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Estimating system parameters from chaotic time series with synchronization
optimized by a genetic algorithm
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A method is proposed to estimate system parameters by optimizing synchronization with a genetic algo-

rithm. This method can effectively find the parameter values of a chaotic system with a rugged parameter
landscape. Furthermore, even the parameters of a 200-dimensional coupled-map-lattice spatiotemporal chaotic
system can be extracted from a scalar time series. Finally, a Chua’s circuit experiment shows the capacity of
this method to estimate multiple parameters of real systems.
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Chaos phenomena have been widely found in physical
and biological systems, such as Taylor-Couette flow [1], at-
mosphere [2], coupled nonlinear oscillators [3], coupled-map
lattices [4], electronic circuits [5,6], the mammalian heart-
beat [7], and human voice [8,9]. The parameters of these
systems provide insight into their complex behaviors. How-
ever, direct measurement of system parameters is often dif-
ficult; the time series of a chaotic system can usually be
recorded experimentally. Therefore, estimating system pa-
rameters from an observed chaotic scalar time series has be-
come an active topic of research [10-21]. Based on a smooth
synchronization error landscape, some dynamic methods
[15,16] have been successfully applied to extract the param-
eters of a low-dimensional system. However, the rugged
state error landscape with respect to system parameters, and
the extreme complexity and parameter sensitivity of a spa-
tiotemporal chaotic system, could create difficulties when us-
ing previous parameter estimation methods. To estimate the
parameter of the spatiotemporal system, a recent study had to
use complete space-time information of the object [12],
which is difficult in practical application. Therefore, it is im-
portant to develop parameter estimation methods to over-
come these difficulties.

We propose a new parameter estimation scheme by inte-
grating synchronization and genetic algorithm (GA). Chaos
synchronization provides a determinate relationship between
the system status error and their parameter differences
[18,22,23]. Based upon the concept of natural selection and
survival of the fittest in Darwinian evolution [24-26], GA
provides an artificial evolutionary process to optimize the
synchronization. GA has been proven to be robust in global
optimization [25], and in forecasting and controlling chaos
[19,20,27,28]. The proposed method has the features of both
synchronization and GA, it has the ability to cope with cha-
otic systems with rugged state error landscapes and spa-
tiotemporal chaotic systems with extreme parameter sensitiv-
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Let the object dynamical system be

x=f(x;c), ceRY, (1)

whose parameter vector ¢ needs to be estimated. Assuming
s=h(x) is the time series observed from the object system, a
model system is coupled with the object system through s
using an appropriate synchronization feedback [22,23],

y=1(y.s:I'(q)). (2)

The operator I' denotes the GA [24,25], which searches for
the fittest model parameters to optimize the synchronization
between the object and the model. The search starts with one
set of randomly generated individuals {q;}, i=1,2,...,N,
defined in the search space Q=[u;,v,] " X[u,,,v,]
X [y, v ]CRM, where u,, and v,, (1=m=M) are the
lower and upper limits of the search space. Each individual
in the population represents a possible parameter vector for
the model system (2). A fitness function, defined as

F(qi)=(tz—t1)/fz[s—h(y(q,-))]%lt, 3)

is used to weigh the adaptability of each individual, where
y(q;) is the state of the model system with the given param-
eter set ¢,. Ranking selection operations [26] reorder the in-
dividuals from the best to the worst, i.e., F(q;)>F(q;) if i
<j. The selection probability of the ith individual is p;=(1
—c,)/ Ejyzp](l —c,)/, where ¢;=0.005 is a constant. The proba-
bilistic recombination operation partially exchanges the in-
formation between the i and j individuals as q;*%=a X qj’ld
+(1-a) X g0 and q*"=a X ¢'+(1-a) X ¢, where the
parameter « is a random number in the interval [0,1]. The
probabilistic mutation operation introduces new characteris-
tics into the population, q**"=q"*+ xr-e, where the constant
xk<0.1 and e is a random vector with |le||=1. The element r,,
of vector r is defined as r,,=v,,—u,,. In order to avoid ob-
taining new individuals that are located out of the search
space Q, each new individual q?ew is examined after the
mutation operation. If one q;" is out of the search space, the
mutation operation is redone on its corresponding q?ld until
an appropriate individual within the search space is obtained.
Repeating the selection, recombination, and mutation opera-
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tions on the new generations, the evolutionary steps are iter-
ated until an optimized individual is finally found.

