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From phase space to frequency domain: A time-frequency analysis for chaotic time series
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Time-frequency analysis is performed for chaotic flow with a power spectrum estimator based on the
phase-space neighborhood. The relation between the reference phase point and its nearest neighbors is dem-
onstrated. The nearest neighbors, representing the state recurrences in the phase space reconstructed by time
delay embedding, actually cover data segments with similar wave forms and thus possess redundant informa-
tion, but recur with no obvious temporal regularity. To utilize this redundant recurrence information, a
neighborhood-based spectrum estimator is devised. Then time-frequency analysis with this estimator is per-
formed for the Lorenz time series, the Rossler time series, experimental laser data, and colored noise. Features
revealed by the spectrogram can be used to distinguish noisy chaotic flow from colored noise.
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I. INTRODUCTION

In order to obtain the inherent properties of a system from
the observed time series, a variety of methods have been
proposed and are widely applied, such as surrogate tests
[1,2], wavelets [3], Fourier transforms [4,5], and approaches
based on time delay embedding [6]. Among these methods,
approaches based on time delay embedding may be the most
popular framework for analyzing chaotic time series. Based
on Taken’s embedding theory [7,8], some measures such as
Lyapunov exponents [9] and correlation dimensions [10]
have been proposed to characterize the global features of
dynamical systems. However, few studies of the local time
pattern of chaotic time series have been reported; neverthe-
less, this is important for some purposes, such as to reveal
the degree of chaoticity of a sequence.

Spectra analysis provides an alternative framework for
chaotic time series analysis [4,5,11-13]. With methods based
on Fourier transformation, the relation between the spectra
and the topology as the corresponding dynamical system bi-
furcates to chaos has been studied. Spectrum bands of some
period-doubling bifurcation sequences (e.g., the Rossler time
series) merge as the dynamic system bifurcates to chaos
[4,13]. Another typical spectrum of chaotic data (e.g., the
Lorenz time series) is broadband and falls off via an expo-
nential law. This spectrum falloff pattern has been utilized to
distinguish chaotic sequences from colored noise with
power-law spectra [11]. However, other researchers have ar-
gued that a chaotic sequence cannot be well distinguished
from either colored noise [ 14] or quasiperiodic motion (with
singular power spectra) by its finite-time power spectra [5].
This is especially true when the chaotic data are contami-
nated by observational noise.

For a chaotic signal with complicated evolution (e.g., for
the Lorenz time series, the time interval between peaks and
the amplitude of the sequence both vary with no obvious
regularity), the simple frequency domain representation may
obscure information related to timing. Spectrum analysis
usually only adopts the spectral amplitude, while neglecting
the phase information. Consequently, confusion will occur
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between any two signals with the same spectral amplitudes.
A time-frequency joint analysis is therefore desirable to bet-
ter unveil these features [15]. However, few studies of the
time-frequency analysis for chaotic sequence have been re-
ported. Chandre et al. [3] performed a time-frequency analy-
sis of Hamiltonian systems based on a ridge (instantaneous
frequency curve) extraction from a wavelet decomposition of
a single-trajectory coordinate. The ridge pattern can reveal
the phase-space structures (resonance transitions, trappings,
etc.) and give a characterization of weak or strong chaos.

State recurrence is one important feature of chaotic sys-
tems. In the phase space reconstructed by time delay embed-
ding, the state recurrences of a reference phase point turn out
to be its nearest neighbors, which can provide redundant in-
formation but recur with no temporal regularity as we will
demonstrate later. Wavelet analysis, as with other conven-
tional time-frequency analysis methods (e.g., periodogram
[16]), utilizes only one segment of consecutive data and ne-
glects temporally isolated state recurrences beside this data
segment. So a time-frequency analysis which can utilizes all
state recurrences is desirable. The present paper focuses on
(i) demonstrating that nearest neighbors can provide redun-
dant information for chaotic signal analysis and processing,
(ii) proposing a spectrum estimator which can utilize all the
neighbors, and (iii) performing a time-frequency analysis to
(noisy) chaotic flow with the proposed spectrum estimator
and extracting some features that can be used to distinguish
the (noisy) chaotic data from colored noise.

