, lidless tank with sizes of 36.5 cm �length: D�, 7.8 cm
�width: W�, and 11.3 cm �height: H�. The width �w� of the
floating boundary covers most �88%� of the width �W� of the
convection cell �Fig. 1�. Its length d is changed incrementally
from 7.2 to 29.2 cm. Thus the coverage ratio d /D varies be-
tween 0.2 and 0.8. The motion of the floating boundary is
confined within one dimension, along the long axis of the
convection cell, and is determined by the viscous force from
the convective flows underneath. The fluid inside is heated
uniformly at the bottom and cooled at the surface. In the
experiment, the applied vertical temperature difference �T
across the convection cell is kept constant; the Rayleigh
number for the system is thus

Ra =
�g�TH3

��
= 1.1 � 109.

Here g is the gravitational acceleration and �, �, and � the
thermal expansion coefficient, the kinematic viscosity, and
the thermal diffusivity of the fluid, respectively.

In the presence of a floating boundary on the free fluid
surface, we observe in the experiment that two large-scale
circulations coexist and occupy the entire volume of the cell.
As shown in Fig. 1, these two large-scale circulations
counter-rotate, sharing in between a common upwelling flow.
The mechanism that creates this upwelling structure is simi-
lar to the thermal blanketing effect in geophysics
�23,25,27,28�. As the top-boundary partially covers the open
fluid surface, convective flows underneath are prohibited
from reaching the fluid surface, thus the local vertical heat
flux is greatly reduced. Away from the floating boundary, the
convecting fluid experiences effective cooling. As a result,
heat builds up within the fluid that lies below the solid
boundary. An upwelling under the floating boundary is thus
induced. Due to the net force it experiences from the flows,
the floating boundary changes position. The aforementioned
heat blocking effect continues to take place and the floating
boundary apparently “attracts” the upwelling. Indeed, the up-
welling migrates toward the bottom of the floating boundary
at a longer time-scale than the transit time of the floating
boundary. During this longer time-scale, the flow structure
reorganizes itself to adapt the changed top boundary condi-
tion.

Figures 1�a�–1�e� show five snapshots that demonstrate
this thermal blanketing effect. An upwelling was initially in-

duced by the floating boundary near the left side of the con-
vection cell and the boundary is then driven by the clockwise
large-scale circulation to the right end of the cell �Fig. 1�a��.
For a short period of time, the system is stable: the clockwise
circulation pushes the floating boundary against the right
side of the cell wall. However, this coupled system is not
stable over a long time. Thermal blanketing causes the up-
welling to migrate toward the bottom of the floating bound-
ary, as shown in Figs. 1�a�–1�d�. We observe that the up-
welling drifts toward the center of the floating boundary at a
gradually decaying rate. During this process, the counter-
clockwise eddy on the left side expands at the expense of the
clockwise eddy on the right. Just before the upwelling has
converged to a position below the center of the floating
boundary, the stronger counterclockwise eddy drags the
boundary away to the left side of the tank �Fig. 1�e��.

Also due to the thermal blanketing effect, we observe that
the speeds of the two large-scale circulations change in re-

FIG. 1. �Color online� Flow visualization from the experiment
showing the migration of the upwelling due to thermal blanketing.
The experiment runs at Ra=1.1�109, and the floating boundary
covers 40% of the upper fluid surface �d /D=0.4�. The turbulent
flows are visualized using thermochromic liquid-crystal beads that
are evenly suspended in the fluid bulk. Each photo uses an exposure
time of 1.3 s. The colors of the beads change gradually from blue to
yellow as the local temperature decreases. Small gray triangles in-
dicate the horizontal positions of the upwelling. �a� At t=0 s, the
floating boundary is at the right side and the upwelling is located
near the cell center. Photos �b�, �c�, and �d� show the upwelling
drifting rightward, slowing down as it approaches the center of the
floating boundary. �e� As the net force acting on the floating bound-
ary switches direction, from right to left, the boundary starts to
move to the left.
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sponse to the movement of the floating boundary �Fig. 2�.
Increased fluid surface exposure leads to a greater number of
downwelling cold plumes and to a faster large-scale circula-
tion. As shown in Fig. 2�b�, the circulation speed within ei-
ther one of the eddies increases monotonically as the corre-
sponding linear extension of the open fluid surface increases.

The floating boundary constantly modifies the underlying
flow pattern and changes the circulation strength. In turn, the
viscous force generated by the convective flows determines
the motion of the floating boundary. These two feedback
mechanisms lead to two interesting dynamical states. Figure
3 shows typical experimental results, which was discovered
previously �26�. For a small floating boundary, d /D=0.2, the
oscillation period is long and less regular. The oscillation
becomes more regular with shorter periods as the size of the
floating boundary increases. As the size of the floating
boundary is further increased �d�0.6D�, a different dynami-
cal state appears: the floating boundary is localized near the
center of the convection cell, with small-amplitude, random
excursions to both sides. We refer to this state as the trapped
state. The transition happens around a critical size with
d /D=0.6, where large-amplitude oscillations and localized
motions appear alternatively.

