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We study wave propagation, interaction, and transmission across the boundary between two chemical media
in a model of an oscillatory reaction-diffusion medium subjected to local periodic forcing. The forced waves
can be either outwardly �OP� or inwardly propagating �IP�, depending on the dispersion of the medium.
Competition among forced waves, spontaneous spiral waves, and bulk oscillations is studied for both cases. We
demonstrate development of a negatively refracted wave train when forced waves traverse the boundary
between the OP medium and the IP medium.
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I. INTRODUCTION

Local periodic forcing �LPF� of reaction-diffusion sys-
tems provides a means of investigating a variety of dynamic
questions about spatiotemporal waves and patterns in chemi-
cal systems. It is also of interest in developmental biology,
medicine and environmental science. For example, a 3D
forced wave model has been used to simulate mound forma-
tion in Dictyostelium discoideum �1�. The effects of LPF
have been studied in both oscillatory �2� and excitable �3,4�
reaction-diffusion systems. In the latter case, the studies were
aimed at development of low-voltage cardiac defibrillators.
Low amplitude pacemakers were found to suppress the spiral
turbulence, which was considered a model of cardiac fibril-
lation �3,4�. Periodic drug release via iontophoresis, which
can be viewed as a form of LPF, has been suggested as a
treatment for cardiac arrhythmias that would have low en-
ergy requirements and be capable of modulation in response
to changes in arrhythmia activity �5�. In recent decades, the
influence of megacities on regional and global pollution has
raised concern worldwide �6�. Global air pollution may be
related to LPF by chemicals that arise from daily periodic
urban activity and are transmitted from cities to remote areas
by prevailing winds. Simulation of chemical LPF in a simple
chemical medium may shed light on some basic characteris-
tics of the behavior of forced patterns that can enable us to
understand, and perhaps to modify, some of the phenomena
described above.

When waves propagate from one medium to another, re-
fraction and/or reflection may occur. Refraction and reflec-
tion of chemical waves at the interface between two dissipa-
tive excitable media have been studied experimentally and
theoretically in the Belousov-Zhabotinsky �BZ� reaction-
diffusion system. Reflection of chemical trigger waves is
quite different from its counterpart in optical or acoustic sys-
tems: The angle of reflection is always equal to the critical

angle in the dissipative BZ system, in contrast to the specular
reflection �equal angles of incidence and reflection� observed
in conservative optical systems. Refraction of chemical
waves, on the other hand, was found to follow the classical
Snell’s law in reaction-diffusion systems �7�.

Inward propagation of spiral waves in a reaction-diffusion
system was recently observed in a water-in-oil AOT micro-
emulsion �8�. In contrast to ordinary concentric or spiral
waves, in which waves of chemical activity propagate out-
ward from a source, inwardly rotating spiral or concentric
waves propagate toward a central point. Linear stability
analysis reveals the physical mechanism behind this differ-
ence: in outwardly propagating �OP� waves, the group veloc-
ity and the phase velocity have the same sign, while in in-
wardly propagating �IP� waves, they have opposite signs
�9,10�.

Oppositely oriented group and phase velocities in chemi-
cal waves might give rise to other new phenomena in addi-
tion to the anomalous propagation of waves. An obvious case
to consider is the refraction of chemical waves at an interface
between two reaction-diffusion media. Might such a system
exhibit the same abnormal phenomena as seen in optical ma-
terials of negative refractive index, where opposite signs of
the group and phase velocities result in refraction of light
that obeys a negative Snell’s law, i.e., the refracted light is on
the same side of the interface as the incident light? Materials
that can have negative refractive index were envisioned as
early as 1968 �11�. Only much later were such materials
actually manufactured and proposed as a component in novel
lenses that could revolutionize modern optical devices �12�.
Recently Cao et al. �13� have shown that negative refraction
can occur at the boundary between two reaction-diffusion
media, one of which supports OP and the other supports IP
waves.

Here, we use the simple Brusselator model to explore the
dynamics of media with OP and IP waves under the influence
of LPF in a wide range of forcing frequencies.*epstein@brandeis.edu; URL: http://hopf.chem.brandeis.edu/
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II. METHOD

A reaction-diffusion system may be described by a set of
partial differential equations. A general two-variable autono-
mous model can be written as

�u

�t
= f�u,v� + �r

2u , �1�

�v
�t

= g�u,v� + ��r
2v , �2�

where f and g describe the reaction kinetics and the last term
in each equation represents diffusion, with � the ratio of
diffusion coefficients, �=Dv /Du. Here we choose the ab-
stract Brusselator model �14�, in which f�u ,v�=a− �1+b�u
+u2v and g�u ,v�=bu−u2v. We add the LPF term to the first
equation:

�u

�t
= f�u,v� + �r

2u + I�r�A cos��ext� , �3�

�v
�t

= g�u,v� + ��r
2v . �4�

where the step function I�r� is 1 inside the pacemaker region
and 0 elsewhere, A is the LPF amplitude �we take A=1.0�,
and �ex is the external forcing frequency.