We will demonstrate that the nearest neighbors cover seg-
ments of data with similar wave forms to that of the corre-
sponding reference phase point. However, the recurrence
time of each neighbor appears to be irregular; nonetheless,
the mean recurrence time obeys a scaling law [17]. In order
to utilize these state recurrences, the nearest neighbors must
be grouped according to their Euclidean distance to the ref-
erence point in phase space. Other techniques, such as local
projection noise reduction [18,19] and nonlinear prediction
[20] that utilize nearest neighbors, frequently demonstrate
positive results. Analogously, aiming to use the state recur-
rence of a chaotic system, we propose a neighborhood-based
spectrum estimator (NSE) to estimate the corresponding
power spectra of the reference phase point. The NSE first
performs eigenvalue decomposition to the covariance matrix
of the neighbors and then estimates the power spectra of the
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reference point by applying the Blackman-Tukey (BT) esti-
mator [21]. Thus, the NSE utilizes the long-term state recur-
rence of chaotic systems and relates time delay embedding
information (deterministic dynamics) to the frequency do-
main.

The organization of this paper is as follows. In Sec. II, the
relationship between the reference point and its nearest
neighbors is demonstrated, and the principle of
neighborhood-based spectrum estimation (NSE) is presented.
In Sec. III, time-frequency analysis with NSE is performed
for the Lorenz time series, the Rossler time series, and ex-
perimental laser data. The spectrogram, the ridge of main
frequencies, and “hidden” frequency are used to characterize
the features of these time series. In Sec. IV, NSE is applied to
colored noise. It is shown that colored noise can be distin-
guished from (noisy) chaotic flow based on their respective
main ridge patterns. Finally, a conclusion and discussion are
given in Sec. V.

II. PRINCIPLE OF THE METHOD
A. Nearest neighbors

Let {z,}-_, denote a chaotic time series with L samples.
The phase points can be reconstructed by time delay
embedding—i.e., {zn}L_ (d-1)7,

— T
z,= [Zn’zn+7"zn+2'n s ’Zn+(d—1)7] s

where d is embedding dimension, 7 is time delay, and (-)T
denotes the transpose of a real matrix. The near neighbor-
hood of the reference point z, is defined as

N, 2 lgiln-2) < el <k =L-(d-1)7

and arranged as N,={z; .z, ...z}, k<ky<---<ky
where N=|N,| is the number of nelghbors and ¢ is the ne1gh—
borhood radius (note that z, € N,). Furthermore, the recur-
rence time of z, can be simply defined as T,(i)=k;,,—k;,i
=1,...,N-1[17].

Considering a chaotic time series generated from the Lo-
renz system [22],

i=o(y-x),
y=(r-z)x-y,
z=xy—bz, (1)

where (o,7,b)=(10,28,8/3). Note that all the Lorenz time
series used in this paper are 10 000 points sampled from the
x component with time interval 0.04 and these fixed param-
eters, unless stated otherwise.

Figure 1 demonstrates the relationship between the
reference point z,q; (randomly selected) and its first ten
nearest neighbors with subscript k=192,2659,3485,4387,
4388,5376,5415,6763,6764,7235. The reference point z,
covers a segment of time series [2,,2Z,11:Zn425 -+ »Zns(d-1)r] -
with the length of embedding window L, =(d—1)7+1. For
clarity, let s, denote this associated segment of the time se-
ries. If 7=1, s, is the same as z,,. It can be observed that the
corresponding wave forms of the neighbors are similar to
each other, but the recurrence time seems irregular. From the
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FIG. 1. The Lorenz time series and the first ten nearest neigh-
bors of reference point z,q43. @, the sample z,943; O, the samples z;,
corresponding to the first ten nearest neighbors. The bottom panels
are enlargements of short segments. Each segment marked with
small dots corresponds to one neighbor in phase space.

viewpoint of signal processing, these similar wave-form seg-
ments contain much redundant information relative to the
reference one. There are some neighbors that are adjacent in
time—for example, k=4387 and 4388. The adjacent neigh-
bors that lie on the same recurrence trajectory provide only
one new sample; primarily they serve to increase the weight
of the corresponding state recurrence within the neighbor-
hood.

