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Autonomous nonlinear systems commonly exhibit simultaneous coexistence, in the phase space, of chaos
and stable steady states, created by subcritical Hopf bifurcation. We show that such chaotic instability can be
destroyed by small-amplitude modulation of any system parameters. The chaotic attractor undergoes boundary
crisis due to a modulation-induced collision with an unstable periodic orbit �UPO�. Such a boundary crisis
exhibits a new resonance that we refer to as “crisis resonance” in the control parameter space. Crisis resonance
implies that crisis occurs at minimum modulation depth due to resonant evolutions of the UPOs and the chaotic
attractor. Crisis resonance occurs close to some critical frequency �we refer to it as “crisis resonance fre-
quency”� or its multiples. The UPO frequency is a good estimate of the crisis resonance frequency. The
small-amplitude parameter modulation destroys chaos in the presence of noise as well. These features are
observed theoretically with the paradigm of autonomous systems, namely, Lorenz equations of thermal hy-
draulics and are in excellent agreement with the experimental results, obtained with an analog circuit of Lorenz
equations.
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In the recent past, controls in the form of small perturba-
tions have been shown to create fascinating effects in the
dynamics of nonlinear systems; in particular, techniques such
as �i� controlling chaos �using OGY concepts �1� or the pro-
portional feedback method �2�� and �ii� tracking the unstable
steady states �3�. These techniques are in general model in-
dependent and have found wide applicability in varied
branches of science including human heart or brain related
nonlinear sciences, fluid dynamics, electronics, chemical re-
actions, lasers, etc. When a system is chaotic and there is no
coexisting stable steady �or periodic� attractor, one of the
major objectives of control of chaos is to get rid of chaotic
irregularity by stabilizing the dynamics at an unstable sta-
tionary �periodic� state �embedded inside the chaotic orbit�
with the help of such small control perturbations. A detailed
review in this direction and a comprehensive list of refer-
ences may be seen in Boccaletti et al. �4�. Unless the system
parameter values are grossly shifted out of the chaotic re-
gime, one hurdle still remains in such occasions: The system
goes back to the chaotic state as soon as the control is
switched off. However, the scenario could be grossly differ-
ent when the chaotic attractor coexists in the phase space
with some stable steady states �or periodic� states �multista-
bility� and the major objective is to move the system out of
the chaotic state and bring in any of those stable steady �pe-
riodic� states. Under such circumstances, it would be prefer-
able to devise a deterministic control mechanism to destroy
the chaotic state, so that the system, as a consequence, settles
into a neighboring stable state and remains there even if the
control is switched off. In this paper, we will demonstrate
such a control mechanism for autonomous nonlinear systems
that commonly exhibit multistability in the form of simulta-
neous coexistence in the phase space of chaotic instability
and steady states, created by subcritical Hopf bifurcation. To
name a few such systems, �i� optically injected NMR �5�,
CO2 �6,7�, and semiconductor lasers �8,9�, �ii� far infrared

�FIR� lasers �10,11�, �iii� thermal hydraulics in two-phase
natural circulation fluid dynamics �12–14�, �iv� nonlinear
electronic circuits �15,16�, and �v� plasma�17�.

The objective of this paper is to explore the effect of
small-amplitude periodic modulation of system parameters
on such chaotic instability. These investigations are moti-
vated not only from the viewpoint of basic research but
keeping in mind its wide applicability. In particular, we
would be interested to know whether such modulation may
lead to the destruction of chaotic instability so that the sys-
tem could regularly remain at steady states even in the mul-
tistable operating regime. We believe such a concept may
then be useful to many autonomous systems �applications�
that are designed to remain at steady states and the extension
of the operating regimes in the multistable regions are ben-
eficial. We consider the paradigm of autonomous nonlinear
systems, namely, Lorenz equations of thermal hydraulics
�18� and demonstrate theoretically the modulation-induced
boundary crisis of the Lorenz chaotic attractor, and validate
experimentally with its analog circuit. Lorenz equations are
described by

