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Chaotic phase synchronization in scale-free networks of bursting neurons
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There is experimental evidence that the neuronal network in some areas of the brain cortex presents the
scale-free property, i.e., the neuron connectivity is distributed according to a power law, such that neurons are
more likely to couple with other already well-connected ones. From the information processing point of view,
it is relevant that neuron bursting activity be synchronized in some weak sense. A coherent output of coupled
neurons in a network can be described through the chaotic phase synchronization of their bursting activity. We
investigated this phenomenon using a two-dimensional map to describe neurons with spiking-bursting activity
in a scale-free network, in particular the dependence of the chaotic phase synchronization on the coupling
properties of the network as well as its synchronization with an externally applied time-periodic signal.
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I. INTRODUCTION

A biological neuron is a unit of a large system, the brain,
consisting of about a hundred specialized modules with dif-
ferent functions, each of them being a complex network it-
self, where each neuron receives excitatory inputs from a few
thousands of other neurons [1]. Neuronal activity (i.e., the
evolution of the action potential) in cortical circuits often
presents two distinct time scales: (i) a fast time scale char-
acterized by repetitive spiking; and (ii) a slow time scale
with bursting activity, where neuron activity alternates be-
tween a quiescent state and spiking trains [2]. A characteris-
tic feature of cortical circuits is that they produce common
rhythmic bursting, while its individual neurons, when iso-
lated, show irregular bursts [3]. Many mathematical models
emulate this spiking-bursting behavior, ranging from differ-
ential equations [4] to discrete-time maps [5,6].

Interacting bursting neurons can exhibit basically two
types of common rhythmic bursting: synchronization of
bursts, where the neurons burst at the same time, regardless
of the further evolution of their spikes; and complete syn-
chronization, which involves also synchronization of spikes
[2]. There follows that burst synchronization is weaker than
complete synchronization and thus easier to achieve, in terms
of the coupling strength needed. The existence of a slow time
scale in coupled bursting neurons enables us to define a
bursting phase and frequency (its time rate) for each of them,
even though on the spiking time scale they behave asynchro-
nously [7]. From this point of view, the existence of coherent
bursting may be regarded as an example of chaotic phase
synchronization, which is a widely investigated phenomenon
in a variety of physical and biological systems [8]. Chaotic
phase synchronization is defined as the occurrence of a cer-
tain relation between phases of interacting systems, bursting
neurons in our case, while the amplitudes (related to the
spiking time scales) can remain chaotic and uncorrelated [9].

The transition to mutual chaotic phase synchronization in
bursting neurons was shown to occur as the coupling
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strength is large enough, for a global coupling scheme where
each neuron interacts with the mean field produced by the
network [7]. This problem has been studied in the context of
a complete synchronization of neuron activity, and the onset
of synchronization was found to depend only on the number
of connections received by each neuron, provided this num-
ber is the same for all neurons, regardless of other details of
the network [2]. For chaotic phase synchronization, however,
there remains open the question of how the transition to syn-
chronized bursting depends on network properties, as the
coupling topology and strength.

Recent experimental evidence suggests that some brain
activities can be assigned to scale-free networks, as revealed
by functional magnetic resonance imaging [10]. In scale-free
networks the number k of connections per neuron satisfies a
power-law probability distribution P(k) ~ k™, in such a way
that highly connected neurons are connected, on the average,
with highly connected ones, a property also found in many
social and computer networks [11,12]. The scaling exponent
w has been found to take on values between 2.0 and 2.2,
with an average number of connections (k)=~4 per neuron
[10]. This topology is consistent with the fact that the brain
network increases its size by the addition of new neurons,
and the latter attach preferentially to already well-connected
neurons [1].

Scale-free networks appear in a wide variety of situations,
as in the World Wide Web [13], earthquakes [14], large com-
puter programs [15], epidemic spreading [16], human sexual
contacts [17], protein domain distributions [18], and cellular
metabolic chains [19], just to mention a few representative
examples. The peculiar coupling topology exhibited by
scale-free networks makes them easier to synchronize than
some types of regular lattices [20,21]. We have found that
this also occurs for a weaker form of synchronization called
direction coherence (a discrete-time analog of phase syn-
chronization) in coupled chaotic maps [22]. Chou and Kurths
have observed an interesting property of scale-free networks
with prospective applications for neuronal lattices: when
complete synchronization is achieved in such lattices, the
coupling strength becomes weighted and correlated with the
topology due to a hierarchical transition to synchronization
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in heterogeneous networks [23]. The use of a scale-free lat-
tice does not necessarily imply that the shortcuts connect
distant neurons, since the physical distance among neurons
does not play any role in the scale-free model we have used.
Hence our model can describe electrical synapses, where the
coupling can only exist between neighboring neurons
[24,25]. Chemical synapses, on the other hand, would need
an on-off threshold in order to model neuron excitability
[5,26].