III. THE ONE-DIMENSIONAL PHENOMENOLOGICAL
MODEL

Based on our experimental observation, we now develop
a one-dimensional, phenomenological model that describes
the motion of a solid boundary floating above two counter-
rotating convective circulations �Fig. 2�a��. We present here
the rich behaviors of the modeled system and a detailed ac-
count of the related analyses, which were previously lacking
in our earlier paper �26� when the model was first introduced.

In this model, we consider the following two factors: �1�
due to thermal blanketing, the floating boundary attracts the
upwelling from anywhere in the convection cell to a position
right below the center of the boundary and �2� the net vis-
cous force exerted by the convective flow determines the
instantaneous motion of the floating boundary. A viscous
boundary layer exists next to the rigid floating boundary. The
net viscous force applied at the base of the boundary is

T�t� = w�
x1

x2

�xz�x,t�dx �1�

Here x1 and x2 are the coordinates of the left and right edges
of the floating boundary. For an incompressible fluid, the
stress tensor near a horizontal rigid boundary is �xz�x , t�

=�
�ux�x,t�

�z , where ux�x , t� is the horizontal component of the
flow speed near the floating boundary, and � is the dynamic
viscosity.

The geometric center of the floating boundary is denoted
by X�t�. As a rigid body, the velocity everywhere on this

boundary is Ẋ�t�. The fluid velocity gradient next to the
boundary is approximated

�ux�x,t�
�z

�
vflow�x,t� − Ẋ�t�

	
, �2�

where 	 is the thickness of the viscous boundary layer next
to the floating boundary and vflow�x , t� is the horizontal com-
ponent of the flow speed just outside the viscous boundary
layer.

Now we consider the dynamical equation of motion. The
viscous shear force T applied at the floating boundary bottom
in Eq. �1� is the driving force for the boundary motion. Most

FIG. 2. �a� An illustration for the fluid-loop model used in our
analysis �see text for detail�. �b� The mean flow speed of the circu-
lation on the right vr increases monotonically as the linear span of
the open fluid surface �Sr, on the right� widens. The dashed line
indicates the slope and the offset used in our model �v0

=0.55 cm/s and 
=0.075 s−1, see Eq. �6��. �c� The flow response
has a short delay, �=10 s. At t=0, we relocate the floating boundary
so that Sr changes from 5 to 10 cm. After the delay, vr adapts to a
new value. The data shown here is an average over 30 identical
measurements. Figure adapted from Zhong and Zhang �26�.

FIG. 3. Experimental data for the motion of floating boundary at
different sizes. The position of the floating boundary is normalized
by the cell length D. From left to right, the coverage ratio is in-
creased incrementally from 0.2 to 0.8. The solid lines show the
center of mass of the boundary and the gray areas indicate the
spatial extent of the floating boundary. Figure adapted from Zhong
and Zhang �26�.
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of the floating boundary is immersed within the fluid �Fig.
1�; all its four lateral edges experience a viscous resistance,
which opposes its motion. Assuming that the motion of the
boundary is overdamped in the surrounding fluid at Reynolds
number �50, the resistance and the viscous driving force are
balanced with each other. Thus we neglect the inertia of the
floating boundary. The equation of motion is thus

T�t� = ��Ẋ�t� . �3�

Here � is a geometry factor depending on the dimensions of
the floating boundary �29�.

Combined with Eqs. �1� and �2� the equation of motion
�3� becomes

Ẋ�t� =
1

�	/w + d
�

x1

x2

vflow�x,t�dx . �4�

Equation �4� shows that the motion of the rigid floating
boundary of a given shape is uniquely determined by the
flow velocity field near its base.

Experiments and numerical simulations show that a float-
ing boundary on a thermally convecting fluid attracts the
underlying upwelling; the migrating speed of the upwelling
depends on both the size of the boundary and the distance
from the upwelling to the boundary center �25,30,31�. In-
deed, a rigorous description of the dynamical evolution of
the flow pattern requires an exhaustive study on thermal con-
vection and its interplay with a floating boundary. Instead,
however, in our current model, we make various simple yet
physical assumptions.