Ẋ = − ��X − Y� ,

Ẏ = rX − Y − XZ ,

Ż = XY − bZ . �1�

Figures 1 and 2 show some of our numerical results of
Eqs. �1�. In plot �a� of Fig. 1 we show the bifurcation dia-
gram with r as the control parameter ��=10, b=1.2�. The
trivial steady state �X=Y =Z=0�, denoted by “O” �the hori-
zontal solid line�, undergoes pitchfork bifurcation at the
point P and two stable nontrivial steady states, denoted by S+
and S− are created. Each nontrivial steady state undergoes
subcritical Hopf bifurcation �loss of stability due to collision
with a coexisting unstable periodic orbit �UPO�� at r=rH �at
the points H�. The curve above the line represents the
minimum-X points of U+ UPOs �around S+� at various values*Electronic address: binoy@barc.gov.in
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of r. The curve below the line denotes the maximum-X
points of U−, UPOs �around S−�, respectively. As one reduces
r from rH, these UPOs grow bigger in size in the phase
space. At r=rG�9.0 �denoted by G�, the UPOs become bi-
asymptotic to the trivial saddle �O�, creating homoclinic orbit
�gluing bifurcation� �19–22�. Plot �b� shows the homoclinic
orbit around the trivial saddle �O�, created by the composure
of U+, U− and the saddle O. The stable nontrivial steady state
S+ �plus symbol� lies inside U+ and S− �plus symbol� within
U−. Plot �c� shows the overall bifurcation diagram with r as
the control parameter; �=10, b=1.2. In the case of forward
sweep �increasing r�, the steady states S+ �solid lines� and S−
�solid line� undergo subcritical Hopf bifurcations at rH
�18.25 �denoted by “A”�. Lorenz chaos �the superposition
of the shaded regions� is observed for r�rH. On the con-
trary, when r is reduced from such a high value, the chaotic
attractor �shaded region� coexists in the phase space with the
steady states until there is another jump back to any of these
steady states at r=rc�16.25 �denoted by “B”�. Thus the
multistable interval �denoted by BA� is between 16.25�r
�18.25. The jump at r=rc occurs because the chaotic attrac-
tor collides with any UPOs leading to boundary crisis. Plot
�d� shows such a crisis due to the collision with the U+ UPO
at r�rc and subsequent transition to the steady state S+. The
boundary crisis is illustrated more through phase portraits of
Lorenz chaos and the UPOs in plot �e�. U+ and U− lie in the

closure of the chaotic attractor. This leads to the crisis and
after chaotic transients, the iterations converge to either of
the steady states S+ �circular symbol� or S− �circular sym-
bols�.

We demonstrate now the controlled destruction of Lorenz
chaos within the multistable region rc�r�rH by a small-
amplitude sinusoidal modulation over any system param-
eters. As a typical example, first we consider the modulation
over r in the form of r�1+� cos�2�	t��. By “small” ampli-
tude �say �r�, we imply that no qualitative change would
occur in the dynamics if r is changed by �r without any
modulation. In other words, if the unmodulated system is
originally chaotic, it will remain chaotic even if r is changed
by �r. We first fix the operating value of r=17.0 as an ex-
ample, and show the phase portraits of the chaotic attractor,
UPOs, and the stable steady states in plot �f�. Next we intro-
duce the modulation over r with frequency 	=0.8. As the
modulation depth � is increased beyond 0.006, the chaotic
attractor undergoes boundary crisis. Plot �g� illustrates the
temporal destruction of the chaotic attractor due to collision
with the U+ UPO and subsequent transition to the controlled
steady state S+. The system remains at the same steady state
even when the control is switched off. The threshold �mini-
mum� modulation amplitude ��r� to create such a crisis de-
pends on the remaining system parameters. For instance, in
plot �g� we show the dependence of the threshold amplitude

