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Networks of living neurons exhibit an avalanche mode of activity, experimentally found in organotypic
cultures. Moreover, experimental studies of morphology indicate that neurons develop a network of small-

world-like connections, with the possibility of a very high connectivity degree. Here we study a recent model
based on self-organized criticality, which consists of an electrical network with threshold firing and activity-
dependent synapse strengths. We study the model on a scale-free network, the Apollonian network. The system
exhibits an avalanche activity with a power law distribution of sizes and durations. The analysis of the power
spectra of the electrical signal reproduces very robustly the power law behavior with the exponent 0.8,
experimentally measured in electroencephalogram spectra. The exponents are found to be quite stable with

respect to initial configurations and strength of plastic remodeling, indicating that universality holds for a wide

class of neural network models.
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I. INTRODUCTION

Neuronal networks [ 1] exhibit diverse patterns of activity,
including oscillations, synchronization, and waves. During
neuronal activity, each neuron can receive inputs from thou-
sands of other neurons and, when it reaches a threshold, re-
distributes this integrated activity back to the neuronal net-
work. Recently a neuronal activity based on avalanches has
been observed in organotypic cultures from coronal slices of
rat cortex [2] where neuronal avalanches are stable for many
hours [3]. More precisely, recording spontaneous local field
potentials continuously with a multielectrode array has
shown that activity initiated at one electrode might spread to
other electrodes not necessarily contiguously, as in a wave-
like propagation. Cortical slices are then found to exhibit a
new form of activity, producing several thousand avalanches
per hour of different duration, in which nonsynchronous ac-
tivity is spread over space and time. By analyzing the sizes
and durations of neuronal avalanches, the probability distri-
bution reveals a power law behavior, suggesting that the cor-
tical network operates in a critical state. The experimental
data indicate for the avalanche size distribution a slope vary-
ing between —1.2 and —1.9, depending on the accuracy of the
time-binning procedure, with a value —1.5 for optimal ex-
perimental conditions. Interestingly, the power law behavior
is destroyed when the excitability of the system is increased,
contrary to what expected, since the incidence of large ava-
lanches should decrease the power law exponent. The distri-
bution then becomes bimodal—i.e., dominated by either very
small or very large avalanches as in epileptic tissues. The
power law behavior is therefore the indication of an optimal
excitability in the systems spontaneous activity. Moreover,
the avalanche time duration is also found to follow a power
law behavior as a function of the duration time, normalized
by the time bin, with an exponent equal to —2.0 followed by
an exponential cutoff. These results have been interpreted
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relating spontaneous activity in a cortical network to a criti-
cal branching process [4,5]. Indeed the experimental branch-
ing parameter is found to be very close to the critical value
equal to 1, at which avalanches at all scales exist.

Power law behavior is also observed for other neurobio-
logical systems at various levels, such as, for instance, in
power spectra of different time series monitoring neuronal
activities. Prominent examples are electroencephalogram
(EEG) data which are used by neurologists to discern sleep
phases and diagnose epilepsy and other seizure disorders as
well as neuronal network damage and disease [6,7]. The in-
terpretation of physiological mechanisms at the basis of EEG
measurements is still controversial. The medical analysis is
usually performed by measuring the frequency position of a
number of peaks in the spectrum, which usually appear on an
underlying power law behaviour. Another example of a
physiological function which can be monitored by time se-
ries analysis is the human gait, which is controlled by the
brain [8]. For all these time series the power spectrum—i.e.,
the square of the amplitude of the Fourier transform, double
logarithmically plotted against frequency—generally fea-
tures a power law over at least one or two orders of magni-
tude with exponents between 1 and 0.7. Moreover, experi-
mental results show that the neurotransmitter secretion rate
exhibits fluctuations in time having power law behavior [9]
and power laws are also observed in fluctuations of extended
excitable systems driven by stochastic fluctuations [10].

The dynamics observed in spontaneous neuronal network
activity is very similar to self-organized criticality (SOC)
[11-14]. The term SOC usually refers to a mechanism of
slow energy accumulation and fast energy redistribution,
driving the system toward a critical state, where the distribu-
tion of avalanche sizes is a power law obtained without fine-
tuning: no tunable parameter is present in the model. The
simplicity of the mechanism at the basis of SOC has sug-
gested that several phenomena characterized by power law in
the size distribution represent natural realizations of SOC.
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For instance, SOC has been proposed to model earthquakes
[15-17], the evolution of biological systems [18], solar flare
occurrence [19], fluctuations in confined plasma [20], snow
avalanches [21], and rainfall [22].