In this paper we investigate the onset of chaotic phase
synchronization of bursting neurons modeled by a network
of coupled two-dimensional maps exhibiting the scale-free
property. Since neuronal networks are embedded in a three-
dimensional lattice in the brain, where the nodes are the neu-
rons, connected by axons and dendrites, we use a coupled
map lattice possessing a power-law connectivity per neuron
with exponent w=2.08, compatible with the networks de-
scribed in Refs. [10]. We use some numerical diagnostics
related to the time evolution of the bursting phases and their
time rates to characterize the transition to a phase synchro-
nized state. Such a transition is found to be dependent on the
coupling strength as well as on properties of the coupling
scheme used in the obtention of the scale-free lattice. More-
over, we analyze the synchronization of the neuron bursting
evolution with an externally applied harmonic signal, which
has been proposed as an electrical stimulation of the brain to
suppress undesirable rhythms related to pathologies [27].

The remainder of this paper is organized as follows: in
Sec. II we present the properties of the map describing neu-
ron dynamics, as well as the definition of a geometrical
phase for the bursting dynamics. Sec. III describes the ob-
tention of a scale-free lattice and some of its properties. Sec-
tion IV deals with the dependence of chaotic phase synchro-
nization on the network properties using suitable numerical
diagnostics. In Sec. V we consider the synchronization be-
tween the bursting phases of neurons and the driving phase
provided by a time-periodic external signal applied to one
selected neuron. Our conclusions are left to the last section.

II. NEURON DYNAMICS AND PHASE
SYNCHRONIZATION

Bursting neurons present two time scales, since there is a
slow process (bursting) modulating the fast action-potential
firing (spiking) [28]. The emergence of such multiple time
scales is only possible in neuron models consisting of three
or more ordinary differential equations, like the Hindmarch-
Rose model [4]. A further simplification is obtained by using
discrete-time systems, and the simpler maps with this prop-
erty are two-dimensional, like the model proposed by Rulkov

[6]
o
xn+1=Ti+ym (1)
yn+1=yn_0-xn+18’ (2)

where x,, is the fast and y,, is the slow dynamical variable.
The first variable has a dynamical behavior emulating the

PHYSICAL REVIEW E 76, 016218 (2007)

0 500 1000

FIG. 1. Time evolution of the (a) fast and (b) slow variables in
the Rulkov map (1) and (2) for @=4.1, 0=8=0.001, showing the
times sampled to define a bursting phase.

spiking-bursting activity of a neuron, depending on the pa-
rameter «, whereas the latter variable undergoes a slow evo-
lution because of the small values taken on by the parameters
o and B, which model the action of external dc bias current
and synaptic inputs on a given isolated neuron [29].

The parameter « is selected within the range [4.1,4.4], for
which the map (1) and (2) yields chaotic dynamics for the
fast variable x, with the different time scales [Fig. 1(a)].
When considering assemblies of neurons we assign slightly
different values of a for each map within this interval, taking
into account the naturally occurring diversity of neuron cells.
However, for such parameter values the uncoupled maps
may produce either chaotic burst or simply continuous cha-
otic spiking, dependent on «. This reinforces the necessity of
neuron coupling to produce a coherent neuron bursting ac-
tivity in such inhomogeneous networks.

The emergence of bursting in the map (1) and (2) can be
understood by using a simplified description of its dynamics.
Since y, is always a small input from slow dynamics we can
approximate it by a constant y and consider the one-
dimensional resulting map, which has generally three fixed
points XT,2,3 such that the first two undergo a saddle-node
bifurcation as y approaches a critical value y" [6]. When y
=" the fixed points xiz disappear and a narrow channel
forms between the map function and the 45° line, such that
the fast variable displays chaotic oscillations corresponding
to the spikes within a given burst. The end of the burst, on
the other hand, is due to an external crisis of the chaotic
attractor.