We assign the horizontal position of the upwelling as Y�t�.
Function G�x ,Y� denotes the contribution from a unit seg-
ment length on the floating boundary at position x, to the
migration speed of the upwelling. As shown in Fig. 1, the
migration speed of the upwelling slows down as it ap-
proaches the boundary center. We therefore assume that the
function G�x ,Y� is proportional to the distance between a
unit segment and the upwelling �x−Y�. We thus have the
function form G�x ,Y�=
�x−Y�. Factor 
 is the proportion-
ality constant. Since every part of the floating boundary con-
tributes to the migrating speed of the upwelling, given that
x2+x1=2X and x2−x1=d, the migrating speed of the up-
welling becomes

Ẏ�t� = �
x1

x2

G�x,Y�dx = d
�X�t� − Y�t�� . �5�

In turbulent thermal convection, cold and hot thermal plumes
randomly detach from the top and bottom thermal boundary
layers, causing the local flow speed to fluctuate �32,33�.
Since the size and mass of the floating boundary is much
larger than that of the thermal plumes, local velocity fluctua-
tions are averaged out and the motion of the boundary be-
comes smooth �25�. We thus can overlook the stochastic spa-
tial structure of the flow velocity vflow�x , t� and instead use
vi�t� �i= l ,r� as the mean flow speed for the circulations,
where i indicates left or right. The flow speed vi�t� is spa-
tially constant over the circumference of each convective cir-
culation, as illustrated in Fig. 2�a�. This approximation is

analogous to the “fluid loop model,” which was used as a
scheme to model fluid circulation with heterogeneous bound-
ary conditions, and has been applied to studies of turbulent
thermal convection �34–37�.

The mean flow speed vi�t� is time dependent since it re-
sponds to the changing position of the top boundary. As
shown in Fig. 2�b� and 2�c�, the position of the floating
boundary influences the flow strength of the two convective
circulations. Different exposed fluid areas give rise to differ-
ent circulation speeds for the large circulating eddies. The
response of the flow speed takes place with a short delay, �.
Given these considerations, the flow velocity of each convec-
tive circulation vi�t� is taken to depend linearly on the linear
span of the above open surfaces at a previous moment

vi�t� = v0 + 
Si�t − �� . �6�

The offset v0 and slope 
 are determined from experimental
data �see Appendix A�.

Due to the contributions from the two counter rotating
circulations, the right-handside of Eq. �4� is divided into two
parts: an integral for the counterclockwise circulation �on the
left� and one for the clockwise circulation �on the right�

�
x1

x2

vflow�x,t�dx = �
x1

x2

vi�t�dx = − vl�t�Al�t� + vr�t�Ar�t� .

Ai �i= l ,r� is the partial area of the floating boundary that lies
on top of each circulation �38�. Combining Eqs. �4�–�6� we
obtain

Ẋ�t� =
1

d + �	/w
��2v0 + 
�D − d���X�t� − Y�t�� − 
dX�t − ��	 ,

�7�
Ẏ�t� = 
d�X�t� − Y�t�� .

Additionally there are spatial constrains that both the floating
boundary and the upwelling must lie between the two rigid
side walls, namely,

−
D − d

2
� X�t� �

D − d

2
, −

D

2
� Y�t� �

D

2
. �8�

The boundary condition �8� is treated as follows. As the
floating boundary arrives at the side boundary �
X
= �D
−d� /2�, it is set to be at rest at the sidewall, Ẋ�t�=0. Mean-
while the underlying flow structure evolves and the horizon-
tal position of the upwelling Y�t� approaches towards the
center of the boundary. The floating boundary remains im-
mobile until the net force from the flows switches direction
and starts to drive the floating boundary away from the side-
wall. Equation �7� with boundary conditions �8� form a
closed system. In the model, the only parameter we vary is
the size of the floating boundary d. Appendix A is a discus-
sion on how we determine the constants ��	 /w ,v0 ,
 ,
 ,��.

IV. NUMERICAL RESULTS FROM THE MODEL

The results of the simple model are shown in this section.
We leave the discussion on the relevant methods to Appendix
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A. Figure 4 shows the solutions of the dynamical equation
�7� for different sizes of the floating boundary.

The coupled system experiences a transition from an os-
cillatory state to a trapped state as the floating boundary size
exceeds a critical size. The first two panels in Fig. 4 illustrate
the periodic oscillations of both the floating boundary and
the upwelling, with d /D=0.3 and 0.5. Within each period,
the floating boundary transits twice across the center of the
cell. Between each transition there is a long waiting period as
the floating boundary stays at one of the two sides. The float-
ing boundary velocity goes to zero as soon as it collides with
the sides. The upwelling follows behind the moving bound-
ary. Its drifting velocity decreases as it approaches the float-
ing boundary.

Figure 5 shows in close-up the relative positions of the
floating boundary and the upwelling in an oscillatory state
when d /D=0.3. Figure 5�a� shows an instant when the
boundary stays on the left while the upwelling drifts towards
the center of the boundary. During this time, the clockwise

circulation on the right expands and gains speed as the coun-
terclockwise circulation on the left shrinks and loses
strength. Before the upwelling arrives under the center the
floating boundary, the latter starts to move to the right since
the net viscous drag switches from leftward to rightward.
The upwelling changes direction and follows the boundary to
the right �Fig. 5�c��. This process continues and an oscilla-
tory state emerges.