GA produces an artificial evolutionary process that drives
the population to evolve toward a higher level of fitness.
Ideally the fitness value of the fittest individual in an opti-
mized population approaches infinity indicating the identical
synchronization [22,23] between model and object systems
(y—x). A fitness value approaching infinity produces the
same effect as a synchronization error approaching zero.
Identical synchronization can usually be achieved when the
model and the object have identical parameters [22,23], i.e.,
when the fittest individual has the same value as the object
parameters. In practical conditions, a zero synchronization
error cannot be obtained due to system noise, rounding error,
etc. In numerical calculations, we will stop the evolutionary
process after the best fitness value reaches a sufficiently high
threshold value after a number of generations [27]. The re-
sulting maximum fitness value indicates the minimum syn-
chronization error and the fittest individual value is closest to
the object parameters. Consequently, the unknown param-
eters are estimated after the synchronization between the ob-
ject and model systems are optimized by GA.

Numerical simulation and the electric circuit experiment
were used to test the ability of the proposed method. The
Duffing system is a typical mechanical system in a twin-well
potential field. Moreover, its fitness landscape is quite rug-
ged. A chaotic time series s=x; is generated from the
Duffing system x;=x,, x,=—(0.1x,+x,+x;)+35 cos(w;t)
+40 sin(w,?), where w;=1.0 and w,=1.4 are the parameters
that need to be estimated. The model system is y;=y,+(s
—v1), Y2==(0.1y,+y, +y3)+35 cos(g,7) +40 sin(g,1). The ob-
ject and model systems with random initial conditions are
solved using the fourth-order Runge-Kutta method with in-
terval step 0.017. The time series s=x; with 5000 points is
used in the following parameter estimation. Figure 1(a) pre-
sents the landscape of the fitness F. Aside from the global
peak (F— ) at ¢;=w; and g,=w,, there also exist many
local peaks. These local peaks in the rugged landscape pre-
vent a gradient-following method [15,16] from finding the
true parameter at the global peak because the hill climber
could be trapped on the nearest local peak. Therefore, in
order to find the true parameter values at the global peak, the
gradient-following method would have to preset at an initial
parameter that is sufficiently close to the global solution
[13-18].

Five-hundred individuals q={q,,¢,} are randomly created
within the parameter space, g; € [0,4] and ¢, € [0,4]. Selec-
tion, recombination, and mutation operations make the popu-
lation evolve toward a higher fitness, as shown in Fig. 1(b).
After about 130 generations, the maximum fitness is above
10'*. The model is synchronized with the object and the fit-
test individual {q,,q,} converges at {1.0,1.4}, as shown in
Fig. 1(c). This example shows that the proposed method suc-
cessfully finds the true parameters on a rugged fitness land-
scape. Recombination operations allow the information ex-
change among individuals, while random mutation
introduces new characteristics that may produce better solu-
tions, which effectively prevent the individuals from getting
trapped on a local peak. Because the proposed method has
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FIG. 1. Parameter estimation of the Duffing system. (a) Fitness
landscape. (b) Increase of fitness value during the evolution of
population. (c) The fittest individual {g;,q,} converges at the true
parameter {w, ,w,}, where Aw;=log;o(|w;—¢;|).

the advantage of GA, it can finally find globally optimized
parameters in a wide and uneven search space.

Measurement noise is inevitable in realistic testing condi-
tions. A Gauss random series with zero mean value is added
to the chaotic time series x; of the Duffing system to repre-
sent the measurement noise. Figure 2(a) presents the land-
scape of the fitness F, where the root mean square of the
chaotic time series x; is 2.926 and the standard deviation of
a Gauss series is 2.0. The height of the global peak (F
~0.007) is significantly depressed due to the measurement
noise. However, its location is not visibly shifted by the
noise. We applied the proposed method to estimate the sys-
tem parameter from the time series that had been polluted by
the Gauss noise. Figure 2(b) shows the parameter estimation
results. It illustrates that although the measurement noise in-
creases the parameter estimation error, the difference be-
tween the estimated parameter and the actual parameter is
still very small (<1.6 X 107#). This remains true even when
the standard deviation of the Gauss noise is increased to 2.0.
Therefore, it can be expected that the proposed parameter
estimated method could be effective even in the noisy envi-
ronment.
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FIG. 2. Parameter estimation of the Duffing system with Gauss
noise. (a) Fitness landscape under Gauss noise with the standard
deviation of 2.0. (b) Error of the estimated parameter as a function
of the standard deviation of Gauss noise, where Aw;=log;o(|w;