As aforementioned, several recurrence points, which lie
on one same recurrence trajectory, may be included in the
near neighborhood. To investigate the recurrence time of
state recurrence trajectory, we define a second type of neigh-
borhood by selecting only one point from each recurrence
trajectory, and the selected one is the nearest one to the ref-
erence point among the neighbors on that recurrence trajec-
tory. A histogram of the recurrence time of the second type of
neighbors in all neighborhoods is shown in Fig. 2. It indi-
cates that (i) the recurrence time varies over a large range
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FIG. 2. (Color online) Histogram of the recurrence time of the
first ten nearest neighbors of the second type. The small panel is a
local enlargement of the main figure.
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and (ii) the state recurrence seems to appear more frequently
after some periodic constant time that corresponds to the
peaks of the histogram.

Some applications of recurrence time have been reported
in recent years. A similar second type of neighborhood was
defined by excluding so-called “sojourn points,” and the re-
currence time statistics of chaotic time series was revealed to
obey a scaling law [17]." Further, the recurrence time statis-
tics has been applied to detect nonstationarity and state tran-
sitions [23]. On the other hand, conventional linear tech-
niques (e.g., classical Fourier transform) neglect some
scattered state recurrences and just utilizing one segment of
consecutive data. Consequently, these techniques usually ob-
tain poor results in analyzing chaotic data, while some meth-
ods (e.g., local projection noise reduction), specifically de-
signed for chaotic data, utilize the neighbors and thus
achieve better results.

B. Neighborhood-based spectrum estimation

For the neighborhood N,,, we define an L,, X N neighbor-
hood matrix as D _[Xkl X, - X, . with notation x; =s;_
—%,, where's —<sk) is the center. Flrst an elgenvalue decom-
position to the covariance matrix—i.e., C, =—D DT of the
neighborhood N, is performed,

C,,lli— )\,-u,-=0, (2)
where N\; is the ith  eigenvalue, and w;
=[u,(1),u;(2),...,u(L,)]" is its associated eigenvector.

Then with the discrete-time Fourier transform of eigenvector
u;,

L,
Vi(w) = 2 uip)e ™™, (3)
p=1
the NSE can be expressed as
| L
Pysp(w) = E A; |V a))|2 (4)

Wll

The NSE is derived from the BT spectrum estimator [21].
The difference is that the BT estimator utilizes the covari-
ance matrix generated from only one segment of consecutive
data, while NSE uses the covariance matrix estimated from
the data segments covered by the temporally scattered near-
est neighbors. Thus, NSE can capture the long-time state
recurrence of chaotic data. If the neighborhood contains only
the reference point, the NSE reduces to the BT estimator.

The eigenvalues are arranged in descending order—that
1S, A\ =N, =" >)\L If the chaotic time series is contami-
nated by observational noise, the local phase space can be
divided into two orthogonal subspaces: (i) the noise subspace
spanned by [uy, ... ’“LW]’ assumed to contain components
from the noise process only, and (ii) the signal subspace

"The recurrence time statistics in [17] is related to the radius of
neighborhood, while the histogram in Fig. 2 is related to the first ten
nearest neighbors of the second type. Due to difference in statistics,
Fig. 2 does not show the scaling law revealed in [17].
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FIG. 3. Power spectra of the Lorenz system estimated by a
periodogram. The y-axis label P denotes the power spectra of each
sequence. (a), (b), and (c) are the power spectra of the time series
measured from x, y, and z components, respectively; (d) the strange
attractor of the Lorenz system.

constructed with [u,...,u,,] containing the “clean signal”
and a certain, small, amount of noise [19], where M is the
minimum embedding dimension of the dynamic system [24].
Just adopting those components in the signal subspace, a
principal component version of the NSE is

2 N Vi(w)]*. (5)

Wll

Ppcnsp(w) =

Obviously, the principal component version of the NSE has
the ability to suppress the observational noise for spectrum
estimation of contaminated chaotic data.

Furthermore, for each reference point, we define the main
frequency w,, as

P(w,,) =max P(w), o, €{w}, (6)
where w; is the frequencies with local maximum power
amplitude—i.e.,
d*P(w)
dw?

w=w, W=,

dP(w)
dw

<0. (7)

Then the main frequency will form a main ridge as the ref-
erence point moves along the phase trajectory. We observe in
the following sections that this main ridge shows different
characteristic patterns for different types of data.