The dynamics of the coupled system with a sufficiently
large floating boundary are different. The last two panels in
Fig. 4 �d /D=0.65 and 0.75� show that both the floating
boundary and the upwelling converge from their initial posi-
tion to the center of the convection cell. They undergo a few
decaying oscillations. Figure 6 illustrates this convergent
process. Figure 6�a� shows an instant when the floating
boundary changes direction at the right extreme of its trajec-
tory during its motion. Following behind the boundary, the
upwelling is still on the left side of the floating boundary.
The partial area of the floating boundary lies on top of the
right circulation Ar is greater than that on the left Al. The
floating boundary would seem to continue its rightward mo-
tion. However, at this moment the open fluid surface on the
left Sl is greater than Sr, which strengthens the left circula-
tion. Such response takes a delay time much shorter than the
transition time of the boundary �Fig. 2�c��. As a result, we
find in the model that the difference in strength of the two
circulations subsumes the difference in the areas of the float-
ing boundary that are subject to viscous forces in different
directions. Experiencing a stronger driving force leftward,
the floating boundary moves back to the left and overshoots
the center by a smaller amplitude �Figs. 6�b� and 6�c��. After
a few decaying oscillations, both the floating boundary and
the upwelling stabilize at the center of the convection cell,
and a trapped state emerges �Fig. 6�d��.

We find that the transition from an oscillatory state to a
trapped state occurs at a critical value of the boundary size,
dc=0.576D. The third panel in Fig. 4 shows the dynamics of
the floating boundary and upwelling at this critical condition.
The floating boundary sustains a marginal oscillation, with a
constant amplitude that is given by initial conditions. There
is no waiting period at the end walls. The smooth trajectories

FIG. 4. Numerical simulation of the motion of the floating
boundary. From left to right, the coverage ratios are 0.3 0.5, 0.576,
0.65, and 0.75. Time series of the floating boundary �solid lines�
and the upwelling �dashed lines� are shown. Gray areas indicate the
spatial extent of the boundary. Figure adapted from Zhong and
Zhang �26�.

FIG. 5. �a�–�d� Four instances show the positions of the floating
boundary and the upwelling over about half a period in an oscilla-
tory state when d /D=0.3. The corresponding moments are indi-
cated by four horizontal dotted lines in the time series �e�. Solid line
shows the position of the floating boundary and the dashed line
shows the position of the upwelling flow.

FIG. 6. In a trapped state, d /D=0.65, four snapshots �a�–�d�
show the decaying oscillations of the floating boundary and the
upwelling. The corresponding moments are indicated by four hori-
zontal dotted lines in the time series �e�. Solid line shows the posi-
tion of the floating boundary and the dashed line shows position of
the upwelling flow.
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of both the floating boundary and the upwelling are quite
close to harmonic oscillations.

Comparing with the experimental results �Fig. 3�, our
model seems to capture the most essential physical mecha-
nisms and reproduces the oscillatory state and the trapped
state. Moreover, the transition between the two states takes
place at a similar value of d /D�0.6. The intermittency ob-
served in the experiment near the critical point �Fig. 3,
d /D=0.6� and the small-amplitude stochastic motion in the
trapped state �Fig. 3, d /D=0.7 and 0.8� are not recovered in
the model.

In the oscillatory state, we compare the frequencies �de-
fined to be f =1/T, T is the period of the oscillation� at dif-
ferent coverage ratios. As shown in Fig. 7, the normalized
frequency follows the scaling f / f0�d1.31, where f0 is the
frequency at the critical point. A previous full-scale Navier-
Stokes numerical simulation of a floating boundary above a
thermal convection cell also found a power-law dependence
of frequency on the boundary size �31�.

In the trapped state, from a given initial position �on one
side of the convection cell� the floating boundary oscillates
with decreasing amplitude. We find that the decay rate of the
amplitude also depends on the boundary size. The dimen-
sionless decay time � is defined as the time it takes for the
original amplitude to reduce by a factor of e. Time � is
infinite at the critical point, and decreases rapidly with in-
creased coverage ratio, as shown in Fig. 8. The decay time
follows the scaling law �� �d−dc�−0.768.

V. STABILITY ANALYSIS OF THE MODEL

The following discussion presents a detailed analysis of
the dynamical system described by Eq. �7�. We pay close
attention to the stability of the floating boundary and the
upwelling near the central region of the convection cell
where both X�t� and Y�t� are small. Stable solutions from Eq.
�7� correspond to the trapped state and unstable solutions

correspond to the oscillatory state. The critical condition for
the dynamical transition is obtained analytically.

A. Analysis of the finite difference scheme

In the finite difference scheme applied here, we let Xn
=X�n�t�. The dynamical equation �7� takes the form

Xn+1 − Xn

�t
=

1

d + �	/w
��2v0 + �D − d�
��Xn − Yn�

− d
Xn−�/�t� ,
�9�

Yn+1 − Yn

�t
= d
�Xn − Yn� .