_qi|)'

The L-dimensional coupled map lattice (L-CML) is used
in the second example because of its potential application in
secure communication [30,31] and wide variety of complex
spatiotemporal behaviors, including spatiotemporal chaos
[29-31]. In order to improve the time-space complexity, the
object CML system combines both a closed loop structure
(length R) and an open loop structure (length L—R),

xi(n+1)=(1-&)f(xi(n), ) + &f(x; -1 (), ) (1=i=R),

1 1
xi(n+1)= (1 - ES)f(x,-(n),,u) + 2 8f (i (). )

(R<i=<L), (4)

where xy(n) =xg(n), g(n)=ef(xgx(n), ) is the observed time
series of the CML system, the subscripti=1,2,...,L denotes
the lattice site index, and 7 is the discrete time index. € is the
coupling constant and u is the parameter of the nonlinear
function f(x, w), which is the tent map in this study f(x, u)
=2ux (0<x=0.5) and f(x,w)=2u(1-x) (0.5<x<1). Let-
ting L=200, R=25, ©=0.785, and £=0.8, we generate the
signal g(n) from Eq. (4) with random initial conditions. Fig-
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FIG. 3. The spatiotemporal pattern in a 200-CML system. (a)
The state error between the object and model. The parameters of the
model are u'=0.78 and &'=0.85 during n=1-2000, but are re-
placed by the values estimated by the proposed method during n
=2001-10000. (b) The spatiotemporal chaos in the object with u
=0.785 and £=0.8.

ure 3(b) shows the complex spatiotemporal pattern of the
200-CML system.
A model is constructed,

yiln+1)=(1=£")f(y(n),u") +gn),

yiln+1)=(1-&")f(y(n),u') + &' f(yi_i(n), un')
2=i=R),

1 1
s+ 0= (1= 2o 0000+ 00,00

(R<i=L), (5)

and the observed series g(n) with 300 points is used to drive
the model system. It has been proven that the model can
synchronize with the object for u=u’ and e=¢’ [31]. Figure
4(a) presents the fitness landscape in the &'-u’ parameter
space. The fitness landscape of the CML system is also rug-
ged. Moreover, because the error y,—x; of CML systems is
quite sensitive to parameter differences [31], the global hill
around &'=0.8 and u'=0.785 is rather narrow (in this ex-
ample, its radius is much smaller than 1075) [16]. The pro-
posed method finds the parameter value of a CML system in
the parameter space &' €[0.75,0.95] and u' €[0.7,0.9],
which is much wider than the global peak. As shown in Fig.
4(b), the average fitness of the whole population is increased
during the artificial evolutionary process. After about 280
generations of evolution, the fitness value was sufficiently
high and the fittest individual (¢’,u’) converged to (0.8,
0.785). With the estimated parameter [during time n
=2001-10000 in Fig. 3(a)], the model can be synchronized
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FIG. 4. Parameter estimation of the 200-CML system. (a) Fit-
ness landscape, where the small panel presents the logarithm of the
synchronization error between the object and model systems after a
gradient-following parameter estimation method is applied. (b) In-
crease of fitness value during the evolution of population. (c) The
fittest individual converges to their true values, where Ae

=logo(le—¢'[) and Ap=logo(lu—u']).

with the object. For the sake of comparison, a gradient-
following method [15] is also employed to estimate the pa-
rameters of the same CML system. The small panel in Fig.
4(a) presents the convergent range of the gradient-following
method, where the gray value represents the logarithm of the
synchronization error between the object and model system
after the gradient-following parameter estimation method is
applied. It is seen that the parameter CML system can be
successfully estimated only when the predefined parameter
values (¢’,u') are very close to the accurate value
(|le’—e] <1075 and |’ — | < 107%). The search range of our
proposed method (&’ €[0.75,0.95] and u' €[0.7,0.9]) is
thousands of times that of the convergent range of the
gradient-following method.

This example shows that the proposed method has the
potential application of extracting the parameters of a spa-
tiotemporal chaotic system from a scalar time series. The
200-CML system has complex spatiotemporal behavior and
system structure. In particular, this spatiotemporal chaotic
system is extremely sensitive to parameter perturbation [31].
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TABLE 1. Parameter values of the Chua circuit.