We deal with media that are oscillatory as the result of a
supercritical Hopf bifurcation. In the Brusselator the Hopf
instability occurs when b�bc

H=1+a2. With this instability
the system is driven away from the steady state �u0 ,v0�
= �a ,b /a�, which results in a limit cycle solution of the ordi-
nary differential equations. In spatially extended systems,
this may result in phase-synchronized bulk oscillation �BO�,
periodic waves or spatiotemporal chaos.

We study the effects of LPF in one- and two-dimensional
systems with zero-flux boundary conditions. We employ the
direct Euler algorithm with the time step �t=5.0
�10−3 time unit �t.u.� and spatial discretization �x=5.0
�10−1 space unit �s.u.�

III. RESULTS

A. Effects of LPF on systems that support OP and IP waves

Pacemakers with oscillation frequencies higher than those
of the bulk oscillation form target patterns of outwardly
propagating waves �15�. Recently patterns consisting of
waves propagating toward the center of each spiral have
been found in experiment �8�, which attracted attention to the
phenomenon of inwardly propagating waves. It was shown
that such inward propagation took place when the sign of the
group velocity of the waves was opposite to that of their
phase velocity �8�. Several calculations demonstrated that in
such a situation spiral and target patterns of IP waves can
occur �9,10,16�.

We study here the dynamics of model �1�–�4� beyond the
Hopf bifurcation, where the real part of the pair of eigenval-
ues �=�± i� is positive, ��0, with nonzero imaginary part,

��k��0, the so-called “wave domain.” Figure 1 shows two
types of dispersion relation in the wave domain for the au-
tonomous Brusselator model, where ��k�=��k�+ i��k� can
be calculated analytically by solving the linear stability ei-
genvalue equation,

�J − �I� = 0 �5�

or

�2 − tr�J�� + ��J� = 0, �6�

where J is the modified Jacobian matrix,

J = �
�f

�u
− k2 �f

�v

�g

�u

�g

�v
− �k2� , �7�

with trace

tr�J� = b − 1 − a2 − �1 + ��k2 �8�

and determinant

��J� = a2 + ��1 − b�� + a2�k2 + �k4. �9�

Solving these equations gives

2��k� = b − 1 − a2 − �1 + ��k2, �10�

4�2�k� = �b − 1 − a2�2 − 4a2 + �2�� − 1��b − 1 + a2��k2

+ ��1 + ��2 − 4��k4. �11�

Figure 1�a� shows the case of positive dispersion, �� /�k
�0, which is closely related to normal dispersion in optics
and results in the emergence of OP waves. Figure 1�b� illus-
trates negative dispersion, �� /�k	0, which corresponds to
optical anomalous dispersion and leads to generation of IP
waves.

Figure 2 shows that in the 1D system pacemakers gener-
ate OP waves for a broad range of �ex/�0. There is a wide
domain of 1:1 phase locking in the center of this range �Fig.
2�a��. A spatiotemporal plot for �ex=1.0 is shown in Fig.
2�c�. At pacemaker frequencies below �0 the local frequency
of oscillations is �0, yet the pacemaker still induces fast
phase waves �Fig. 2�b�, �ex=0.8�. One can see in this case a
transitional process that includes wave splitting. This transi-
tion zone occupies a short interval at the left of the frame

FIG. 1. Dispersion relations for the autonomous Brusselator
model: The dominant eigenvalue as a function of wave number,
��k�=��k�+ i��k�, calculated from Eqs. �10� and �11�. �a� OP waves
�parameters: a=1.0; b=3.0; Du=1.0; Dv=0.5�; �b� IP waves �pa-
rameters: a=1.2; b=3.1; Du=1.0; Dv=3.0�.
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between the pacemaker and the rest of the system. To the
right of the 1:1 phase locking domain in Fig. 2�a� there is a
domain of OP waves with � close to �12/11� �0. A spa-
tiotemporal plot for �ex=1.1 is shown in the rightmost panel,
Fig. 2�d�. In this case, a transitional process results in reduc-
tion of the number of propagating waves due to local propa-
gation failure. This transition zone is significantly further
away from the pacemaker than in the case of wave splitting
at low �ex.