We set the time step, �t, to be one second for convenience.
Eliminating Y, one derives an iteration equation for Xn

Xn = C1Xn−1 + C2Xn−2 + C3Xn−�−1 + C4Xn−�−2 �10�

with coefficients

C1 = 2 − 
d +
2v0 + 
�D − d�

d + �	/w
,

C2 = 
d − 1 −
2v0 + 
�D − d�

d + �	/w
, C3 =

− d


d + �	/w
,

and

C4 =

�d
 − 1�d
d + �	/w

For the time before the floating boundary collides with the
sidewalls, we can solve Eq. �10� explicitly

Xn = �
i=1

�+2

ai	�d�i
n. �11�

Eigenvalues 	�d�i are roots of the characteristic equation

FIG. 7. Results from the model. In the oscillatory state, the
normalized oscillation frequency is shown as a function of the cov-
erage ratio. Over a finite range of floating boundary sizes, from
0.05D to dc �0.576D�, there appears to be a power-law dependence
f / f0�d1.31.

FIG. 8. In the trapped state, the normalized decay time �f0 is
shown as a function of the coverage ratio. Inset: time series of the
floating boundary motion in the trapped state. The data suggests a
power law �f0� �d−dc�−0.768.
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�10�. The constants ai are determined by the initial values

Xm
m=0,1,. . .,�+1. The solution for Y is

Yn = b0�
i=1

�+2

ai	�d�i
n + b1�

i=1

�+2

ai	�d�i
n−1 + b2�

i=1

�+2

ai	�d�i
n−�−1

�12�

with the coefficients

b0 =
�d
 − 1��d + �	/w�

2v0 + 
�D − d�
, b1 = 1 −

�d
 − 1��d + �	/w�
2v0 + 
�D − d�

and

b2 =
�
d − 1�d


2v0 + 
�D − d�
.

We arrange the eigenvalues 	�d��’ s in order of decreasing
absolute values


	�d�i
 � 
	�d� j
 if i � j . �13�

The local stability of the system depends on the absolute
value of the eigenvalues. According to Eq. �13�, the greatest
eigenvalue, 
	�d�1
, represents the dominate growth rate of
Xn and Yn. In Fig. 9, we plot 	�d�1 as a function of the
boundary size d.

For sufficiently large d, 
	�d�1
�1, corresponding to a
stable iteration where the system converges to the fixed
point, which is the center of the convection cell. When the
boundary size decreases, 
	�d�1
 increases. Below the critical
point, d�dc=0.576D, 
	�d�1
 becomes larger than 1. The
imaginary part of 	�d�1 is nonzero for d�0.373D. When d is
in this range, the floating boundary starts to oscillate with
increasing amplitude until it collides with the sidewall. As d
further decreases, another bifurcation is found at d /D
=0.373, below which the imaginary part of 	�d�1 becomes

zero while 
	�d�1
 is still greater than one. Here, the solutions
for Xn and Yn diverge monotonically, and the floating bound-
ary drifts directly toward one of the sidewalls.

We present in the X-Y plane the trajectories of both the
floating boundary and the upwelling in Fig. 10. At suffi-
ciently small coverage ratio (d /D=0.3, 
	�d�1

�1, Im�	�d�1�=0), the floating boundary moves from the
center to one sidewall, and then undergoes periodic oscilla-
tions �Fig. 10�a��. As the coverage ratio increases, but while
still below the critical value (d /D=0.55, 
	�d�1

�1, Im�	�d�1��0), the center of the cell is still an unstable
fixed point. The trajectory diverges gradually in spirals until
it reaches the sidewalls, as shown in Fig. 10�b�. After arriv-
ing at the sidewall, the trajectory is forced into a periodic
orbit. Right at the transition point �d=dc=0.576D , 
	�d�1

=1�, the trajectory is a limit cycle whose oscillation ampli-
tude stays constant at its arbitrary initial value �Fig. 10�c��.
When the coverage ratio further increases to be 0.59
�
	�d�1
�1�, the trajectory converges to the center and a
trapped state appears �Fig. 10�d��.

B. Analytical solutions of the linear delay differential equation

Delay differential equations �DDE� have recently drawn
much attention because many physical and biological sys-
tems involve feedback mechanisms with delays �39�. The
above numerical results can be obtained from an analytical
solution of the dynamical equation �7� treated as a linear
DDE. The following analysis again shows that the system
experiences a transition from a convergent state into a diver-
gent state as the control parameters vary continuously.

It can be shown that Eq. �7� is equivalent to the following
second order linear delay differential equation:

FIG. 9. A 3D plot of Re�	�d�1� and Im�	�d�1� as functions of
the coverage ratio �0.1�d /D�0.9�. When 
	�d�1
�1 �solid tri-
angles�, the system is in the trapped state. Open triangles indicate
the oscillatory state where 
	�d�1
�1 and Im�	�d�1� is nonzero. The
system executes oscillations with increasing amplitude. As d /D is
further increased, shown with solid squares, 
	�d�1
�1 and
Im�	�d�1�=0. Here, the system first shows monotonic divergence
and it is finally forced into periodic motion. The insets show 
	�d�1

and Im�	�d�1� as monotonic functions of the coverage ratio.