On the basis of these observations, recently a model based
on SOC ideas and taking into account synaptic plasticity in a
neural network [23] has been proposed. Plasticity is one of
the most astonishing properties of the neuronal network, oc-
curring mostly during development and learning [24-26],
and can be defined as the ability to modify the structural and
functional properties of synapses. Among the mechanisms
for synaptic plasticity, the activity-dependent Hebbian plas-
ticity constitutes the most fully developed and influential
model of how information is stored in neuronal circuits
[27-29]. Within the present SOC approach the four most
important ingredients for neuronal activity have been intro-
duced: namely threshold firing, neuron refractory period,
activity-dependent synaptic plasticity, and pruning.

The model consists in a network of sites, which represent
the cell body of a neuron, and bonds, which constitute the
synapses connecting different neurons. For the sake of sim-
plicity, the model is implemented on a square lattice. In order
to study the electrical activity of the network, each site is
characterized by a potential and each bond by a conductance.
Whenever, at a given time, the value of the potential at a site
is above a certain threshold, approximately equal to —55 mV
for real neurons, the neuron fires—i.e., generates an “action
potential "—distributing charges to its connected neighbors in
proportion to the current flowing through each bond. After
firing, a neuron goes back to the resting potential of =70 mV
and remains inactive during the so-called refractory period.
This time corresponds for real neurons to the physiological
time needed to reset ion channels after the transmission of
the action potential through the axon. The conductances, on
the other hand, represent Hebbian synapses, for which the
conjunction of activity at the presynaptic and post-synaptic
neurons modulates the efficiency of the synapse [29]. To this
extent, each time a synapse transmits an action potential be-
tween active neurons, its strength is increased proportionally
to the intensity of the transmitted signal, whereas synapses
inactive during a neuronal avalanche have their strength de-
creased, as for Hebbian rules. Synapses successively weak-
ened may have their strength finally set to zero—i.e., are
“pruned”—eliminating that particular connection between
neurons. Pruning implies that, as activity goes on, the initial
regular lattice is transformed, some patterns are strength-
ened, some are weakened, and the connectivity degree of
some neurons may be decreased. The system is found to
exhibit an avalanche activity power law distributed with an
exponent close to —1.5, as measured for spontaneous activity
size distribution [2]. The analysis of the power spectra of the
electrical signal reproduces very robustly the power law be-
havior with the exponent 0.8, experimentally measured in
EEG spectra. The same value of both exponents is found
considering leaky neurons or introducing a small percentage
of inhibitory synapses, indicating that universality holds for a
wide class of neural network models.

In real neuronal networks, neurons are known to be able
to develop an extremely high number of connections with
other neurons; that is, a single-cell body may receive inputs
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from even 1000 presynaptic neurons. One of the most fasci-
nating questions is how an ensemble of living neurons self-
organizes, developing connections to give origin to a highly
complex system. The dynamics underlying this process
should be driven both by the aim of realizing a well-
connected network leading to efficient information transmis-
sion and the energetic cost of establishing very long connec-
tions. The morphological characterization of a neuronal
network grown in vifro has been studied [30] by monitoring
the development of neurites in an ensemble of few hundreds
neurons from the frontal ganglion of adult locusts. After few
days the cultured neurons have developed an elaborated net-
work with hundreds of connections, whose morphology and
topology have been analyzed by a mapping onto a connected
graph. The short path length and the high clustering coeffi-
cient measured indicate that the network belongs to the cat-
egory of small-world networks [31]. Small-world networks
are characterized by an efficient information transmission
with a small number of long-range connections. However,
the system grown in vitro necessarily lacks some features of
in vivo systems; therefore, the average node connectivity is
found equal only to few units and the “scale-free” feature
[32] of many real networks was not recovered. Further recent
experimental [33] and theoretical [34] investigations have
confirmed that neuronal networks have complex connection
properties. In particular, Roerig ef al. have found, combining
in vitro and in vivo techniques, that in the visual cortex V1 of
ferrets the dependence of the number of connections to a
central neuron on the distance has a power law behavior: the
central neuron makes a large number (up to 1000) of short
connections (few micrometers) and a few long-range connec-
tions (some millimeters). This result characterizes fractally
coupled networks, which indeed have small-world properties
and high clustering coefficient.