III. TIME-FREQUENCY ANALYSIS OF CHAOTIC
TIME SERIES

In this section, time-frequency analysis with NSE is pre-
sented for the Lorenz time series, the Rossler time series, and
experimental laser data.

The Lorenz system is a typical chaotic system with two
scrolls. Figure 3 shows the power specta of the Lorenz sys-
tem estimated by a periodogram [16], a classical method
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FIG. 4. (a) The histogram of the spectra peaks [as that in Fig.
3(c)] of 200 Lorenz sequences (10 000 points each sequence) mea-
sured from the z component with different initial conditions; (b) the
gray bars denote the histogram of the main frequencies in Fig. 5(a),
and the black bars indicate the histogram in (a); (c) the gray bars
denote the histogram of the main frequencies in Fig. 5(b), and the
black bars indicate the histogram in (a); (d) the histogram of the
spectra peaks of 200 Lorenz sequences (500 points each sequence)
estimated by a periodogram; the gray and the black bars, respec-
tively, denote the histograms of the spectra peaks of sequences mea-
sured from x and z components simultaneously.

based on Fourier transformation. We can observe that the
power spectra of the x and y components are broadband and
similar to each other, while the power spectra of the z com-
ponent have a peak. This spectra peak, which is indicated by
LF, in Fig. 3(c) and named the hidden frequency in Refs.
[25,26], can reveal the frequency related to the principal os-
cillation of the Lorenz system. We note that this frequency is
not a particular case of this sequence. The spectrum peak
universally exists with small deviation (1.305-1.330 Hz
with 95% confidence), as Fig. 4(a) indicates. Though this
oscillation exists in the x and y components simultaneously
as the dynamics evolves, the periodogram spectra of x and y
fail to reveal it. The time interval between peaks and the
amplitude of the x and y sequences both vary with the phase
state switching between the two scrolls with no obvious
regularity and thus can be considered as frequency modula-
tion and amplitude modulation, respectively. The peri-
odogram spectra cannot capture this complicated modulation
and therefore fail to reveal the principal oscillation.

In contrast, time-frequency analysis of the same Lorenz
time series used in Fig. 3(a) with NSE can reveal the princi-
pal oscillation. We overembed the time series with time de-
lay 7=4 (determined by the first minimum of mutual infor-
mation [27]) and embedding dimension d=20, and use the
first 20 nearest neighbors in NSE analysis. A 1000-sample
segment of the spectrogram for each case is illustrated in Fig.
5. We can observe that (i) the spectra are broadband and the
energy is primarily distributed in the low-frequency region
and (ii) the main ridge is formed by many short disjointed
curves (even for the Lorenz time series contaminated with
5 dB white noise), which vary slowly around a frequency
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FIG. 5. Spectrogram of the Lorenz time series, r=28. (a) The
clean Lorenz time series and (b) the noisy Lorenz time series with
5 dB additive white noise. For each subfigure, the left panel is the
time series, the top-right panel is the corresponding spectrogram
estimated by NSE, and the bottom panel is the average of the spec-
trogram over time. The black points are the main frequencies. This
pattern is followed in all following spectrogram figures, unless oth-
erwise stated.

related to the principal oscillation. The bottom panel is the
average of the spectrogram over time, which can be consid-
ered as the energy distribution versus frequency. The fre-
quency corresponding to the maximum peak of this curve,
indicated by TF,, is approximately equal to the hidden fre-
quency indicated by | F; in Fig. 3(c). Histograms of the main
frequencies in Fig. 5 are shown in Figs. 4(b) and 4(c), re-
spectively. The hidden frequency is located at the center of
the main frequencies. This implies that the main frequencies
contain the information of the principal oscillation of chaotic
system. Similar results can also be obtained with data mea-
sured from the y component of the Lorenz system.

