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We present a detailed numerical and analytical study of the stability properties of the N /4 �� /2-mode�
one-mode nonlinear solution of the Fermi-Pasta-Ulam-� system. The numerical analysis is made as a function
of the number N of the particles of the system and of the product �=��, where � is the energy density and �
is the parameter characterizing the nonlinearity. It is shown that, both for ��0 and ��0, the instability
threshold value ��t�N�� converges, with increasing N, to the same value 2�2 / �3N2�, that for ��0 ��tN

2� is a
decreasing function of N as in the �-mode, whereas, for ��0, it is an increasing one. The asymptotic behavior
of ��t� for large values of N is analytically obtained in both cases with a Floquet analysis of the stability.
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I. INTRODUCTION

The study of the stability properties of one-dimensional
anharmonic lattices, started by Fermi, Pasta, and Ulam �1� is
of great interest to understand the energy distribution process
among the normal modes and, in general, the statistical prop-
erties of a system in the thermodynamic limit. In particular,
for the Fermi-Pasta-Ulam �FPU� �-model, there are many
analytical and numerical results concerning the study of the
stability properties of nonequilibrium motions in the case of
a single-mode or narrow-packet modes excitation, against
both the energy density and the excited mode’s wave number
�2–15�.

In this paper we tackle the problem of the stability of a
particular one-mode solution of the system. It is in fact well-
known that, for a periodic FPU-� chain with a number N of
oscillators and periodic conditions, there are exact one-mode
solutions �OMSs� �8,12,14� corresponding to the values of
mode number n �of course when n is an integer�:

n =
N

4
,

N

3
,

N

2
,

2

3
N,

3

4
N , �1�

such that, if only one of these modes is initially excited, it
evolves without transferring energy to any other mode. An
important problem is the stability of these solutions against a
generic perturbation. The stability of the N /2 mode �zone-
boundary mode solution, �-mode� was studied by Boudinsky
and Bountis �3�. They found that this mode is unstable above
an energy threshold Et that scales like 1/N. This result was
later and independently confirmed by Flach �7� and Poggi et
al. �8�, who also obtained the correct factor in the large
N-limit, by a direct linear stability analysis around the peri-
odic orbit corresponding to the mode.

A group theoretical approach, based on the concept of
“bushes” �invariant manifolds in the modal space� of normal
modes in mechanical systems with discrete symmetry, has
been recently applied both to � and � models of the FPU
system by Chechin et al. �11,14� and Rink �16�.

In two recent papers �17,18� we have revisited the prob-
lem of stability of the N /2 mode. In �17� we made a numeri-
cal and analytical study of the stability of this mode as a

function of the number N of particles and of the product
�=��, where � is the energy density and ��0 is the param-
eter of nonlinearity in the Hamiltonian of the system. In the
numerical analysis, based on the numerical integration of the
nonlinear FPU model, no external perturbation for the solu-
tion was considered, the only perturbation being that intro-
duced by computational errors in the numerical integration
of motion equations. This simple method works very well
and confirms the previous result �8� on the energy density
threshold that asymptotically �tN

2=�2 /3. In �18� a thorough
explanation of the behavior of �t as a function of N, for �
�0, has been given on the base of Bogoliubov-Krylov
method of averaging.

In this paper we continue the study of the OMSs by tack-
ling the problem of the stability of the OMS corresponding
to n=N /4 �� /2-mode�. For the numerical analysis we apply
the numerical method used in �17�. The main results obtained
both for ��0 and ��0, ��t� decreases asymptotically with
N as 2�2 /3N2; for ��0, the product ��tN

2� decreases with
N, as in the �-mode and converges asymptotically to the
value 2�2 /3; for ��0 the same product increases with N
toward the same value.

The theoretical analysis of the stability of the N /4 mode is
much more complicated than that of the N /2 mode. The
study of the stability of the N /2 mode is simpler because the
different components of the perturbation in modal space are
all decoupled, are described by an equation of the Hill type,
and can be studied separately. On the contrary, the analysis
of the stability of the N /4 mode implies the study of a sys-
tem of coupled linear differential equations with periodic co-
efficients. In this paper we give an analytical explanation of
the numerical results by means of the Floquet analysis of the
stability of the mode.