The activity-dependent neural network model [23] has
been implemented on small-world networks by rewiring a
small percentage of the square lattice bonds. Again the same
universal scaling behavior is recovered on small-world net-
works for both the avalanche distribution and the power
spectra. The simple rewiring procedure, however, only al-
lows long-range connections, leaving the average node con-
nectivity equal to a few units, as for in vitro systems. It
would be interesting to investigate the case of a wider range
of connectivity degrees, as observed for neuronal networks.

In this paper we investigate the behavior of the activity-
dependent neural network model on scale-free networks.
These are indeed characterized by a power law distribution
of the node connectivity, allowing a high number of connec-
tions per neuron. We develop the model on the Apollonian
network [35], which has the property of being simulta-
neously small world and scale free. We analyze the behavior
of the avalanche size and duration distributions and the
power spectra related to electrical activity. We also study a
system composed of both excitatory and inhibitory synapses,
as in real neuronal networks. The paper is organized as fol-
lows: In Sec. II the scale-free Apollonian network is de-
scribed, whereas in Sec. III the activity-dependent neural net-
work model is presented and the results on the electrical
activity are discussed in Sec. IV. Concluding remarks are
given in Sec. V.
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FIG. 1. Apollonian network for N=2: iterations n=0,1,2 are
symbols O, B, ¢, respectively.

II. APOLLONIAN NETWORK

The Apollonian network has been recently introduced
[35] in a simple deterministic version starting from the prob-
lem of space-filling packing of spheres according to the an-
cient Greek mathematician Apollonius of Perga. In its clas-
sical version the network associated to the packing gives a
triangulation that physically corresponds to the force net-
work of the packing. One starts with the zeroth-order triangle
of corners P, P,,P3, places a fourth site P, in the center of
the triangle, and connects it to the three corners (n=0). This
operation will divide the original triangle in three smaller
ones, having in common the central site. The iteration n=1
proceeds placing one more site in the centre of each small
triangle and connecting it to the corners (Fig. 1). At each
iteration n, going from 0 to N, the number of sites increases
by a factor of 3 and the coordination of each already existing
site by a factor of 2. More precisely, at generation N there are

m(k,N)=3N3N13N2 32313
vertices, with connectivity degree
k(N)=3,3X2,3%x22 ...,3x2VN1 3 x 2NN, 1,

respectively, where the two last values correspond to the site
P, and the three corners P;,P,,P5;. The maximum connec-
tivity value then is the one of the very central site Py, k.,
=3 X 2N, whereas the sites inserted at the Nth iteration will
have the lowest connectivity 3.

The important property of the Apollonian network is that
it is scale free. In fact, it has been shown [35] that the cu-
mulative  distribution of connectivity —degrees P(k)
=3 —um(k,N)/ Ny, where Ny=3+(3™1D_1)/2 is the total
number of sites at generation N, has a power law behavior
with k. More precisely, P(k)<k!"”, with y=In3/In2
~1.585. Moreover, the network has small-world features.
This implies [31] that the average length of the shortest path
| behaves as in random networks and grows slower than any
positive power of N—i.e., = (In N)*'. Furthermore, the clus-
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tering coefficient C is very high as in regular networks (C
=1) and contrary to random networks. For the Apollonian
network C has been found to be equal to 0.828 in the limit of
large N. On this basis, the Apollonian network appears to
have all the new features that we would like to investigate:
small-world property found experimentally [30] and possi-
bility of a very high connectivity degree (scale free). More-
over, it also presents site-connecting bonds of all lengths.
Also this last feature can be found in real neuronal networks,
where the length of an axon connecting the presynaptic with
the post-synaptic neuron can vary over several orders of
magnitude, from micrometers to centimeters.