Figure 3 portrays the behavior of the forced system with
IP waves. Figure 3�a� shows the domain of 1:1 phase locking
flanked by regions of out of phase IP waves. The correspond-
ing curve from Fig. 2�a� is also plotted as a broken line.
Figures 3�b�–3�d�, shows the relevant spatiotemporal plots.
At pacemaker frequencies below 1.01 the local frequency of
oscillations is 1.09, but the pacemaker still induces fast phase
waves �Fig. 3�b�, �ex=0.95�. Again the transitional process
involves wave splitting, and the transition zone occupies a
short interval between the pacemaker and the rest of the sys-
tem. The central spatiotemporal plot shows 1:1 phase locking
with �ex=1.05. The rightmost plot demonstrates that at �ex

�0=1.10 the very fast OP waves are almost indistinguish-
able from BO.

B. Competition between IP waves and bulk oscillations

Figure 4 shows a 1D system subjected to forcing at its
ends with two different frequencies, �left=1.03 and �right
=1.07, both lower than the BO frequency, �0=1.10. The
wave numbers are −0.27 �IP1�, where the negative sign de-

notes motion to the left�, 0 �BO�, and 0.18 �IP2�.
IP waves appear at the boundaries of the BO domain and

propagate toward the pacemakers. At the same time, the
boundaries of the BO domain move in opposite directions,
resulting in shrinking of the BO domain. After this domain
disappears, the boundary between the two IP wave domains
moves toward the pacemaker with higher frequency, and
eventually the IP waves with the lower frequency take over
the entire system. The velocity of the domain wall is analo-
gous to the group velocity, and is given by the ratio of the
frequency difference over the wavenumber difference of the
two neighboring domains, vw= ��2−�1� / �k2−k1�. In media
with negative dispersion, the pacemaker with the lowest fre-
quency eventually entrains the system, as shown previously
in the case of the complex Ginzburg-Landau equation. �17�

C. Suppression of spiral turbulence with LPF

Zhang et al. �4� suppressed spiral turbulence in the com-
plex Ginzburg-Landau equation �CGLE� by using a pace-
maker to sustain a small spiral wave region at the center of
the turbulent area. Here we show that a pacemaker with an
appropriate frequency creates a target pattern that gradually
eliminates turbulence and occupies the entire system.

In Fig. 5, we create a circular pacemaker of radius 5 s.u.
at the center of the system. The forcing frequency is set to
�ex=1.05, which is higher than both the local frequency of

FIG. 2. Effects of LPF on OP waves with parameters in Fig.
1�a�. �a� Response to forcing. The middle linear part shows the 1:1
phase-locking of forced waves, while the plateau at the lower left
corresponds to fast moving phase waves with the frequency of BO
��0=0.88�, and the plateau at the upper right corresponds to waves
with �=0.96. �b�, �c�, and �d� Spatiotemporal plots illustrate these
three types of forced waves in a 1D system with zero-flux boundary
conditions with �ex=0.8, 1.0, and 1.1, respectively; A=1.0; size of
the pacemakers is 10 s.u. Wave splitting is marked by arrows in �b�,
1:1 phase locking OP waves in �c�, and local propagation failures
are enclosed by dashed circles in �d�.

FIG. 3. Effects of LPF on IP waves with parameters as in Fig.
1�b�. �a� The solid line shows the effects of forcing on IP waves; for
comparison with the dynamics of OP waves, the broken line taken
from Fig. 2�a� is also shown. The middle linear part shows 1:1
phase-locking of forced IP waves, overlapping with that of OP
waves shown in Fig. 2�a�. The plateau to the left of the 1:1 domain
corresponds to IP waves with �=1.09, while the plateau at the right
corresponds to bulk oscillation. �b�, �c�, and �d� Spatiotemporal
plots in a 1D system with zero-flux boundary conditions showing
three typical responses for IP waves with �ex=0.95, 1.05, and 1.10,
respectively; A=1.0; size of the pacemakers is 10 s.u. �b� Out of
phase IP waves with wave splitting episodes enclosed by dashed
circles; �c� 1:1 phase locking; �d� fast moving phase waves close to
bulk oscillation.
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turbulence ��wave=0.92�, and that of the bulk mode, �0

=0.89. The sequence of snapshots in Fig. 5 shows that the
turbulence is gradually swept away and ultimately replaced
by a target pattern of fast pacing. However, if �ex	�wave,
the system ignores the forcing, and the turbulence persists.

D. Negative refraction of chemical waves

Refraction of electromagnetic waves involves the change
in direction of a wave at an interface when the wave travels

from one medium into another medium that propagates the
wave at a different velocity. At the interface, the wave’s
phase velocity is altered, but its frequency remains constant,
so that phase continuity gives Snell’s law

n1 sin��1� = n2 sin��2� , �12�

where �1 and �2 are the angles of incidence and refraction,
respectively, and n1 and n2 are the respective indices of re-
fraction. The refractive index of a transparent material was
considered to be a positive number until recently, when
metamaterials were developed with negative refractive indi-
ces �12�. In chemical systems, media which support IP waves
behave like metamaterials, and negative refraction may occur
at the interface between two media when one supports OP
and the other IP waves. This has been demonstrated recently
by Cao et al. �13�.