Similar wave forms covered by the neighbors can enhance
their common structure—i.e., the principal oscillation—
while they may simultaneously “average” out the substruc-
tures and noise. Thus, even for the noisy Lorenz time series
with 5 dB white noise, the principal oscillation can be ex-
tracted. In time-frequency analysis with NSE, we will mainly
focus on the pattern of the main ridge. Time-frequency
analysis with a short-time periodogram [15] has also been
performed of sequences simultaneously measured from the x
and z components. As Fig. 4(d) indicates, the spectrum peaks
of sequences measured from the z component are located at
the center region of the histogram in Figs. 4(b) and 4(c),
while the spectrum peaks of sequences measured from the x
component tend to be close to zero frequency. Note that a
different window length has been adopted for the short-time
periodogram, but the pattern of the main frequencies is simi-
lar to that shown in Fig. 4(d).

The Lorenz system with different values of the parameter
r has been widely studied [28]. We further apply NSE to
(noisy) Lorenz time series generated with different values of
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FIG. 6. Hidden frequency of the Lorenz time series. O, by a
periodogram with a clean Lorenz time series of the z component;
@, by NSE with a clean series of the x component; ¢, by NSE with
a noisy series of the x component (10 dB additive white noise); +,
by NSE with a noisy series of the x component (5 dB additive white
noise).

the parameter r while fixing the parameters (o,b)
=(10,8/3). When the Lorenz system is chaotic (e.g., r=33
and 38), the main ridge is formed with unconnected short
curves, which is similar to the case of r=28. While when the
Lorenz system is nonchaotic (e.g., r=18 and 148), the sys-
tem is almost periodic and the main frequencies are approxi-
mately constant. Figure 6 shows that the hidden frequencies
can be detected by NSE even when the Lorenz series is con-
taminated by 5 dB additive white noise (only one mismatch
for the case of noisy data with 5 dB noise). We set d=20 for
the cases of r=28,33,38,43,48,53 and d=10 for the cases
of r=58,63,68,73. This is because as the hidden frequency
increases with r, the period of oscillation becomes small and
thus the reference phase point will cover more cycles, which
leads to fewer well-matched neighbors. If the number of ap-
propriate neighbors is too small, the reliability of NSE will
be reduced.

The length of the embedding window, L, =(d—1)7+1, is a
trade-off between the reliability and the frequency resolution
of the estimated spectra. To get a better reliability, L,, should
be set relatively shorter to ensure more appropriate neigh-
bors. On the other hand, to obtain a spectrum with higher
resolution, L,, should be set relatively longer. With sampling
time interval Ar=0.04 and L,,=77 (d=20, 7=4), the physical
resolution of the spectra estimated by Fourier transformation
is ﬁ =~=().32 Hz. This resolution cannot provide an accurate
detection of the hidden frequency (about 1.32 Hz when r
=28). Padding zeros at the end of the data is a common
strategy adopted in the implementation of discrete Fourier
transformation, so as to obtain a higher computational
resolution—i.e., smaller frequency interval between the bins
calculated by fast Fourier transformation (FFT). In this pa-
per, we pad (512—L,) zeros to the end of u; and Eq. (3) is
implemented by 512-point FFT. With this strategy, the com-
putational resolution is m =~().05 Hz, which can be con-
sidered as an appropriate result of interpolation. But padding
zeros to individual realizations does not increase the physical
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FIG. 7. Energy distribution versus frequency of the Lorenz time
series measured from the x component. The maximum Lyapunov
exponents corresponding to (a)—(f) are —0.23, —0.05, 0.90, 1.24,
1.53, and 0.00, respectively. In each panel, the three curves corre-
spond to the normalized average of the spectrogram by the short-
time periodogram, NSE, and BT estimator from top to bottom. Each
curve is offset vertically for clarity. The scale in the vertical axis is
therefore arbitrary.

resolution of the estimated spectra, and the location of the
spectra peak may depart from the hiddern frequency. Further,
we refer the reader to Refs. [21,29] for more discussions of
frequency resolution.

Figure 7 shows the energy distribution versus frequency
for the Lorenz series. When the system has nonpositive
maximum Lyapunov exponent [Figs. 7(a), 7(b), and 7(f)], the
time series seems pseudoperiodic. NSE can detect a funda-
mental frequency as well as the short-time periodogram and
BT estimator, though some harmonics are different, while for
the Lorenz system with positive maximum Lyapunov expo-
nent [Figs. 7(c)-7(e)], only NSE can reveal the frequency
(i.e., the hidden frequency) related to the principal oscilla-
tion, which has been verified in Fig. 6.