FIG. 1. �Color online� Controlled destruction of Lorenz chaos. �=10, b=1.2. These values remain unchanged in this figure. �a� The
bifurcation diagram with r as the control parameter. The steady state branch �X=Y =Z=0�, shown by the horizontal solid line, undergoes
pitchfork bifurcation at the point P and two stable nontrivial steady states S+ and S− are created. Each of these nontrivial steady states
undergoes subcritical Hopf bifurcation at the point H. The curve, above the trivial steady-state branch, represents the minimum-X values of
the UPO U+ at various values of r. Similarly, the curve, below the trivial steady-state branch, denotes the maximum-X values of the UPO U−,
respectively. At the point G, both the UPOs become biasymptotic to the saddle steady state, creating a figure-of-eight homoclinic orbit
�gluing bifurcation�. �b� The phase portrait of the biasymptotic homoclinic orbit around the saddle state �O� and the stable nontrivial steady
states �denoted by plus symbols�. �c� Bifurcation diagram with r as the control parameter. In the case of increasing r, the steady states �solid
lines� undergo subcritical Hopf bifurcations at r=rH �denoted by the point “A”�. The system jumps to the chaotic state �the superposition of
shaded regions �darker�� for r�rH. On the contrary, when r is reduced from such a high value, chaos coexists in the phase space with the
steady states until there is another jump back to any of these steady states at r=rc �denoted by the point “B”�. �d� The temporal destruction
of the chaotic attractor at r=16.18 due to the collision with the UPO U− and the subsequent transition to the steady state S−. �e� The phase
portraits of the Lorenz chaos and the UPOs at r=16.2488. The circles in the middle of the UPOs denote the stable steady states. The UPOs
lie in the boundary of the chaotic attractor that results in the crisis. �f� The phase portraits of the chaotic attractor, UPOs, and the steady states
at r=17.0. �g� The temporal destruction of Lorenz chaos due to the introduction of periodic modulation over r with amplitude �r=0.006 and
frequency 	=0.8 at r=17.0. The crisis occurs due to the collision of the chaotic transients with the UPO U+. Past the crisis the system jumps
to the controlled S+ state. �h� The crisis threshold amplitude �r versus r; 	=0.8.
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�r versus r at the same frequency. One may notice that the
threshold amplitude is relatively large near the Hopf bifurca-
tion region �r�rH�. This is expected because the phase-
space separation between the chaotic attractor and the UPOs
is the largest near r=rH. Therefore, to induce crisis, the re-
quired modulation amplitude could be relatively large. By a
similar argument one can explain the smallest threshold am-
plitude near the crisis point �r=rc� where the UPOs are in the
close proximity of the chaotic attractor. Overall, we may also
notice that the parameter modulation technique is very effec-
tive to create the boundary crisis even at small modulation

amplitude. For instance, consider the operating point at r
=17.5. Plot �c� suggests that r should be decreased by r−rc
=1.25 to create the crisis without modulation. However, if
we introduce the parameter modulation, the same may be
performed by modulation amplitude �r�0.2 �see plot �h��.
In fact, along a broad range of the multistable region, chaos
can be destroyed in a similar manner where the threshold
modulation amplitude would be much smaller than the gross
change of r, required for destruction of unmodulated Lorenz
chaos. Moreover, in the case of parameter modulation, the
time required to destroy the transient chaos could be short-
ened by operating at a little higher than the threshold modu-
lation depth. This is because the transient chaos decays very
fast if � is increased even slightly beyond its threshold.