Unlike the bursting behavior exhibited by the fast vari-
able, the slow variable y, presents nearly regular saw-tooth
oscillations, which will turn to be useful in order to define a
bursting phase [Fig. 1(b)]. A burst is considered to begin
when the slow variable has a local maximum, in well-defined
instants of time we call n;. The duration of the chaotic burst,
ny.1—ny, depends on the variable x,, and fluctuates in an ir-
regular fashion when x,, undergoes chaotic evolution. Never-

016218-2



CHAOTIC PHASE SYNCHRONIZATION IN SCALE-FREE...

theless, we can define a phase describing the time evolution
within each burst and varying from O to 27 as n evolves
from ny to ny,:

‘ (3)

n-n
o(n) =2k +27—,
Mey1 — Ny

and, since ny,,—ny is different for each burst, there follows
that the bursting phase rate also varies with time, such that
we must look at the bursting frequency defined by

Q= lim o(n) - ¢(0) ‘

n—o n

(4)

If the neurons are not coupled whatsoever, they can burst
at different times yielding a typically noncoherent output.
Their coupling, on the other hand, can force them to burst at
roughly the same instant. Rigorous equality of bursting times
cannot be achieved in a heterogeneous lattice since the inter-
burst intervals n,, | —n, are different in general. However, the
outstanding feature of chaotic phase synchronization is that
the phases can mutually adjust themselves, while the ampli-
tudes remain uncorrelated. Hence in two phase synchronized
neurons the times at which they burst are close, but their
spiking activity is poorly or not correlated at all.

III. SCALE-FREE FUNCTIONAL BRAIN NETWORKS

From now on, we will consider an assembly of N neurons,
each of them being described by the map (1) and (2). Many
problems involving neural networks may be treated from the
graph-theoretical point of view, such that the Euclidean dis-
tance between neurons does not play a significant role [30].
However, since biological neurons are embedded in a three-
dimensional lattice in the brain, connected by axons and den-
drites, it turns out to be more convenient to use a coupled
map lattice embedded in a Euclidean space [31].

Coupled map lattices are paradigmatic models for a great
variety of complex systems, presenting both space and time
as discrete variables, while retaining a continuous state vari-
able capable to undergo a smooth nonlinear dynamics [32].
Many theoretical studies of neural networks use coupled map
lattices as models [33], due to some advantages like the need
of less computer time in comparison with lattices of differ-
ential equations, which is particularly important if the re-
quired simulation requires the number of neurons N to be
large.

We examine, in particular, a one-dimensional ch_ain of N
coupled maps of the form (1) and (2), where (x;(;)’ yfl’)) repre-
sents the fast and slow variables for the neuron
i(i=1,2,...N) at time n:

(i)
i a i i i i . .
O =+ + OGN (G #i), (5)
1+(x))

X
=y =0 + g, ()

where we consider the case where all map parameters can be
different for each site, and the coupling is performed only on
the fast time scale by means of the term C(’), the form of
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which depends on the network topology chosen to describe
the neural network.

The latter is a question of paramount importance in the
modeling of neuron assemblies in the brain. For example, the
cerebral cortex has approximately N=10'" neurons, each of
them receiving excitatory inputs from a few thousand of
other neurons [10]. When the degree of connectivity, i.e., the
average number of connections per neuron (k), is large
enough, a global type of coupling has been usually chosen,

N
) =2 20, 7)
Nj:l

where each neuron is coupled to the “mean field” generated
by the entire lattice. This form of coupling has been exten-
sively used in studies of synchronization of bursting neurons
[6,7]. However, since such a description does not take into
account the dependence of the coupling on the distance be-
tween neurons, and the connectivity is the same for all neu-
rons ((k)=N), the global coupling can only be considered a
simplified model.

More realistic models of brain networks are quite difficult
to build since networks of individual neurons are known for
a limited number of cases only, as for the worm C. elegans,
for which N=282 and (k)=14 [34]. We usually have data
from networks formed by neuron clusters (i.e., interrelation
of functions related to cortical regions), detailed studies be-
ing available for the cortico-cortical network of cats [35] and
macaques [36]. Other studies have considered the functional
networks obtained through functional magnetic resonance
imaging in humans, where the functional connections are
defined from the correlation properties of their time evolu-
tion, and for which N=4891 and (k)=4.12 [10].