The Rossler system is another typical chaotic system with
periodic motion superimposed on chaotic behavior [30],

i=-(y+2),
y=x+0.2y,
:2=02+xz-Cz. (8)

When C=4.6, the Rossler system is chaotic [4]. Tts power
spectra contain almost periodic d-function peaks and broad
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FIG. 8. Spectrogram of the Rossler time series by NSE. (a) The
clean time series measured from the x component of the Rossler
system and (b) the noisy Rossler time series with 5 dB additive
white noise. The sample time interval is 0.2, 7=7, and d=12.

background components. The sharp peaks are due to periodic
motion, and the broad components are the result of ampli-
tude modulation.

Figure 8(a) shows that the Rossler time series measured
form the x component is something like a pseudoperiodic
one with amplitude fluctuation and the main frequency varies
very little with time. The peak of the curve of the energy
distribution corresponds to the fundamental frequency of the
Rossler system. For the noisy Rossler time series [Fig. 8(b)],
the main ridge is obvious and “stationary” with only a few
scattered points.

Further we apply NSE to an experimental laser time series
[31], which was obtained from the Santa Fe time series com-
petition data [32]. To better match the neighbors, we form
the neighborhood with 7=1, and d=80. From Fig. 9, we can
see that the main frequency decreases little during the pulse
boosting, due to amplitude modulation, and then jumps back
as the oscillation collapses.

For comparison, time-frequency analyses with short-time
periodogram and BT estimator are performed of the (noisy)
Rossler time series, and laser data, similar main ridge pat-
terns to that generated by the NSE, are obtained, respec-
tively.

IV. DISTINGUISHING CHAOTIC TIME SERIES
FROM COLORED NOISE

It is difficult to distinguish (noisy) chaotic data from col-
ored noise by their spectra falloff patterns [14]. Chaotic flow
has scattered state recurrences, while colored noise does not
possess this deterministic feature. Here, we will demonstrate
that time-frequency analysis with NSE can reveal this differ-
ence and thus can be an alternative method to distinguish
them.
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FIG. 9. Spectrogram of laser time series by NSE (10 000
samples). (a) 10 000—point data and their spectrogram and (b) an
enlargement of (a) from point 2921 to point 3320.

We take a pink noise and a surrogate sequence as ex-
amples. The pink noise (10 000 points) is generated by a
special case of a first-order autoregressive process [AR(1)]
[33], X,,,,=BX,+(1-B)€,, where 8=0.69 and €,~N(0,1) is
a Gaussian process [more discussion about AR(1) can be
found in Ref. [34]]. As Fig. 10 indicates, the spectra of the
clean Lorenz data have a long exponential-law scaling region
(marked by A). As the Lorenz data are contaminated by ob-
servational noise, the exponential-law region (as that indi-
cated by B and C for the cases with 10 dB and 5 dB white
noise, respectively) becomes less obvious and difficult to be
distinguished from that of pink noise (marked by E), while
the time-frequency analysis with NSE is sensitive to this
difference. As Fig. 11(a) indicates, the main frequency of
pink noise varies along time with no regularity, while the
main ridge pattern of the noisy chaotic data with 5 dB white
noise [Fig. 5(b)] exhibits more long-term temporal structure.

Surrogate tests provide a powerful technique to detect de-
terminism in time series [1]. Here, the surrogate data are
generated by shuffling the phase of the original noisy Lorenz
data [the one used in Fig. 5(b)] [2]. The power spectra of the
surrogate data (marked by D in Fig. 10) are similar to those
of the original data (marked by C). However, due to the
phase shuffling, the surrogate data do not possess the deter-
ministic features of the original noisy Lorenz data, and thus
their main ridge patterns are clearly distinct [Fig. 11(b) vs
Fig. 5(b)]. As we discussed in Sec. I, time-frequency joint
analysis can reveal some information that is obscured by just
a single finite-time frequency representation.