II. ONE-MODE SOLUTIONS

Calling qi and pi the coordinates and the momenta of the
oscillators, the Hamiltonian for the FPU-� system is

H =
1

2�
i=1

N

pi
2 +

1

2�
i=1

N

�qi+1 − qi�2 +
�

4 �
i=1

N

�qi+1 − qi�4 �2�

with qN+1=q1. All quantities in Eq. �2� are dimensionless.
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If we introduce the normal coordinates Qi and Pi of the
normal modes through the relations:

Qi = �
j=1

N

Sijqj , �3�

Pi = �
j=1

N

Sijpj , �4�

Sij =
1

�N
�sin

2�ij

N
+ cos

2�ij

N
	 ,

the harmonic energy of mode i is

Ei =
1

2
�Pi

2 + 	i
2Qi

2�

where, for periodic boundary conditions,

	i
2 = 4 sin2�i

N
. �5�

For �=0, all normal modes oscillate independently and their
energies Ei are constants of motion. In the anharmonic case
���0�, the normal modes are instead coupled and the vari-
ables Qi do not have simple sinusoidal oscillations.

The nonlinear OMSs correspond to the values of n re-
ported in Eq. �1�. Consider now the case n=N /4. Let us put
Q=QN/4 and P= PN/4. The equation of motion for the OMS
amplitude Q is �8�

Q̈ = − 2Q − 8
�

N
Q3. �6�

We recall that the dynamical properties of the FPU-� system
depend only on the product �=��. In all the numerical ex-
periments we fix the value of � and we change the value of
the energy density �=E /N, which is our control parameter,
where

E =
1

2
�P2 + 2Q2 + 4

�

N
Q4	

is the energy of the nonlinear N /4 mode. We excite this

mode at t=0 always putting Q�0 and P= Q̇=0. Then, ini-
tially, all the energy is the potential energy V, associated to
Eq. �6�, given by

V = Q2�1 + 2
�

N
Q2	 .

We remark that, unlike the case ��0, with ��0 the choice
of the energy of the system does not determine unequivo-
cally the initial value Q0 of Q. For ��0, the extremal values
of the potential V are Q=0, which is a minimum, and Q
= ±� N

4��� which are maxima, where V= N
8��� . For a given value

of the energy density 0���
1

8��� , we have four possible ini-
tial values of Q, namely:

Q0 = ±� N

4���
�1 ± �1 − 8����� .

Only the “internal” solutions �minus sign under the square
root�, as initial conditions for the Eq. �6�, give bounded so-
lutions. For �= 1

8��� the “external” values of Q0 coincide with
the internal ones and one has only two solutions.

The external values of Q0 correspond to unbounded solu-
tions.

For ��0 the solution of Eq. �6�, with initial conditions

Q�0�=Q0 and Q̇�0�=0, is

Q�t� = Q0 cn�
t;kn
2� , �7�

where cn is the periodic Jacobi elliptic function with period
T=4K�k� /
, K�k� is the complete elliptic integral of the first
kind and, in terms of energy density

Q0
2 =

N

4�
��1 + 8�� − 1� , �8�

k2 =
1

2

�1 + 8�� − 1
�1 + 8��

, �9�

and


2 =
2

1 − 2k2 . �10�

We remark that the same formulas hold for n=3N /4, so the
modes n=N /4 and n=3N /4 have the same behavior. For �
�0 and energy density in the interval 0���

1
8��� , the solu-

tion of Eq. �6�, with initial conditions Q�0�=Q0 and Q̇�0�
=0, is

Q�t� = Q0 sn�
t + K;k2� , �11�

where sn is the Jacoby elliptic sine and, in terms of energy
density,

Q0
2 =

N

4���
�1 − �1 − 8����� , �12�

k2 =
1 − �1 − 8����

1 + �1 − 8����
, �13�

and


2 =
2

1 + k2 . �14�

Also in this case, the modes n=N /4 and n=3 N /4 have the
same behavior.

III. EQUATIONS FOR THE PERTURBED MODES

Let us consider the bounded OMS, given by Eq. �7� when
��0 and by Eq. �11� when ��0, found in the previous
section.