A common property emerging from such complex neuron
networks is that the connectivity is nonuniform, presenting a
small number of highly connected neurons, while most of
them remain poorly connected. In order to quantify the con-
nection properties of the lattices there are two quantities of
interest: (i) the shortest path length L, defined as the mini-
mum number of links necessary to connect two nodes; and
(ii) the clustering coefficient C, or the fraction of connections
between the neighbors with respect to maximum possible.
Regular lattices connecting only near neighbors display a
relatively large amount of clustering C, but they fail to pro-
vide nonlocal interactions, which accounts for a large aver-
age distance L. Random graphs, on the other hand, have a
substantially smaller value for L due to the randomly distrib-
uted nonlocal interactions, but they possess low values of the
clustering coefficient C due to the sparseness of the connec-
tivity among sites.

In the human functional network the shortest path length
was found to be L=6.0, with a cluster coefficient of C
=0.15 [10]. If this network were to be treated as a random
graph, these quantities would take on the values L,,,iom
=6.0 and C,,,4,,=0.000 89. Hence a more realistic network
topology should be between the limiting cases of a regular
(globally coupled) and a random lattices. Such a network
exhibits the so-called small-world property, for it has a small
value of L (just like in a random graph) while retaining a
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FIG. 2. (a) Scheme of the initial lattice with Ny=11 sites used to build a scale-free lattice. (b) Probability distribution for the connectivity
of the final scale-free lattice with N=230 sites. The solid line is a least-squares fit with slope —2.08.

comparatively large clustering, as it occurs for regular lat-
tices. Both properties can be achieved simultaneously
through introducing random shortcuts into an otherwise
purely regular lattice [37,38].

Besides having the small-world property, the human func-
tional network is also characterized by a highly nonhomoge-
neous distribution characteristic of a scale-free network, for
which the number of connections per node presents a statis-
tical power-law dependence [11]. If P(k)dk denotes the prob-
ability of finding a node with connectivity between k and k
+dk, for scale-free lattices one has P(k) ~ k™™ where w>1.
This power-law distribution of connectivities is regarded as a
consequence of two generic mechanisms [11]: networks ex-
pand continuously by the addition of new nodes and new
nodes attach preferentially to already well-connected nodes.
Chialvo and co-workers have shown that the connectivity
distribution of the human functional network satisfies the
scale-free scaling with an exponent w between 2.0 and 2.2
[10]. By way of contrast, the macaque cortico-cortical net-
work fails to present the scale-free property, maybe due to
the smallness of the network size, a problem also observed
for the cat network [39].

In this paper we use the Barabdsi-Albert coupling pre-
scription to generate scale-free lattice of the form (5) and (6),
where the coupling term is

) =52 (®)

jel

where €>0 is the coupling strength and we assumed that
each site i is coupled with a set I comprising k) other sites
randomly chosen along the lattice according to the procedure
to be explained below. We use free boundary conditions for
the lattice and random initial conditions xi’).

We build the scale-free lattice by means of a sequence of
steps s=0,1,2,...5,,,» starting from an initial lattice with
Ny=11 sites [Fig. 2(a)]. At each step s a new site is inserted

in the lattice of size N,, such that it is connected to ¢ ran-
domly chosen sites. We observed that € must be equal or
greater than 2 in order to generate scale-free networks. Ac-
cording to the scale-free distribution, the connections occur
preferentially with the more connected sites, which can be
accomplished by using a different probability for each site
P_(Y') =ksl)/ N,, where kE') is the number of connections per site
at the step s. The process is repeated until we achieve a
desired lattice size N, which we choose as N=230 in the
numerical simulations to be presented in this paper. After a
number s,,,, of steps we have k) connections per site, cor-
responding to a probability P)=k®/N. Figure 2(b) shows a
histogram for the number of sites with connectivity k, ob-
tained through this procedure for N=230 sites. The numeri-
cal approximation to the (non-normalized) probability distri-
bution function is shown to display the scale-free signature
of a power-law scaling k™ with a slope w=2.08, which
compares well with the experimental values reported in Ref.
[10].