FIG. 10. Simulation data showing the trajectories of the moving
boundary and the upwelling in the X-Y plane. The arrows show the
directions of the evolution. Coverage ratios are chosen to be 0.3,
0.55, 0.576, and 0.59. They correspond to periodic orbits �d /D
=0.3 and 0.55�, a limit cycle �d /D=0.576�, and a stable focus
�d /D=0.59�. At the critical size �c�, two arbitrary initial amplitudes
of the oscillation are retained in time.
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Ẍ�t� + �c − a�Ẋ + bcX�t − �� + bẊ�t − �� = 0, t � 0,
�14�

X�t� = ��t�, 0 � t � − � .

The initial conditions are given by ��t�. The coefficients a, b,
and c are functions of d

a = �2v0 + 
�D − d��/�d + �	/w�, b = − d
/�d + �	/w� ,

�15�

c = d
 .

When t→�, the asymptotic behavior �40,41� of X�t� is

X�t� = �
i

pi�t�ezit + o�ezit� , �16�

where pi�t� is a polynomial that depends on ��t� and zi is the
ith complex root of the following characteristic equation for
Eq. �14�:

f�z� = z2 + �c − a�z + b�z + c�e−z� = 0. �17�

The roots zi�d ,�� of f�z� are continuous functions of the pa-
rameters d and �. It has been proven that, as d or � varies
continuously, the number of roots of Eq. �17� that have posi-
tive real parts changes only after a pure imaginary root ap-
pears in the complex z plane �42–44�. So we can find a
contour in the d-� plane along which f�z� has pure imaginary
roots. This contour divides the d-� plane into different re-
gions. Within each region the number of roots with positive
real parts remains constant.

When �=0 Eq. �17� becomes a quadratic equation and the
solutions are

z1,2 =
1

2
��a − b − c� ± ��c + b − a�2 − 4bc� . �18�

At d=0.553D, a�d�−b�d�−c�d�=0, and �c+b−a�2−4bc�0,
there is a pair of conjugate roots on the imaginary axis on the
complex plane. We thus find that on the d axis �when �=0�
of the d-� plane

Re�z��=0
�0, d � 0.553D ,

�0, d � 0.553D .
� �19�

When ��0, the characteristic equation �17� is transcendental
and has infinitely many roots in the complex z-plane. Let z
=�+ i�. Equation �17� becomes

�2 − �2 + �c − a�� + be−����� + c�cos���� + � sin����� = 0,

�20�

2�� + �c − a�� + be−���− �� + c�sin���� + � cos����� = 0.

�21�

The values of d and � for which the characteristic equation
�17� has pure imaginary roots are given by the solutions of
Eqs. �20� and �21� with �=0:

− �2 + b�c cos���� + � sin����� = 0, �22�

�c − a�� + b�� cos���� − c sin����� = 0. �23�

We solve for � explicitly from Eqs. �22� and �23�, which
depends only on d �note that a ,b and c are functions of d�.


�
�=0 = ± 
1

2
���c − a�2 − b2� + 4b2c2 −

1

2
��c − a�2 − b2��1/2

�24�

We define a function F�d ,�� according to Eq. �22�, where

F�d,�� = F���d�,�� = − �2 + b�c cos���� + � sin�����
�25�

with � given by Eq. �24� �note that F��� is an even function
of ��. Figure 11 shows that the zero contour of F�d ,�� di-
vides the d-� plane �0�d�D ,0���30 s� into two re-
gions. In region I, F�d ,���0 and in region II F�d ,���0.

Now we discuss the transition of the system when the
control parameter d varies and when �=10 s. We study first
the stability of the system with �d ,�� at two points, A and
B at �=0. From Eq. �19�, the system is unstable at
A �d=0.2D ,�=0� since Re�z�A���0. While at B �d
=0.8D ,�=0�, Re�z�B���0 shows that the system is in a
stable state.

As d and � vary in the vicinity of B, the real parts of all
the roots remain negative unless they cross the zero contour
of F�d ,��. Roots at B �d=0.8D ,�=0� can approach continu-
ously the right part of the straight line �=10 s�d�dc�. We
conclude that for all roots, Re�zi�d�0.576D ,�=10 s���0.
The asymptotic behavior of X�t� in Eq. �16� is thus conver-

FIG. 11. Phase diagram for the stability of the system. The
boundary between regions I �blank� and II �gray� is determined
by the zero-contour of F�d ,�� from Eq. �25�. We consider first
the stability of the system with combinations of �d ,�� at points
A �d=0.2D ,�=0�, and B �d=0.8D ,�=0�, from which we find that
region I �II� corresponds to an oscillatory �trapped� state. The con-
tour crosses the straight line ��=10 s� at C �d=0.576D ,�=10 s�,
which determines the critical value of the transition. With sufficient
large delay time, ��26.5 s, the system stays always in the oscilla-
tory state �region I�.
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gent. Roots near A �d=0.2D ,�=0� can approach the left part
of the straight line �=10 s�d�dc�, without crossing the zero
contour of F�d ,��. So the number of the roots with positive
real part remains the same as that of f�z�A��. There are two
roots with positive real parts when d�0.576D and �=10 s,
thus the system is in a divergent state. Finally the zero con-
tour of F�d ,�� crosses the straight line �=10 s at C �d
=0.576D ,�=10 s�, which shows the critical value for the
transition in the system dc=0.576D.