The histograms of the main frequencies related to Fig. 11
are illustrated in Fig. 12. Comparing with Fig. 4, we can
observed that the main frequencies of both the pink noise
and the surrogate data are mainly distributed in a region near
zero frequency, while the main frequencies of (noisy) chaotic
data are located in a region relatively far from zero fre-
quency.
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FIG. 10. Power spectra estimated by periodogram. From top
down, the spectra indicated by A, B, C, D, and E correspond to the
clean Lorenz time series used in Fig. 5(a), the noisy Lorenz time
series with 10 dB white noise, the noisy Lorenz time series (with
5 dB white noise) used in Fig. 5(b), a phase shuffled surrogate data
of the noisy Lorenz time series used in Fig. 5(b), and the pink noise
generated by AR(1). Each time series has 10 000 points. The three
lines indicate the exponential-law scaling regions of the correspond-
ing spectra. Here, the frequency bins calculated by discrete Fourier
transformation are not scaled to the real frequency with units of Hz.

In summary, for the chaotic Lorenz time series, the main
ridge has many short unconnected curves, which vary around
the hidden frequency. We believe that this main ridge pattern
is a characteristic of chaotic time series. For the chaotic
Rossler time series, the wave form is pseudoperiodic, yield-

(a) ) (b)

50 150 250 50 150 250
f (bin) f (bin)

FIG. 11. (a) Spectrogram of pink noise by NSE and (b) spectro-
gram of the surrogate data used in Fig. 10. The frequency bins
calculated by FFT are not scaled to the real frequency with units of
Hz.
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FIG. 12. (a) Histogram of the main frequencies in Fig. 11(a). (b)
The gray bars denote the histogram of the main frequencies in Fig.
11(b), and for comparison, the histogram in Fig. 4(a) is plotted by
black bars.

ing a main ridge that varies smoothly and slowly. In the time
domain, the wave-form variation of the Lorenz time series
(switching between two scrolls) seems more “complex” than
that of the Rossler time series (evolving around one focus).
Therefore, the main ridge of the Rossler time series is more
“regular.” For noisy chaotic flow, the principal oscillation
can be extracted with the nearest neighbors, and thus the
main ridge reserves some characteristics of the correspond-
ing clean data, while for the pink noise and surrogate data,
there is no deterministic feature, and thus the main ridge is
irregular, which is distinct from that of (noisy) chaotic flow.
The difference in main ridge pattern can be used to distin-
guish them. NSE is designed to investigate (noisy) chaotic
flow in the viewpoint of time-frequency analysis. Various
methods from other viewpoints, such as the 0-1 test [35,36]
and method based on scale-dependent Lyapunov exponent
[37], have been developed to investigate whether a nonlinear
time series is deterministically chaotic or stochastic. We refer
readers interested in this topic to Refs. [35-37] for more
discussions.

V. CONCLUSION AND DISCUSSION

We performed a time-frequency analysis for chaotic time
series. First, chaotic data were overembedded, and the rela-
tion between the reference phase point and its nearest neigh-
bors was demonstrated. Neighbors represent the state recur-
rences of the reference point and cover data segments with
similar wave forms, but recur with no obvious temporal
regularity. To apply these state recurrences, a neighborhood-
based power spectrum estimator was devised for chaotic
flow, bridging time delay embedding and the frequency do-
main. Then time-frequency analysis with NSE was per-
formed for (noisy) Lorenz time series. We found that NSE
can reveal the frequency related to the principal oscillation of
the dynamical system, which is hidden in the spectra esti-
mated by the periodogram method. Furthermore, NSE was
applied to the Rossler time series and experimental laser
data. We observed that the pattern of main frequencies has
similar characteristics: they vary slowly around a frequency
related to the principal oscillation of the system. We further
applied NSE to pink noise and phase shuffled surrogate data.
The results show that their main ridge patterns are distinct
from that of (noisy) chaotic flow, thus providing an alterna-
tive method to distinguish colored noise from (noisy) chaotic
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flow, though for some real or more chaotic systems, a dis-
tinction may not be that easy.

On the one hand, NSE can reveal some meaningful fea-
tures that classical methods fail to uncover; on the other
hand, NSE also may ‘“average” out some substructures. So
NSE can be adopted together with other methods to make a
comprehensive understanding of the dynamical system. Fur-
ther study of time-frequency analysis with NSE is needed: to
verify the ability of distinguishing chaotic data from colored

PHYSICAL REVIEW E 76, 016220 (2007)

noise systematically and to extract some measures from the
main ridge patterns. Application of NSE for noise reduction
of contaminated chaotic data also appears to be promising.
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