A scale-free coupled map lattice obtained from Egs. (5)
and (6) can be written also in the form

(i) ¥ W, € . 5)

i _ i

Xpt1 = 1+ (xf;))z +y, + k(l>J:21 gij-xn 5 (9)
i =y, = o)+ B0, (10)

where g;; are the elements of a NX N connectivity matrix,
where g;;=1 if the sites i and j are connected, and zero
otherwise. Since the connectivity per site is different, each
line of the matrix g;; has a different number of 1’s distributed
through the columns, the remaining elements being padded
with 0’s. However, the connectivity matrix is symmetric
(gi=g;:) due to the process of construction of the scale-free
lattice, i.e., the connectivity matrix evolves through a finite
number of steps conserving its symmetry.
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To conclude this section, we wish to emphasize that, in
order for this coupled map lattice to exhibit a completely
synchronized state,

B N Y L P C P e 0%
it is necessary that the latter be a possible solution of Egs. (9)
and (10). We remark that it would be also necessary that such
a solution, if any, should be stable under infinitesimal pertur-
bations along directions transversal to the state (11). How-
ever, since the parameters of the model (e, B, o, and k) are
different (and randomly chosen inside a given interval) for
the coupled sites, we can rule out the possibility of having a
completely synchronized state. There can be chaotic phase
synchronization, however, as we will see in the next section.

IV. PHASE SYNCHRONIZATION OF BURSTING
NEURONS

Even though we cannot have completely synchronized
states for the coupled map lattice (9) and (10), this does not
mean the absence of coherent behavior in the system. In Sec.
IT we have defined a phase for the bursting dynamics of an
isolated neuron, in such a way that the chaotic spiking evo-
lution in the fast time scale is modulated by a nearly regular
oscillation in the slow time scale. We can thus look for a
form of coherent behavior characterized by the near coinci-
dence of the bursting phases for an assembly of connected
neurons, which is identified as chaotic phase synchroniza-
tion. The latter has been extensively investigated in a variety
of physical and biological systems [40].

For just two coupled neurons, we could describe chaotic
phase synchronization simply by stating that their phases be
approximately equal, up to a given tolerance C: |(p(1)—<p(2)|
< C<1. In the case of a large number N of systems, how-
ever, other diagnostics of phase synchronization need to be
used. One such indicator is the mean field of the lattice,

M =

M =

X, (12)

=z |-
N

J
If the neurons are weakly coupled, for example, since they
burst at different times in a noncoherent fashion, the mean
field fluctuates irregularly with small amplitudes. On the
other hand, if the neurons burst together synchronously a
nonzero mean field is formed and M presents regular oscil-
lations (due to the common rhythm) of comparatively large
amplitude. Only the slow time scale dynamics becomes co-
herent as the neurons burst synchronously, and the fast time
scale spiking remains incoherent and does not contribute to
the mean field dynamics, which is kept close to a periodic
regime [7].

If we consider an assembly of uncoupled neurons (e=0)
with different values of the a parameter chosen within the
interval 4.1<a<<4.4 the mean field indeed has small-
amplitude noisy fluctuations [Fig. 3(a)] indicating that the
neurons are not bursting in phase, as can be seen by compar-
ing the uncorrelated bursting activity of two selected neurons
[Figs. 3(c) and 3(e)]. On the other hand, as long as the neu-
rons are coupled in the scale-free lattice, for a sufficiently
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FIG. 3. Time evolution of the mean field for a scale-free lattice
of Rulkov neurons with (a) €=0, and (b) e=0.04. Time evolution of
the fast variable for a map with (¢) a'?=4.1 and (e) V=44 for
€=0.0 where bursting is uncorrelated. (d) and (f) are the respective
situations for €=0.04, showing approximate synchronization of
bursting.

large coupling strength e the mean field exhibits large-
amplitude oscillations [Fig. 3(b)] since neurons burst at ap-
proximately the same time, in spite of their spiking evolution
being poorly or not correlated at all [Figs. 3(d) and 3(f)].
Figure 4 shows the time evolution of the phases of these
bursting neurons. While both maps present a monotonic in-
crease of their phases with time, if they are uncoupled these
evolutions are mutually independent since their phase differ-
ence grows with time and eventually becomes as large as the
phases themselves. The phase difference is kept in a small
value if the neurons are coupled in the network.