VI. DISCUSSION

Our present work models the interaction between a freely
moving floating boundary and a convective fluid. Inside a
Bénard convection cell, two counter-rotating convective cir-
culations are induced and covered partially by a rigid bound-
ary that is allowed to move freely on the fluid surface. Rich
dynamics are found from the model and they are in excellent
agreement with the previous experiments. The dynamical be-
haviors include regular oscillations of a small floating
boundary, and the corresponding oscillations of the two
large-scale circulations. When the floating boundary is large
enough, a trapped state emerges; both the position of the
floating boundary and the flow pattern in the bulk are stable.

In the model, we use a number of approximations that
reflect the physical mechanisms involved in the coupled
solid-fluid system. They are �1� the motion of the floating
boundary is overdamped so that the speed is linearly propor-
tional to the net force applied by the viscous flows; �2� the
fluctuations of the large-scale circulations are averaged out
so that no stochastic component is considered in the model;
�3� the flow speed of each circulation depends linearly on its
exposed fluid surface; and �4� due to thermal blanketing, the
floating boundary constantly attracts the upwelling and the
speed of the upwelling migration is proportional to the dis-
tance between them.

The above simplifications are justified by our previous
experimental results. The model successfully explains the
transition between the observed dynamical states; our simple
model apparently captures the essential features of the cou-
pling between the thermal blanket and the convecting fluid.
We believe that this low-dimensional approach can bridge
the gap between full-scale simulations and both laboratory
experiments and geophysical observations.

Some aspects of the coupled dynamics observed in the
experiment, such as the intermittency between the two states
�Fig. 3�, are not reproduced from our current model. This
intermittent state is possibly due to the fluctuations in the
velocity field of the fluid. In fact, one sees the effects of
fluctuation from the turbulent flows by observing the sto-
chastic motion of the floating boundary in the trapped states
�Fig. 3, d /D=0.7 and 0.8�. It has been shown that the stabil-
ity of a dynamical system can be affected by the presence of
random fluctuations of finite intensity �45,46�. Further re-
search will attempt to discern if the intermittency is due to
thermal noise or some other feedback mechanism.

In the geophysical context, the interaction between large
continents and the convective mantle result in continental
aggregations and dispersals �16,27,47�. An earlier simulation

has reported the appearance of a temporary trapped state in
which a large continent remains stationary directly over an
upwelling, surrounded by two downwelling flows �20�. How-
ever, such a trapped state is transitory and the continent soon
moves off from the central upwelling after the two nearby
downwellings are pushed aside. If a trapped state has existed
in the past and behaved the way we observe in our system,
this state may not have lasted for long because superconti-
nents tend to breakup due to the divergent stress by the up-
welling convection applied at the base. The stronger and con-
stant heating from the upwelling in line with the finite tensile
yield stress of the continent will further provoke the conti-
nental breakup. In this sense, a trapped state of a supercon-
tinent is destined to be followed by a breakage event.

The observed states from our model system and from pre-
vious experiments may result partly from the spatial con-
strains imposed by the lateral boundary condition. In particu-
lar, both the floating boundary and the flow pattern are
restricted within limited spaces. We currently conduct similar
experiments in an annular geometry, where the moving
boundary and the convective flow structure experience peri-
odic, open boundary conditions. This new effort may let us
better simulate the dynamic Earth and we expect richer be-
haviors.
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APPENDIX A

Our numerical model uses the following constants v0, 
,
�	 /w, 
, and �. They are estimated from our experimental
results. All the spatial dimensions are normalized by the
length of the convection cell D. For instance, when a floating
boundary of size d=0.6D is introduced, the length of the
open fluid surface on both sides is on average Si=0.2D.

1. Estimate the values of v0 and �

Terms v0 and 
 in Eq. �6� are estimated from the mea-
sured dependence of vr on free surface extension Sr, which is
shown in Fig. 2�b�, where v0 is the offset and 
 is the slope.
The dashed line in Fig. 2�b� shows

v0 = 0.55 cm/s = 0.015D s−1, �A1�


 = �vr/�Sr = 0.075 s−1. �A2�

They are determined with an emphasis on data points around
S=0.20D �7.3 cm�, the value of S when the size of the float-
ing boundary is near the critical size for the transition be-
tween the two states.