Plot �a� in Fig. 2 shows two threshold destruction bound-
aries ��i� and �ii�� in ��−	� space for r=17, b=1.2, �=10.
The chaotic attractor is destroyed if the modulation param-
eters lie within any of these boundaries. Significantly, the
plot also shows that the threshold amplitude is minimal when
the modulation frequency is equal to some critical frequency
�we denote by 	c=0.825� or its double �2	c�. This is a typical
feature of some resonance phenomenon that we refer to as
“crisis resonance.” �By “crisis resonance” we imply that cri-
sis occurs at minimum modulation amplitude due to resonant
evolutions of the UPOs and the chaotic attractor.� Our analy-
ses suggest that the first crisis resonance occurs around
	c=0.825 and the second resonance around 2	c. To explore
more about the crisis resonance, we analyze a few more
characteristic frequencies of the Lorenz model, namely, UPO
frequency �	u�, steady-state eigenfrequency �	e�, and steady-
state resonance frequency �	s�. �The steady-state eigenfre-
quency 	e is defined as the imaginary part of the complex
pair of eigenvalues, divided by 2�, of the Jacobian one ob-
tains after linear stability analyses around the steady states.�
For fixed �=10 and b=1.2 values, we compute 	e for vari-
ous values of r, shown by the curve. The UPO frequency
�	u� is shown by the curve. �Steady-state resonance fre-
quency, for given values of �, b, and r, is defined as the
modulation frequency at which the linear dynamical re-
sponse to the periodic parameter modulation exhibits a maxi-
mal behavior.� To compute 	s, we fix �=10, b=1.2, r
=16.5, and monitor the dynamical response of the Lorenz
equations by modulating r with 	=0.8 and very small modu-
lation depth ��=0.0002�. The initial conditions are selected
from the basins of steady states. Lorenz model dynamics
follows the modulating signal. We sweep the modulation fre-
quency and indeed notice the maximal behavior of the fre-
quency response at 	=	s. We compute 	s over a broad range
of r and it is shown by the curve in plot �b�. One notices that
	s matches closely with the eigenfrequency 	e in the r�rG
range. This is because there are only two stable steady states
and no UPOs, nor any stable chaotic attractor in this param-
eter regime. Therefore, the resonance is purely determined
by the steady states. As r is increased beyond rG, the devia-
tion between 	s and 	e marginally increases. In this region,
the resonance is influenced by the presence of UPOs in ad-
dition to the steady states. As we approach the Hopf bifurca-
tion region, the UPO size becomes smaller and its effect on
the small-signal resonance becomes more prominant. This

FIG. 2. �Color online� �a� Chaos destruction boundaries in ��
−	� space; r=17, b=1.2, �=10. The crisis resonance frequency
	c=0.825. �b� Steady-state resonance frequency 	s, steady-state
eigenfrequency 	e, and the UPO frequency 	u curve�. �c� The
curves of plot �b� are enlarged in the vicinity of Hopf bifurcation. In
addition, the crisis resonance frequency 	c is shown by the curve.
Notice that 	c is in the close neighborhood of 	u. �d� Bifurcation
diagram with � as the control parameter; r=17, b=1.2. �e� Con-
trolled crisis due to collision with U− UPO and the subsequent
transition to the controlled S− state; �=10, 	=1.7, �=0.1. �f� Bifur-
cation diagram with b as the control parameter; r=17, �=10. �g�
Controlled destruction of Lorenz chaos due to a collision with U−

and the subsequent transition to the controlled S− state because of b
modulation: b=1.2, 	=0.82, �=0.02. �h� Controlled destruction of
Lorenz chaos in the presence of noise. The time series represents
noisy Lorenz chaos; r=17, b=1.2, �=10, 
=1.0. As the modulation
is introduced �	=0.8, �=0.01�, the chaotic attractor is destroyed
and the system jumps to the noisy steady state under control time
series.
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may be noted by the fact that 	s converges to 	u in the Hopf
bifurcation limit.1 We concentrate now on the multistable
region. All the characteristic frequency curves in plot �b�
have been shown with better resolution in plot �c�. We also
show here the crisis resonance frequency 	c curve. One
would notice that 	u lies close to 	c while 	s is larger and 	e
differs most. In other words, the crisis resonance occurs
when the modulation frequency is close to the UPO
frequency.