80

< 0=4.4

o=4.4

9?40

20

5(())430 50800 51300 51700
n

FIG. 4. Time evolution of the phase for two selected maps
(e"=4.1 and a¥'=4.4) belonging to a scale-free lattice of Rulkov
neurons with e=0 (dashed lines) and €=0.04 (full lines).
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If the oscillator phases are synchronized, so are their time
rates, also called bursting frequencies, hence we can charac-
terize numerically synchronization of bursting by the exis-
tence of synchronization plateaus We compare the frequency
of the coupled neuron Q”, given by Eq. (4), with the unper-
turbed frequencies observed for zero coupling, Q( , the latter
being expected to fluctuate randomly. If there is chaotic
phase synchronization, a number of sites form a synchroni-
zation plateau with a constant value of Q(i) for many sites
characterized by different values of Qg) (not necessarily
neighbors in the lattice, though).

The behavior of the bursting frequencies Q is illustrated
by Fig. 5, where we plotted them vs the zero-coupling fre-
quencies Q which, for the parameter values we adopted,
take on values within the interval [0.0175,0.0330]. When the
coupling strength is low enough there is no synchronization
of bursting and we expect the frequencies to approach their
zero-coupling limit. In fact they are distributed so as to have
a linear trend Q(i)%ﬂg). Increasing the coupling strength
indeed leads to phase and frequency synchronization of
bursts, since the frequencies are distributed around a mean
value of ~0.016 with a small dispersion coming from the
imperfect character of the phase synchronized states.

We can also use, as a diagnostic of chaotic phase synchro-
nization, the complex phase order parameter

N

=3 explied). (13)

j=1

2, =R, exp(i®,)

where R, and ®, are the amplitude and angle, respectively,
of a centroid phase vector for a one-dimensional lattice with
periodic boundary conditions. For uncoupled maps, we
would expect patterns for which the bursting phases ¢,
spatially uncorrelated such that their contribution to the re-
sult of the summation in Eq. (13) is ty%ncally small. In par-
ticular, for a uniform distribution of <p the order parameter
magnitude would be zero. On the other hand, in a completely
phase synchronized state the order parameter magnitude rap-
idly tends to unity, indicating a coherent superposition of the
phase vectors for all sites with the same amplitudes R, at
each time. The time averaged order parameter magnitude

2 R,, (14)

n=m

R=lim —

T T

where we have discarded the first m—1 transient map itera-
tions, can be used to investigate the transition to phase syn-
chronization of bursts as the coupling strength is varied, as
illustrated by Fig. 6.

The scale-free lattice we have considered is obtained
through a sequence of steps, beginning from a seed lattice of
Ny=11 sites and adding randomly sites with € connections
for each step until reaching the final number of N=230 sites.
We observed that a scale-free lattice with good synchroniza-
tion properties is possible only for € =2, since for £=1 the
average order parameter cannot achieve values larger than
0.75 even if strong coupling is used. On the other hand, for
€=2 and a coupling strong enough we have order parameter
values fluctuating with time around approximately 0.8 [like
the case for which €=0.07 in Fig. 7(a)]. As this coupling

0 0.05 0.1 0.15 0.2

FIG. 6. Time-averaged order parameter as a function of the cou-
pling strength & for a scale-free lattice with N=230 and built with a
different number of links per step: €=1 (squares), £=2 (circles),
and €=3 (crosses).
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FIG. 7. (a) Time evolution of the order parameter magnitude for
two values of the coupling strength. (b) Average order parameter
magnitude as a function of e for different lattice sizes. The critical
value of €.=0.02 results from an extrapolation to the thermody-
namical limit. (¢) Scaling behavior of the average order parameter
magnitude near the critical point. The full line represents a least-
squares fit giving a power law with exponent 0.5 (see text).
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strength is decreased the phase synchronization of bursting
becomes more imperfect, fluctuating around a smaller value
of R and with more dispersion as well [as illustrated by the
case of €=0.035 in Fig. 7(a)]. The minimum value of the
mean order parameter (R),,;, is obtained for zero coupling,
and decreases as the lattice turns larger [Fig. 7(b)]. Suppos-
ing that (R),,;, goes to a small (yet probably nonzero) limit-
ing value as we take the thermodynamical limit (N — ) we
extrapolated the behavior illustrated by Fig. 7(b) for increas-
ing lattice size and considered €,=0.02 as an approximate
value for the critical coupling strength.