Figure 6 shows the behavior of a two-dimensional system
under LPF. A rectangular system is divided into two equal
parts, and the model parameters are set to the values in
shown in Fig. 1�a� in the left part of the system and to those
shown in Fig. 1�b� in the right part. From random initial
conditions, the left part of the system develops spiral turbu-
lence, while the right one generates bulk oscillation. The left
border of the system is subjected to LPF, which generates OP
waves in the left part, while a wave train emerges at the
interface and propagates in the opposite direction �Figs. 6�a�
and 6�b��. Both wave trains have the capability to suppress
the spiral turbulence, since they have higher frequency than

FIG. 4. Competition among two pacemakers and bulk oscilla-
tion. The two pacemakers extend from 0 to 10 s.u. and from
390 to 400 s.u. with frequencies 1.03 t.u.−1 and 1.07 t.u.−1, respec-
tively. Parameters from Fig. 1�b�. A stroboscopic plot with sampling
frequency 1.03/22 shows the overall dynamics of competition and
eventual entrainment of the system. Three domain walls are high-
lighted, which separate the BO, IP1 and IP2 domains. Their veloci-
ties are vw= ��2−�1� / �k2−k1�=0.26, −0.17, and 0.09 s.u/ t.u..

FIG. 5. Spiral waves that develop from random initial condi-
tions at t=0 are swept away by a central pacing region. Four snap-
shots are taken at t=300, 640, 1400, and 4300 t.u. System size:
200�200 s.u.; parameters as in Fig. 1�a�.

FIG. 6. Evolution of wave patterns in the Brusselator subjected
to LPF and establishment of negative refraction of chemical waves.
Snapshots �a�–�f� are taken at t=100, 500, 1000, 1700, 2200, and
3000 t.u. Negative refraction is seen at the boundary between the
two parts of the system in frame �f�. Closer to the external bound-
aries of the system, the refracted wave train is distorted, because the
wave fronts are perpendicular to the zero-flux boundaries. System
size: 400�300 s.u. Left border �0 to 5 s.u.� is subjected to forcing
with frequency 1.05 t.u.−1
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that associated with spirals �Fig. 6�b��. When they meet, the
wave train generated by the LPF gradually annihilates the
opposite wave train �Figs. 6�c� and 6�d��. Meanwhile, IP
waves generated by the interface emerge in the right half of
the system, as shown in Figs. 6�b�–6�d�. Figure 6�e� shows
the emergence of the refracted wave train. Figure 6�f� shows
the stationary pattern of refraction. By measuring the angles
and wavelengths, we find that the medium indeed obeys
Snell’s law �12�, but the right side exhibits both a negative
index of refraction �n2=k2=� /vp	0 because the phase ve-
locity is negative for IP waves� and a negative angle of re-
fraction.

An essential criterion for negative refraction to occur is
that the 1:1 phase locking region for the IP forced waves
must overlap with the phase locking region for the OP forced
waves, as highlighted in Fig. 3�a�. It is within this overlap
region that the forcing frequency must be chosen. Addition-
ally, the LPF frequency must be higher than the frequencies
of bulk oscillations and waves in the OP area and lower than
those in the IP area so that the waves from the pacemaker
can overcome the competition from the other possible modes
in both media.

IV. CONCLUSION

It has been experimentally demonstrated that opposite
signs of the phase and group velocities of a chemical wave in
a reaction-diffusion system give rise to a new type of chemi-

cal wave: Inwardly propagating waves �8�. In this paper, we
have examined phenomena and properties related to this type
of chemical system: The response to external periodic forc-
ing and transmission of the forced waves between media. In
normal media, in which the two wave velocities have the
same sign, the mode of highest frequency among the external
pacing wave, bulk oscillation and intrinsic wave will ulti-
mately dominate. Here, in contrast, when the frequency of an
external pacing wave is lower than those of both the natural
wave and bulk oscillation, it will finally sweep out any pre-
existing waves and occupy the entire system. In other words,
such chemical systems respond only to external pacing with
lower frequency.

It seems likely that reaction-diffusion systems possessing
opposite signs of their phase and group velocities can sup-
port other new phenomena, particularly in configurations in-
volving several components with different properties. Inves-
tigation of these fascinating chemical systems may broaden
our understanding of chemical wave propagation and trans-
mission in heterogeneous media, with potential implications
for materials, biological, and ecological �18� systems as well.
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