So far we demonstrated the effect of periodic modulation
over r in destroying the chaotic attractor. The same feature is
observed by modulating other parameters as well, namely, �
and b. For instance, plot �d� shows the multistable regime
with � as the control parameter without modulation; r=17
and b=1.2. The steady state S+ undergoes subcritical Hopf
bifurcation at ���H=7.0 �the point A� and Lorenz chaos is
observed for ���H. If we keep increasing � here on, we
observe that the chaotic attractor coexists with the steady
states for a large range of � until the boundary crisis occurs
at ���c�11.5 �at the point B�. Thus the multistable inter-
val in the � axis is denoted by AB. In this multistable regime,
we have observed the controlled death of Lorenz chaos by
small-amplitude periodic modulation over �. For instance,
plot �e� shows the temporal destruction of Lorenz chaos in
the second crisis resonance region ��=10, 	=1.7, �=0.1�
due to the collision with the U− UPO. Similar controlled
crises have also been observed with b modulation. Plot �f�
shows the bifurcation diagram with b as the control param-
eter for the unmodulated Lorenz model ��=10, r=17�. The
steady state S− undergoes subcritical Hopf bifurcation at b
�bH�0.85 �denoted by the point “A”�. For b�bH Lorenz
chaos is observed. As b is increased from bH, Lorenz chaos
coexists with the steady state S− until the boundary crisis
occurs at b�bc�1.35 and the simulations settle down to the
S− steady state for b�bc. Plot �g� shows a typical example of
controlled destruction of chaos by b modulation �b=1.2,
�=0.02, 	=0.82�. In each of the three types of parameter
modulations, the crisis resonance occurs when the modula-
tion frequency is close to the UPO frequency. Also, crisis
threshold curves exist around such crisis resonance fre-
quency or its multiples. Therefore, it is apparent that a small-
amplitude modulation over any parameter is effective in cre-
ating global changes �such as the death of the chaotic
attractor� if the modulation frequency is chosen within the
resonance regions. Also such a crisis occurs due to UPO-
induced resonance. Finally, in plot �h� we demonstrate the
applicability of this method in the presence of noise. We
introduce to each equation in Eqs. �1� an additive white
Gaussian noise of standard deviation 
 and average value
zero. The time series shows a typical example of noisy Lo-
renz chaos for �=10, r=17, b=1.2, 
=1.0. Next we apply
control modulation over r �	=0.8, �=0.01� to notice the de-
struction of chaos and the system goes to a noisy steady
state, driven by periodic modulation. All these features indi-
cate the versatility of the parameter modulation approach.

These theoretical results are in good agreement with our
experimental observations �23� with an analog circuit of Lo-
renz equations �Fig. 3�. The circuit equations are as follows:

Ẋ = −
1

R1C
�X − Y� ,

Ẏ = −
1

R3C
XZ +

1

R4C
X −

1

R5C
Y +

Vd

R8C
X ,

Ż = −
1

R6C
XY −

1

R7C
Z . �2�

The circuit components are as follows: R1=R2=50 k�,
R3=R6=5 k�, R4=25 k�, R5=100 k�, R7=333 k�, R8
=100 k�, C=1 nF. In the schematic diagram of the analog
circuit, conventional symbols are used to describe the opera-
tional amplifiers, analog multipliers, and inverters. For a gen-
eralized experimental setup of Lorenz circuit we have the
provision of two voltage sources, represented by Vdc and Vac.
For the experiments reported here, Vdc represents the dc off-
set voltage while Vac denotes the periodic component. Vac
=� �Vdc �cos�2�	t� where the symbol � implies the absolute
magnitude of Vdc and � refers to the control modulation
depth. We may note that the parameter � in the Lorenz equa-
tion may be correlated to

Vd

R1C , where Vd=Vdc+Vac. Similarly,
1

R7C to b and 1
R4C +

Vd

R8C to r. Some experimental results with
this circuit are presented in Fig. 4. Plot �a� depicts the gen-
eralized bistability with Vdc as the control parameter without
any modulation �Vac=0�. The bifurcation diagram with in-
creasing Vdc is denoted by the symbols. The circuit remains
at the steady state S+ until Vdc=−1.5 V �the point “A”� and
then undergoes subcritical Hopf bifurcation and jumps to
chaos where it remains even if we increase Vdc further. From
such a high value, we then decrease Vdc and notice that the
circuit remains chaotic until Vdc�−2.5 V �the point B�. Thus
the bistable region BA is −2.5 V�Vdc�−1.5 V. These ob-
servations are very much similar to the theoretical results in

1For r�rH, 	u grossly differs from 	s and 	E, the UPO frequency
sharply decreases as we decrease r. At the gluing bifurcation limit
�r=rG� the frequency approaches zero.