In Ref. [7] the transition to chaotic phase synchronization
of bursting was identified as a second-order phase transition.
We have verified this claim in the case of a scale-free lattice
by considering the behavior near criticality of the mean order
parameter, as depicted by Fig. 7(c), where we obtained a
power-law scaling which is analogous to the behavior ob-
served in Kuramoto’s model of mean field coupled phase
oscillators [41],

<R> -~ |E_€c

“ (15)

where a least squares fit leads to the exponent «
=0.502+0.007, which agrees with the exponent 1/2 charac-
teristic of magnetic phase transition [42].

V. EXTERNAL PHASE SYNCHRONIZATION

In the previous section we demonstrated that neurons in a
scale-free coupled lattice are able to synchronize their burst-
ing activities, even though the chaotic spiking in the fast time
scale remains uncorrelated. Once those neurons synchronize
at a certain frequency, we can additionally investigate at
what extent we are able to synchronize them with an external
periodic signal. Such kind of external stimulation of brain
has been extensively studied with respect to potential appli-
cation to the control of pathological rhythms, since the syn-
chronization of individual neurons is thought to play a key
role in Parkinson’s disease, essential tremor, and epilepsies
[43]. This intervention is experimentally feasible by means
of microelectrodes inserted into the impaired region of the
brain and carrying a suitable electric signal [44].

In this case, however, rather than trying to synchronize
the neurons with the external signal, one would wish to sup-
press those brain rhythms. Nevertheless, the latter problem
belongs to the same category as the external synchronization
of neurons with an external source, since one would like to
know the parameter ranges for which phase synchronization
occurs or does not occur. Rosenblum and Pikovsky have put
forward this idea by using a delayed feedback control on a
globally coupled neural oscillator network [27]. Ivanchenko
et al. [7] have proposed the use of an additive periodic signal
to a selected site of such a lattice, with amplitude d and
frequency .

We have implemented numerically this external time-
periodic intervention to the scale-free lattice studied in this
work. An external harmonic signal is applied to a selected
neuron in the following way:
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FIG. 8. Frequency mismatch of bursting neurons vs the external
driving frequency for a scale-free lattice with €=0.2 and an a driv-
ing signal with amplitude (a) d=0.05, (b) d=0.09, (c) d=0.15, and
(d) d=0.20.
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where we have chosen the site i=1 with the largest number
of connections; the remaining N—1 neurons remaining un-
changed. In order to investigate the effect of this external
source we have used coupling strength values for which the
unperturbed lattice (d=0) exhibits bursting synchronization,
their corresponding frequencies Q¥ locking approximately
at a common value, as depicted in Fig. 5.

When the driving amplitude d is nonzero, we considered
many situations for which the neurons synchronize at differ-
ent common frequencies Q) within the range [0,0.03] and
plotted in Fig. 8 the corresponding mismatches with the ex-
ternal signal frequency w. If the signal amplitude is too low
[Fig. 8(a)] the difference Q”)—w vanishes for a particular

PHYSICAL REVIEW E 76, 016218 (2007)

value of w, but for d=0.09 we obtain a narrow frequency
locking interval around 1=0.013. The width of this locking
interval, Aw, increases with the signal amplitude [Figs. 8(c)
and 8(d)], in a situation akin to the Arnold tongue structure
existing for periodically forced oscillators [45]. The wider
the frequency-locking interval is, the more robust is the ex-
ternal driving with respect to imperfect parameter determina-
tion and noise, which is a question of considerable experi-
mental importance.

The wide variety of connections per site in a scale-free
lattice makes the choice of the site upon which the control is
applied a key factor influencing the results. If one chooses a
richly connected site the influence of the external control is
more pronounced than for a poorly connected one. Accord-
ing to Fig. 9(a) the most connected site is the one with i=1,
which has k=17 connections, whereas for most of the re-
maining sites this number is substantially less than 10. In
order to evaluate the effectiveness of the connectivity k) we
computed the width of the frequency-locking intervals for a
fixed perturbation strength d and varying the lattice site upon
which the control is applied [Fig. 9(b)]. Not by chance, the
site i=1 has a frequency-locking interval almost three times
wider than that obtained with most of the remaining sites.
Since, in a “blind” experiment we cannot know in advance
the connectivity of a site we should expect that, with reason-
able probability, the frequency-locking interval is that exhib-
ited by the most part of the poorly connected sites. One
possible way to circumvent this problem would be to use
more than one site to control at the same time (multiple
pinnings) [7].