To study the stability of these OMSs, we recall that in the
Fermi-Pasta-Ulam �-system with periodic boundary condi-
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tions, the differential equation for the rth mode is �8�

Q̈r = − 	r
2Qr −

�	r

2N
�

i,l,j=1

N−1

	i	 j	lCrijlQiQjQl, �15�

where r=1,2 , . . . ,N−1, 	r is given by Eq. �5�, and

Crijl = − �r+i+j+l + �r+i−j−l + �r−i+j−l + �r−i−j+l

with

�k = 
�− 1�m if k = mN with m � Z

0 otherwise
� .

The coefficients Crijl are invariant under any permutation of
the i, j, and l indexes.

Now, let us suppose that only a mode n is excited. If �Qr
is the error on the mode Qr, from Eq. �15� one obtains:

�Q̈r = − 	r
2�Qr −

3�	r

2N
	n

2Qn
2�

l=1

N−1

	lCrnnl�Ql, �16�

where

Crnnl = − �r+2n+l + 2�r,l + �r−2n+l

and �r,l is the Kronecker delta. For n=N /4 one has

�r+N/2+l = − �N

2
− r − 1	�l,N/2−r + �r −

N

2
− 1	�l,3N/2−r,

�r−N/2+l = �N

2
− r − 1	�l,N/2−r − �r −

N

2
− 1	�l,3N/2−r,

where

�x� = 
0 if x � 0

1 if x � 0
�

is the Heaviside function. Since 	N/2−r=2 cos �r /N and
	3N/2−r=−2 cos �r /N, Eq. �16� can be written as

�Q̈r = − �1 +
6�

N
Q2		r

2�Qr −
12�

N
Q2 sin

2�r

N

�N

2
− r

− 1	�QN
2

−r + �r −
N

2
− 1	�Q3N

2
−r� , �17�

where Q=QN/4 is given by Eq. �7� for ��0 and by Eq. �11�
for ��0. We remark that in Eq. �17� the off-diagonal terms
vanish only for r= N

4 , N
2 , and 3N

4 . For these values of r one
has:

�Q̈N/2 = − 4�1 + 6�
Q2

N
	�QN/2,

�Q̈ = �Q̈N/4 = − 2�1 + 12�
Q2

N
	�QN/4,

�Q̈3N/4 = − 2�Q3N/4.

IV. STABILITY OF THE N
4 MODE SOLUTION

A recent numerical study of the stability of the one-mode
solutions for the � and � models is reported in �14�. By
means of the Floquet method, the instability of a given set of
modes is recognized when there are eigenvalues of the cor-
responding monodromy matrix with modulus exceeding 1 by
10−5. No explicit analytical results on the dependence on N
of the energy density threshold are given in general and for
the N /4 mode in particular.

In this paper we present first the numerical results, then
we expose the method of analysis of the stability of the equa-
tions of perturbed modes and the analytical results obtained.
Explicit dependence on N of the threshold value �t will be
given, for large values of N, both for ��0 and ��0.

A. Numerical results

To study numerically the stability of the N /4 mode, we
utilize the same method used in Ref. �17�, where we tested
the stability of the N /2 mode with ��0, against the errors
introduced by the algorithm of numerical integration. The
equations of motion in the variables qi, pi are integrated by
means of a bilateral symplectic algorithm �19�. In all the
numerical experiments we fix the value of � �1 or −1� and
we change the value of the energy density �=E /N. We excite
the OMS at t=0 always putting Q�0 and P=0. From the
inverse transformations of Eqs. �3� and �4�, the initial values
of qi�0� and pi�0� are obtained.

A preliminary numerical study of the stability of the N /4
mode, for ��0, was reported in Ref. �17�, where a depen-
dence of threshold value �t on N−2, for large values of N, was
found. In this paper we present the results of a numerical
analysis extended to larger values of N both for ��0 and
��0. This analysis confirms that for large values of N and
��0 the product �tN

2, as a function of N, decreases and
converges to the asymptotic value �2/3��2, double of the
asymptotic value of the case N /2.