FIG. 3. An analog circuit of Lorenz equations.
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Fig. 1�a�. We fix the value of Vdc=−2.1 V and show the
chaotic time series in plot �b�. Next we apply control modu-
lation of frequency 	=1.3 kHz and modulation depth �. As
we increase ��0.014, the chaotic attractor no longer re-
mains stable. Plot �c� shows the temporal transition from the
chaotic state to the controlled steady state S+. The crisis oc-
curs due to the collision with the UPO U+. Plot �d� shows the
uncontrolled chaotic attractor and the controlled steady state.
We determine the crisis threshold amplitude at various values
of Vdc along the multistable regime. The modulation fre-
quency is kept constant at 1.3 kHz. Plot �e� shows the crisis
threshold curve in � versus Vac space. Very similar to the
theoretical results �shown in Fig. 1�e��, the threshold is maxi-
mum near the subcritical Hopf bifurcation point and de-
creases along with Vdc. Crisis threshold � is minimum near

the uncontrolled crisis condition �Vdc	−2.5 V�. Plot �f�
shows the crisis threshold curves in the modulation depth
versus the modulation frequency space at Vac=−2.1 V. We
find the crisis threshold curve exhibits minimal destruction
amplitude at 	=1.3 kHz and at 2.6 kHz. Thus the crisis reso-
nance frequency is 1.3 kHz. Therefore the experiments also
demonstrate controlled destruction of chaos by small-
amplitude parameter modulation and the existence of two
crisis resonance regions in the control modulation parameter
space.

Notably, after Haken’s famous revelations �24� of striking
similarity between the two-level laser model and Lorenz
equations, extensive experiments and theory have observed
Lorenz-Haken chaos and subcritical Hopf bifurcation in FIR
lasers �10,11�. Therefore, we believe our concept of control-
ling multistability in autonomous systems is at least appli-
cable in thermal hydraulics and FIR lasers. Moreover, since
subcritical Hopf bifurcation is a generic phenomenon and the
concept is based on periodic modulation of system param-
eters, we believe this technique should have much wider ap-
plicability. We have indeed successfully demonstrated theo-
retically similar destruction of chaos in the case of an
optically injected multistable semiconductor laser �25�. De-
tails of these analyses would be published elsewhere.

We may remark that the Lorenz model is a paradigm for
the thermal fluid dynamics based systems where the param-
eters r and � refer to Rayleigh number and Prandtl number,
respectively. In actual fluid dynamical systems, the coexist-
ence of regular �unidirectional flow with mild fluctuations of
velocity� and chaotic instability �bidirectional turbulent flow
with large fluctuations� states cannot be ruled out, as evident
from the recent experiments with a double-channel natural
convection test facility �12�. This paper reports �i� sudden
jump from steady flow to the oscillatory flow at a critical
condition and �ii� hysteresis between steady single-phase
flow and bidirectional oscillatory two-phase flow. We believe
these features are signatures of subcritical Hopf bifurcation.
The bidirectional oscillatory flow could be undesirable in
many applications, for instance, in the natural circulation
coolant flow in the new generation natural circulation
nuclear reactors �12,13,26� based electric power generators,
and therefore needs attention. Conventionally, the operating
regime is limited to avoid the multistable regime. However,
inside the multistable regime, the operating power is higher
and could be useful for handling large capacity power gen-
eration. While there may be other provisions to control mild
deviations from the designed state, we believe, tackling the
chaotic state is a more complex problem. In such circum-
stances, the small-amplitude modulation of some suitable pa-
rameters could be a very useful provision to destroy the cha-
otic state and as a consequence, the system comes back to the
designed state.2 Therefore, chaos-related problems may be
resolved and an extension of the operating regime within the
multistable region looks feasible.