The widening of the frequency-locking intervals as we
increase the amplitude of the driving signal, as observed in
Fig. 8, seems to be limited by the intensity of the external
signal, since for higher d the bursting frequencies are differ-
ent from each other when the driving frequency is higher
than the upper end of the frequency locking interval w,
~0.016 [Fig. 8(d)], characterizing a kind of instability of the
frequency-locked state for d=d.=0.15. A qualitative expla-
nation for this instability is that, for a too large perturbation
strength, the Arnold-like tongue overlaps with other ones and
the chaotic output strongly depends on the initial condition
we choose, which explains the diversity of values of Q)
—w for large d depicted in Fig. 8(d).

FIG. 9. (a) Connectivity per site of a scale-

0.002

M\/\N

b free lattice with €=0.2; (b) width of the
( ) 1 frequency-locking interval vs lattice site for a
driving signal with amplitude d=0.20.

50
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In order to investigate the effect of driving frequencies
larger than the critical frequency w.=~0.016 we have plotted
in Fig. 10 the time evolution of the phase difference between
the bursting phase and the driving phase ¢= wn. For a pre-
critical frequency w= w, this difference stays constant and
very small for all neurons, so characterizing a frequency-
locked state. If w= w,, by way of contrast, the phases begin
to diffuse and the corresponding frequencies, which turn to
be the corresponding average time rates, are different for
each map.

There is an overall monotonic increase of the phase dif-
ference ¢— @ with constant steps of variable width. This is
the well-known effect of phase slips, and bears a general
character, since it is related to the intermittent breakup of the
phase synchronized state [46]. In this situation, the influence
of the external signal is strong enough to steer the system out
of the phase synchronized state (i.e., the frequency-locking
interval) provoking a phase drift. The system eventually re-
turns to the vicinity of the synchronized state, the corre-
sponding laminar intervals having different durations. It
would be desirable to avoid such intermittent episodes of
nonsynchronization in practical implementations of this ex-
ternal control procedure.

VI. CONCLUSIONS

Motivated by recent experimental evidence [10] that the
brain functional network has the scale-free property, in
which the connectivity of the coupled units obeys a power-
law scaling, we constructed a scale-free lattice, by adding
randomly new sites to a seed lattice in such a way that richly
connected sites are more likely to have new additions than
poorly connected ones. The procedure we used resulted in an
artificial scale-free network with a similar scaling law as that
experimentally obtained by Chialvo and coworkers. The neu-
ron dynamics was simulated by a two-dimensional map
which presents two time scales in order to exhibit both spik-

85000

FIG. 10. Time evolution of
the difference between the burst-
ing and driving phases for two
values of the driving frequency.

ing and bursting behaviors. Other more sophisticated models
for neuron activity could be likewise used, but the essentials
of the multiple time scale behavior are already present in the
map we used.

We focused in this paper on collective effects emerging
from the complex dynamics generated by such a coupled
map lattice. Since complete synchronization is ruled out for
our system of heterogeneous coupled units (as would be re-
quired in realistic models of brain networks), we investigated
chaotic phase synchronization after defining a convenient
phase for the bursting dynamics. We observed that the phases
of different coupled maps can undergo similar evolution with
time as the coupling strength increases, configuring a transi-
tion to chaotic phase synchronization. The existence of phase
synchronized states enhances the information processing
properties of the network, since information can be coded in
the interphase intervals, such that clusters of similar neurons
would act cooperatively in order to produce a coherent out-
come. We characterized those collective effects using various
numerical diagnostics, such as the analysis of plateaus of
perturbed frequencies and a complex order parameter.

Following a recent proposal that external stimulation of
brain areas is effective on controlling certain dynamical be-
haviors [27], we used a time-periodic external driving signal
applied to a selected neuron from the scale-free network we
investigate. We observed the appearance of frequency lock-
ing between the bursting and driving phases. The width of
the frequency-locking interval increases with the driving am-
plitude up to a saturation due to chaotic evolution associated
with the bursting dynamics. On the other hand, depending on
the connectivity of the site, in a scale-free lattice widely
different intervals can be obtained. In practice, when we do
not have a prior knowledge of the connectivity we must ex-
pect a relatively low interval when picking up at random a
neuron to control. In such a case multiple pinnings, applied
to more than one neuron, would be necessary to obtain
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frequency-locking intervals wide enough to be robust against
imperfect parameter determination and noise. This seems to
be a promising line of investigation we are currently pursu-
ing using the coupled map lattice model presented in this

paper.
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