For ��0, the product ��tN
2� increases with N and con-

verges toward the same asymptotic value. Figure 1 shows
this behavior of the product ��tN

2� as a function of N for
��0 and ��0.
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FIG. 1. Numerical results for n=N /4 : ��tN
2� vs N for ��0 and

��0.
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B. Analytical results for ��0

With reference to Eq. �17�, the stability of the system can
be studied considering separately the case r�N /2−1 and r
�N /2+1. We have verified that in both cases one obtains
the same final results. Then, let us consider the case r
�N /2−1. From Eq. �17� the equation for the rth perturbed
mode is

�Q̈r = − �1 + 6
�

N
Q2		r

2�Qr − 12
�

N
Q2 sin 2�

r

N
�QN/2−r.

�18�

From numerical results, we know that �t is very small for
large values of N so, from Eq. �9�, we can suppose k2�1. If
we now consider the expansion of the elliptic function cn in
terms of trigonometric function �20� and we perform the
change of variable �= ��
 /2K�t, taking into account Eqs.
�8� and �10�, from Eq. �18�, we obtain, up to k6 terms,

�Q̈r��� = −
1

2
�1 −

q2

6
−

2

9
q3 + �2q +

4

3
q2 +

85

72
q3	cos 2�

+ �q2

3
+

4

9
q3	cos 4� +

1

24
q3 cos 6�	r

2�Qr

− �2q + q2 +
7

9
q3 + �2q +

4

3
q2 +

85

72
q3	cos 2�

+ �1

3
q2 +

4

9
q3	cos 4� +

1

24
q3 cos 6�

�sin 2�
r

N
�QN

2
−r, �19�

�Q̈N/2−r��� = −
1

2
�1 −

q2

6
−

2

9
q3 + �2q +

4

3
q2 +

85

72
q3	cos 2�

+ �q2

3
+

4

9
q3	cos 4� +

1

24
q3 cos 6�

�	N/2−r
2 �QN/2−r − �2q + q2 +

7

9
q3

+ �2q +
4

3
q2 +

85

72
q3	cos 2�

+ �1

3
q2 +

4

9
q3	cos 4� +

1

24
q3 cos 6�

�sin 2�
r

N
�Qr, �20�

where

q =
3

4
k2. �21�

The system of differential Eqs. �19� and �20� is of Hill type
and the stability of the OMS corresponding to n=N /4 can be
analyzed by studying the stability of the coupled modes r
and N /2−r, for each value of r�N /2−1. The threshold

value �t for the mode N /4 is the smallest between the values
of �t of these couples of equations.

Let X��� be the �4�4� fundamental matrix of the system
of Eqs. �19� and �20� that satisfies the initial condition
X�0�=I, where I is the �4�4� identity matrix. Then the sys-
tem is equivalent to the following matrix equation:

d

d�
X��� = AX��� + qB���X��� + q2C���X��� + q3D���X��� ,

�22�

where

A =�
0 1 0 0

− a1
2 0 0 0

0 0 0 1

0 0 − a2
2 0

�
with a1

2=	r
2 /2 and a2

2=	N/2−r
2 /2;

B =�
0 0 0 0

− 2a1
2 cos 2� 0 − 2b�1 + cos 2�� 0

0 0 0 0

− 2b�1 + cos 2�� 0 − 2a2
2 cos 2� 0

�
with b=sin�2�r /N� and C and D are matrices whose ele-
ments that differ from zero are

c21 = �1

6
−

4

3
cos 2� −

1

3
cos 4�	a1

2,

c23 = − �1 +
4

3
cos 2� +

1

3
cos 4�	b ,

c41 = c23,

c43 =
c21

a1
2 a2

2,

and

d21 = − �−
2

9
+

85

72
cos 2� +

4

9
cos 4� +

1

24
cos 6�	a1

2,

d23 = − �7

9
+

85

72
cos 2� +

4

9
cos 4� +

1

24
cos 6�	b ,

d41 = d23,

d43 =
d21

a1
2 a2

2,

respectively.
We look for solutions of Eq. �22� having the form:
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X��� = �
0

�

qnXn��� , �23�

with all Xn��� of class C�. We assume that the series
�n=0

� qn�Xn���� jk are all uniformly convergent with respect to
�. This guarantees the derivation term to term with respect to
�.