2. Estimate the ratio �� /w

The motion of the floating boundary is caused by the vis-
cous drag from the convective flows applied at the base, as
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shown in Eq. �1�. Once in motion, the moving boundary
experiences a viscous resistance from all edges. This resis-
tance is proportional to its speed, as shown in the right-hand
side of Eq. �3�. Our experiment shows that the speed of the
floating boundary saturates to a constant value after complet-
ing only 20% of the entire path towards the opposite end
wall. This means that, during most of the time over the
course of the boundary motion, the resistance and the vis-
cous driving are in balance with each other. Thus Eq. �3�
becomes the equation of motion.

We now estimate the ratio �	 /w. In the oscillatory state
near the critical point, d=0.6D, we measure experimentally
�25� the maximum moving speed of the floating boundary

Ẋmax and the mean flow speed of the circulation vi, and find

Ẋmax�0.25vi. As the moving boundary proceeds and the up-
welling is near its trailing edge, the boundary is subject to a
single circulation underneath when a maximum speed is
reached:

Ẋ�t� =
1

d + �	/w
�vrAr�t� − vlAl�t��, Ẋmax �

0.6Dwvi

0.6Dw + �	
.

We find

0.6D

0.6D + �	/w
�

Ẋmax

vi
� 0.25, thus we have �	/w � 1.8D .

�A3�

3. Estimate the proportional constant �

We observe that, in the oscillatory state and when the size
of the floating boundary is close to 0.6D, the time needed for
the upwelling to migrate across the convection cell �during
its half period of the oscillation� is

tm � 100 s.

From Eq. �5�, Ẏ�t�=d
�X�t�−Y�t��, we can estimate the
value of 
 with

tm �
X − Y

Ẏ
=

1

0.6D

thus 
 �

1

0.6Dtm
� 0.017D−1 s−1.

�A4�

4. Estimate the typical delay time �

The response time � of the circulation speed to a changed
fluid surface is measured through a simple experiment. At t
=0, the floater is relocated from one position �Sr=5 cm� to
another �Sr=10 cm�. This replacement itself takes up to
2 seconds. Before and after this action, the flow speed of the
right-side circulation is recorded by a laser Doppler veloci-
metry. After averaging 30 trails of velocity time series, we
get, as shown in Fig. 2�c�

FIG. 12. Regime diagrams show the results from the model with different v0 and �, when d /D=0.576. The coefficient �	 /w in each
panel from left to right is 1.44D, 1.8D, and 3.6D. Crosses indicate values of v0 and � in which an oscillation state appears. Triangles indicate
a trapped state.

FIG. 13. Regime diagrams show the results from the model with different 
 and different 
. The coefficient �	 /w in each panel from left
to right is 1.44D, 1.8D, and 3.6D, when d /D=0.576. Crosses: oscillatory state. Triangles: trapped state.
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� � 10 s. �A5�

To summarize, from the experiment we estimate the coeffi-
cients and constants needed in our model

��	/w,v0,
,
,��

= �1.8D, 0.015D s−1, 0.075 s−1, 0.017D−1 s−1, 10 s� .

�A6�

APPENDIX B

Geophysical investigations show that changes in the ther-
mal and mechanical properties of the continents are impor-
tant factors in determining the evolution of the convective
flow structures in the mantle, which, in turn, influence the
continental motion �22,23�. We have worked on different
models, systematically varying the boundary geometry factor
�, the flow response time �, flow velocity offset v0, the flow
strength response rate 
, and the coefficient of the migration
speed of the upwelling 
 from the values given in Eq. �A6�.
We study their influences on the dynamical states of the sys-
tem.

We find that a higher offset of the mean flow speeds v0
facilitates oscillatory motions. On the other hand, a thicker
floating boundary �that is, a larger geometry factor �� favors
trapped states, since a larger resistant force is applied at the

lateral edges of the floating boundary. Our calculations also
show that a longer flow response time � favors the oscillatory
state, as indicated also in Fig. 11.

Figure 12 shows a regime diagram for the model with
different boundary geometry factors �, flow velocities v0,
and response times �. Oscillatory states are shown by
crosses, and trapped states are shown by triangles. In Fig. 12,
the boundary geometry factor � increases incrementally from
the left panel to the right. Increasing � produces a wider
phase space for the trapped state.

It is known that the speed of the large-scale circulation in
turbulent thermal convection with Pr�1 depends on the
Rayleigh number as vi�Ra4/9 �4�. As a test measurement in
the experiment, near the critical point d=0.6D we increase
Ra by increasing the temperature difference �T by 5% �thus
increasing Ra by 5%�. We find the motion of the floating
boundary changes from the intermittent state �Fig. 3, when
d /D=0.6� to the oscillatory state �similar to that of Fig. 3,
when d /D=0.5�.

We also study the behavior of the coupled system on the

-
 diagram. A large contrast in the heat flux through the
floating boundary and through the open fluid surface in-
creases the rate of change of the flow strength 
, and also
accelerates the migration speed of the upwelling 
. Figure 13
indicates that a stronger thermal blanketing effect favors the
trapped state.
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