Object  Search range  Estimated  Difference (%)
C, (nF) 5.13 [0,20] 4.92 -4.09
C, (nF) 51.1 [0,200] 50.7 -0.78
G (Ms) 0.675 [0,1] 0.678 +0.44
L (mH) 9.48 [0,20] 9.66 +1.90
Ry (Q) 3.46 [0,40] 3.462 +0.06
B, (V) -1.59 [-4,0] —1.544 +2.99
B, (V) 1.59 [0,4] 1.47 -7.55
m; (Ms)  —0.512 [-1,0] -0.517 -0.98
m, (Ms) —-0.511 [-1,0] —-0.536 -4.89
mp; Ms)  —0.835 [-2,0] —-0.840 -0.60

As a result, the global peak in the fitness landscape is ex-
tremely narrow. Because of these properties, which make
extracting parameters quite difficult [16], the spatiotemporal
chaotic system has been utilized to improve the security of a
chaotic communication system [31]. In this example, it is
found that the proposed method does not need additional
assistant systems [18] or control loops [10]. Chaos synchro-
nization maps the parameter difference to the error landscape
from just one observable variable. Moreover, GA allows us
to optimize the synchronization in such a fitness landscape
with extremely narrow global peak. Therefore, the proposed
parameter estimation method is still applicable for a highly
parameter sensitive spatiotemporal system.

In the third example, we apply the proposed method to
estimate the parameters of the Chua’s circuit system, based
on our experimental setup [32]. Chua’s circuit is the simplest
electronic circuit that exhibits classic chaos theory behavior.
The circuit parameters have been given in the second column
of Table I. The time series of V- and Vi, of the Chua’s
circuit with 10 000 points (20 ms) were recorded through the
oscilloscope (Tektronix TDS-460) with the sampling interval
2 us. Figure 5(a) presents the phase orbits (V¢ vs Vi) of
the experimental object system. The fluctuation in the attrac-
tor is due to the noise in the practical circuit system. To
approach the experimental system parameters, we apply

the following model system: C;Vi,=G(Ve, Vi) —g(Ve,)
+0.1(Ver=Viy), CoVi=G(Viy=Vis)+15, LIt =—Viy—Ryl.,

c1

FIG. 5. Chaotic attractor of (a) the Chua’s circuit experimental
system and (b) the model simulation system with the estimated
parameter values given in Table I.
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where g(x) is a piecewise-linear function, g(x)=mx+b,(x
<B,); g)=mx(B,;=x=B,); and g(x)=myx+by(B,,
<)C) with b1=(m12—m1)Bp1 and b2=(m12—m1)BP2. Ten inde-
pendent parameters need to be estimated for a Chua’s circuit
(column 1, Table I). The fitness function is described as F
=(ty=t)/ [io1.)(Ver=Ver)?dt,  where ;=2 ms and 1,
=20 ms. The proposed method searches for the Chua’s cir-
cuit parameter values within a wide parameter range (column
3, Table I). The optimized individual is obtained after 200
generations of evolution. The estimated values (column 4,
Table I) are close to the measured circuit parameter values.
The difference between them may be associated with the
measurement error and environmental noise. With the esti-
mated parameter values, the chaotic attractor of the model
[Fig. 5(b)] is similar to the object, the Chua’s circuit [Fig.
5(a)].

In summary, we propose a method to estimate system pa-
rameters from a time series by optimizing synchronization
with a genetic algorithm. It is demonstrated that this method
can effectively find the actual parameter value from a rugged
fitness landscape, even with strong measurement noise. The
simulation on a 200-CML system shows that this method can
extract the actual parameter from the time series of a single
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observation even for a complex spatiotemporal chaotic sys-
tem. Moreover, the search space of our method is much
larger in comparison with the gradient-following method.
The successful application on a chaotic circuit experiment
shows its potential value in extracting real system param-
eters. To estimate the unknown system parameters of a
known system equation from the observed time series has
potential application in many practical situations, for ex-
ample, the secure communication system [22] and vocal-fold
system [18]. The function forms of these systems are open or
have been built by the previous studies. However, their sys-
tem parameters are unknown. Extracting the parameters of
these systems from the recorded time series could help de-
code secure communication or provide valuable physiologi-
cal and pathological information on the vocal fold. It is ex-
pected that the proposed parameter estimation method can be
applied in these practical situations, which will be interesting
for our future work.

This study was supported by NIH Grant Nos.
1-RO1DC006019 and 1-RO1DC05522 from the National In-
stitute of Deafness and other Communication Disorders.
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