Inserting Eq. �23� in Eq. �22�, we obtain

d

d�
X0��� = AX0��� �24�

with X0�0�=I;

d

d�
X1��� = AX1��� + B���X0��� �25�

with X1�0�=0;

d

d�
X2��� = AX2��� + B���X1��� + C���X0���

with X2�0�=0 and, for n�3, the recurrence relation

d

d�
Xn��� = AXn��� + B���Xn−1��� + C���Xn−2��� + D���Xn−3���

with Xn�0�=0.
From Eq. �24� one obtains:

X0��� = eA�X0�0� = eA�

or, in matrix form:

X0��� =�
cos a1�

sin a1�

a1
0 0

− a1 sin a1� cos a1� 0 0

0 0 cos a2�
sin a2�

a2

0 0 − a2 sin a2� cos a2�

� .

Equation �25� gives

X1��� = �
0

�

eA��−�1�B��1�eA��1�d�1

= �
0

�

X0�� − �1�B��1�X0��1�d�1.

In the same way, for n=2 and n=3, one obtains

X2��� = �
0

�

X0�� − �1�B��1�X1��1�d�1

+ �
0

�

X0�� − �1�C��1�X0��1�d�1,

X3��� = �
0

�

X0�� − �1�B��1�X2��1�d�1

+ �
0

�

X0�� − �1�C��1�X1��1�d�1

+ �
0

�

X0�� − �1�D��1�X0��1�d�1,

and in general:

Xn��� = �
0

�

X0�� − �1�B��1�Xn−1��1�d�1

+ �
0

�

X0�� − �1�C��1�Xn−2��1�d�1

+ �
0

�

X0�� − �1�D��1�Xn−3��1�d�1.

Since the trace of the matrix A+qB���+q2C���+q3D��� is
equal to zero, from Eq. �22� one has that the determinant of
X��� satisfies the relation

det X��� = det X�0� = det I = 1.

In particular, for �=�, the period of matrices B, C, and D,
the characteristic numbers � of the system described by Eq.
�22�, which are also eigenvalues of matrix X���, satisfy the
relation

�1�2�3�4 = det X��� = 1. �26�

Thus we can have four real eigenvalues, two real and two
complex conjugate eigenvalues or two couples of complex
conjugate eigenvalues.

If all the eigenvalues are real and distinct, the system is
stable if their values are in the interval �−1,1�. Since their
product must be equal to one, there is always an eigenvalue
�i such that ��i��1, so the system is unstable in this case.

If �1 and �2 are real, �3=�3+ i�3 and �4=�3− i�3, one has

�1�2��3
2 + �3

2� = 1

and the system is unstable also in this case.
The existence of the stability threshold, that we observe

numerically by increasing the energy density, must then be
associated with the third case, that corresponds to four com-
plex values of the eigenvalue �. If we put

�1 = �1 + i�1,

�2 = �2 + i�2,

�3 = �1,

�4 = �2,

and we suppose the stability of the system, we have, from
relation �26�:

�2
2 + �2

2 = 1,
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�2
2 + �2

2 = 1, �27�

and

Tr X��� = 2�1 + 2�2.

Furthermore, since the relation is valid:

�1
2 + �2

2 + �3
2 + �4

2 = Tr�X����2,

which, from Eq. �27�, can be written as 4��1
2+�2

2−1�
=Tr�X����2, we have

�1 + �2 =
Tr X���

2
,

�1
2 + �2

2 =
Tr�X����2

4
+ 1.

Then we can obtain �1 and �2 as solutions of an algebraic
equation of second degree, namely

�1,2 =

Tr X���
2

±�Tr�X����2

2
+ 2 −

�Tr X����2

4

2
, �28�

with the stability condition that �1/2 should be real and in the
interval �−1,1�. Let us calculate Tr X��� and Tr�X����2 by
assuming 0�q�1 and

X��� = X0��� + qX1��� + q2X2��� + q3X3��� + 0�q4� .