2In the case of symmetric systems, such as Lorenz equations,
there are two steady states. In fluid dynamics applications one may
also correlate the same with two counterpropagating flows �12�. If
the system is designed for one steady state �the flow in a preferen-

FIG. 4. �Color online� Experimental demonstration of the con-
trolled crisis of Lorenz chaos. �a� The bifurcation diagram with
X�V� versus Vdc as the control parameter. While increasing Vdc, a
jump is observed from the S+ steady state to the chaotic state at
point A; Vdc=−1.5 V �approximately�. When we decrease Vdc from
such a high value, the chaotic state persists up to the point B; Vdc

=−2.5 V �approximately�. �b� Chaotic time series at Vdc=−2.1 V.
Under periodic voltage �Vdc=−2.1 V, �=0.014, 	=1.3 kHz�, the
chaotic attractor is destroyed due to a collision with the U+ UPO,
and the system goes to the controlled S+ steady state. �d� The un-
controlled Lorenz chaos and the controlled S+ steady state. The
parameter values are the same as in �c�. �e� The crisis threshold
curve in Vdc versus � space; 	=1.3 kHz. �f� The crisis threshold
curve in 	 versus � space; Vdc=−2.1 V. This curve exhibits two
crisis resonance regions, one around 	c=1.3 kHz and the other
around 	=2	c.
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In general, a large class of nonlinear systems may be
broadly classified into two categories: �i� autonomous and
�ii� periodically forced �or parametrically excited�. In the
current paper, we have considered some standard models of
autonomous systems and demonstrated the controlled de-
struction of chaos by small-amplitude periodic modulation of
any system parameters. Multistability appears in these sys-
tems due to subcritical Hopf bifurcation. Now let us draw
attention to recent reports in the case of periodically forced
�parametrically excited� systems and equivalent multiparam-
eter, multidimensional diffeomorphisms. Indeed, the periodic
modulation of system parameters has been successfully ap-
plied �27� to destroy an exceedingly complex �but organized�
multistable scenario, namely, the self-similar organization of
Gavrilov-Silnikov-Newhouse sinks �28� in the case of the
Henon map. The modulation approach has also been experi-
mentally tested with a CO2 laser �29� and a doped fiber laser
�30�. In these experiments, laser parameters are driven by
two periodic signals. The first periodic modulation makes the
laser multistable where the coexisting periodic states are cre-
ated by saddlenode bifurcations due to the overlap of some
or other subharmonic resonances. The second modulation is
then applied to destroy some of these stable periodic states
suitably. Besides, a slow periodic modulation over the con-
trol parameter may induce an interaction between stable and
unstable periodic orbits,3 causing a resonance at the modula-
tion frequency. This has been observed numerically with la-
ser rate equations and quadratic maps, and experimentally

with a cavity-loss modulated CO2 laser �32�. Thus we be-
lieve the periodic modulation of system parameters could
play a very significant role in determining the multistable
nature in autonomous as well as periodically forced nonlin-
ear systems.

To conclude, we have demonstrated that small-amplitude
periodic modulation of any system parameters may lead to
global changes in the dynamics of the multistable systems
that exhibit simultaneous coexistence in the phase space of
chaotic and steady states. In particular, such a modulation
may lead to the boundary crisis of the chaotic attractor due to
a collision with an UPO, and subsequent transition to the
steady states. The threshold modulation depth for crisis
would be minimum if the modulation frequency is equal to
�or multiples of� crisis resonance frequency that is close to
UPO rotation frequency. The parameter modulation concept
works in the presence of noise as well. These results are
theoretically demonstrated with Lorenz’s equations and are
in excellent agreement with experimental observations with
an analog circuit of Lorenz equations.
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