�29�

Hereafter we omit the argument �. It is easy to show that
Tr X1=Tr�X0X1�=0 and that, up to q3 terms, the argument �
of the square root in Eq. �28� can be written as

� = F0 + q2F2 + q3F3, �30�

where

F0 =
Tr�X0�2

2
−

�Tr X0�2

4
+ 2,

F2 =
Tr�X1�2

2
+ Tr�X0X2� −

Tr�X0�Tr�X2�
2

,

and

F3 = Tr�X0X3� + Tr�X1X2� −
1

2
Tr�X0�Tr�X3� .

The stability analysis of the system of Eqs. �19� and �20�
should be made for each value of r; here we can limit our-
selves to the study of the coupled modes r=N /4−1 and r
=N /4+1. This choice, made for the sake of clarity, is clear if
one considers Fig. 2, where the values of mode energies,
normalized to the initial value of energy of the N /4 mode,
are shown for N=100; the mode N /4 is initially excited with
a value of � slightly greater than the threshold value. The
mode energies are calculated after an integration time equal
to that used to study numerically the stability of the mode
N /4. From the figure it is evident that the first modes that

become unstable are the modes N /4±1 and 3N /4±1. This
justifies our approach. However, as will be clear in the final
discussion, we can analytically prove this fact.

Hereafter we put r=N /4−1. We obtain:

Tr X0 = 2�cos a1� + cos a2�� ,

Tr�X0�2 = 4�cos2 a1� + cos2 a2� − 1� ,

and

F0 = �cos a1� − cos a2��2.

The calculation of the other traces are much more
complicated, but they can be evaluated by utilizing the pack-
age of the computer system for symbolic calculations
MATHEMATICA �21�. The result is that the right-hand term of
relation �28� can be exactly calculated.

Starting from q=0, the argument � of the square root in
Eq. �28�, which is positive, decreases with rising q and we
have two real solutions for �1,2 in the interval �−1,1� as long
as �=0 for some value qt of q. For values of q�qt we have
two complex conjugate solutions, the initial hypothesis that
�1,2 should be real is not satisfied and the system becomes
unstable. Then the threshold value qt for the instability is
given by Eq. �30� when �=0, namely when

F0 + qt
2F2 + qt

3F3 = 0. �31�

This formula allows us to calculate the threshold value of q,
and then of k2, not only asymptotically, but also for any
value of N for which q is sufficiently small. For very large
values of N, we obtain

F0 = �10 1

N6 −
1

6
�12�3 + 2�2�

1

N8 + 0� 1

N10	 ,

F2 = − �6 1

N2 +
1

6
�8�43 + 2�2�

1

N4 + 0� 1

N6	 ,

FIG. 2. Normalized mode energy vs mode number r for N
=100 and ��0. The mode N /4 is initially excited with a value of
� slightly greater than the threshold value �t.
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F3 =
11

3
�6 1

N2 − �8�211

36
+

11

9
�2	 1

N4 + 0� 1

N6	 ,

and from Eq. �31�:

qt =
�2

N2 +
31

6

�4

N4 + 0� 1

N6	 . �32�

Since from relation �9�

� �
k2

2
+

10

3
k4 =

2

3
q +

8

3
q2,

formula �32� implies for the threshold value �t of �

�tN
2 =

2

3
�2 +

56

9

�4

N2 + 0� 1

N4	 . �33�

Then, we obtain the result, found numerically by direct inte-
gration of motion equations that, for large values of N, the
product �tN

2 decreases toward the constant value 2
3�2.

The case r�N /2+1 can be studied in the same way. In
this case, the modes analyzed are the modes 3N /4±1 which,
together the modes N /4±1, are the first modes that become
unstable. We find that the threshold value �t is given again
by formula �33�.

To give an idea of the degree of approximation of formula
�33�, let us compare the analytical with the numerical results.
For example, for N=100, the numerical integration of mo-
tion equations gives �tN

2=6.641 00, to compare with the
value �tN

2=6.640 35, given by formula �33�; the difference
is 0.01%.

C. Analytical results for ��0

For ��0, we can follow the same procedure used for
��0. The starting equation is the Eq. �17� with function Q
given by formula �11� and Q0

2, k2, and 
2 given, respectively,
by Eqs. �12�–�14�. We have a system of equations similar to
Eqs. �19� and �20� with the same link �Eq. �21�� between q
and k. Also in this case, the first modes that become unstable
are the modes N /4±1 and 3N /4±1, so the study of the sta-
bility can be limited to the coupled modes N /4−1 and
N /4+1. If we introduce matrices A and B, we see that matrix
A has the same elements of the matrix A of the case ��0,
whereas the elements of matrix B change sign. As a conse-
quence, for ��0, X0 and X1

2 remain the same, X1 changes
sign and we have again Tr�X1�=Tr�X0X1�=0. As concerns
the matrices C and D, their elements different from zero are

c21 = − a1
2�−

1

6
−

4

3
cos 2� +

1

3
cos 4� ,

c23 = b�5

3
+

4

3
cos 2� −

1

3
cos 4� ,

c41 = c23,

c43 = c21
a2

2

a1
2 ,

d21 = a1
2�2

9
+

85

72
cos 2� −

4

9
cos 4� +

1

24
cos 6� ,

d23 = b�5

3
+

85

72
cos 2� −

4

9
cos 4� +

1

24
cos 6� ,

d41 = d23,

d43 = d21
a2

2

a1
2 .

Following the same procedure used for the case ��0, one
finds that Tr�X2� and Tr�X0X2� assume the same values they
assume for ��0. Then also F0 and F2 do not change. The
difference between the two cases is given by the coefficient
F3 of q3 which for ��0 is

F3 = −
19

3

�6

N2 +
899

36

�8

N4 +
19

9

�10

N4 + 0� 1

N6	
and by the different link between � and q given, from rela-
tion �13�, by

��� �
k2

2
− k4 =

2

3
q −

16

9
q2.

The final result is

��tN
2� =

2

3
�2 −

5

3

�4

N2 + 0� 1

N4	 . �34�

The product ��tN
2� is therefore an increasing function of N

and converges asymptotically toward the same limit 2�2 /3
as in the case ��0. In Fig. 3 ��tN

2�, given by Eqs. �33� and
�34�, is shown as a function of N. To remark the excellent
agreement with the numerical results shown in Fig. 1, in Fig.
4 numerical and analytical results are compared for N be-
tween 80 and 100: the irregular curves refer to numerical
results.

10

8

6

4

2
200150100504

|λ
t
N

2 |

N

β < 0

β > 0

FIG. 3. Analytical results for n=N /4 : ��tN
2� vs N for ��0 and

��0.
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V. DISCUSSION

In this paper we have studied the stability of the N /4
�� /2-mode� one-mode nonlinear solution of the Fermi-
Pasta-Ulam-� system, both for positive and negative values
of the nonlinearity parameter �. The numerical results, ob-
tained through the numerical integration of motion equa-
tions, have been explained, at least asymptotically, by a de-
tailed Floquet analysis of the system of differential equations

which describe the perturbed modes. The analytical results,
formulas �33� and �34�, have been obtained by an application
of the Floquet method. We want to remark on some aspects
concerning the necessity of considering expansion up to
terms q3 in Eqs. �19�, �20�, and �29�. If one considers only
q-terms in the first two equations and formally look for so-
lutions of the form X�t�=X0�t�+qX1�t�+q2X2�t�, one finds
the correct asymptotic value �tN

2=2�2 /3, but one observes
that the product �tN

2 is a decreasing function of N both for
��0 and ��0; furthermore, also with the addition of q2

terms in Eqs. �19� and �20� it is impossible to obtain the
behavior shown in Fig. 1. One finds indeed that the correc-
tion of order 1 /N2 to the leading term 2�2 /3 is equal and
positive in the two cases. Only the q3 terms allow one to
obtain the correct behavior.

Finally, we remark that our method can be utilized to
evaluate the threshold value ��t� for any value of index r in
Eqs. �19� and �20�. If one calculates the asymptotic value of
��tN

2� for r=N /4± j and 3N /4± j, one finds the result

��tN
2� =

2

3
�2j2,

so the first modes that become unstable are the modes
N /4±1 and �3N� /4±1, as suggested by Fig. 2 and as we
have previously assumed.
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FIG. 4. Comparison between numerical and analytical results:
irregular curves refer to numerical results.
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