III. ACTIVITY-DEPENDENT MODEL

On a Apollonian network at generation N, we assign at
each site a neuron at potential v; and at each bond a synapse
of conductance g;;. Since a neuron receives inputs on the
dendrites and sends signals through the axon, bonds are
asymmetric and therefore g;; # g;;. Whenever at time 7 the
value of the potential at a site i is above a certain threshold,
v;=v,, the neuron generates an action potential, distributing
charges to connected neurons j in proportion to the current
flowing through each bond:

i:(1)

v+ 1)=vj(t):rv,»(t)—.";, (1)
G

where v(#) is the potential at time ¢ of site j, connected to
site i, i;;=g;;(v;~v;), and the sum is extended to all k sites
connected to site i, at a potential v;<v;. In mature living
neuronal circuits, synapses can be excitatory or inhibitory;
namely, they set the potential of the post-synaptic membrane
to a level, respectively, closer to or farther from the firing
threshold. This ingredient can be introduced by considering
each synapse inhibitory with probability p;, and excitatory
with probability 1-p;,. In Eq. (1) the plus sign corresponds
to an excitatory synapse, whereas the minus sign to an in-
hibitory one. After firing, a neuron is set to a zero resting
potential. Equation (1) intends to simplify the very complex
neuronal signal transmission, taking into account the ob-
served behavior that different post-synaptic neurons may re-
ceive signals of different intensity from the same presynaptic
neuron.

The conductances can be initially set all equal or else
random between O and 1, whereas the neuron potentials are
uniformly distributed random numbers between v.—2 and
v.— 1. In agreement with the SOC scenario, the initial state
for the voltage is not relevant since the system evolves to-
ward the same critical state regardless of the initial condi-
tion. The potential is fixed to zero at the three corner sites
1,2,3 where information can flow out of the system. The
external stimulus is imposed at one input site chosen either
fixed or random.

The firing rate of real neurons is limited by the refractory
period—i.e., the brief period after the generation of an action
potential during which a second action potential is difficult
or impossible to elicit. The practical implication of refractory
periods is that the action potential does not propagate back
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toward the initiation point and therefore is not allowed to
reverberate between the cell body and the synapse. In the
model, once a neuron fires, it remains quiescent for one time
step and is therefore unable to accept charge from firing con-
nected neurons. This ingredient indeed turns out to be crucial
for a controlled functioning of the numerical model. In this
way an avalanche of charges can propagate far from the in-
put site through the system.

As soon as a site is at or above threshold, v, at a given
time 1, it fires according to Eq. (1). Then the conductance of
all the bonds, connecting active neurons and that have car-
ried a current, is increased in the following way:

gif(t+ 1) =g;;(1) + 9g;;(1), ()

where 8g;(t)=Aai;(t), with @ being a dimensionless param-
eter and A a unit constant bearing the dimension of an in-
verse potential. After applying Eq. (2), the time variable of
the simulation is increased by one unit. Equation (2) de-
scribes the mechanism of increase of synaptic strength, tuned
by the parameter «. This parameter then represents the en-
semble of all possible physiological factors influencing syn-
aptic plasticity, many of which are not yet fully understood.

Once an avalanche of firings comes to an end, the con-
ductance of all the bonds with nonzero conductance is re-
duced by the average conductance increase per bond during
that avalanche, Ag=2,; ,6g;,(t)/N,, where N, is the number
of bonds with nonzero conductance. This weakening rule
implies the conservation of the average bond conductance.
This requirement is necessary in our numerical network in
order to keep the total current flowing in the system finite
and therefore needs to be applied at the end of each ava-
lanche. The quantity Ag depends on « and on the response of
the neural network to a given stimulus. Once the conduc-
tance of a bond is below an assigned small value o, it is
removed—i.e., is set equal to zero, which corresponds to
what is known as pruning. It is important to notice that, since
the conductance network is one-directional, pruning may
eliminate the connection going from neuron i to neuron j and
not the one in the opposite direction. In this way the network
“memorizes” the most used paths of discharge by increasing
their conductance, whereas the less used synapses atrophy.
This remodeling of synapses mimics the fine-tuning of wir-
ing that occurs in developing neuronal networks, when neu-
ronal activity can modify the synaptic circuitry, once the ba-
sic patterns of neuronal network wiring are established [25].
These mechanisms correspond to a Hebbian form of activity-
dependent plasticity, where the conjunction of activity at the
presynaptic and post-synaptic neuron modulates the effi-
ciency of the synapse [29]. To ensure the stable functioning
of neural circuits, both strengthening and weakening rules of
Hebbian synapses are necessary to avoid instabilities due to
positive feedback [36]. However, differently from the well-
known long-term potentiation (LTP) and long-term depres-
sion (LTD) mechanisms [1], the modulation of synaptic
strengths does not depend on the frequency of synapse acti-
vation [24,37,38].

The external driving mechanism to the system is imposed
by setting the potential of the input site to the value v,
corresponding to one stimulus. This external stimulus is
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needed to keep the system “alive.” The discharge evolves
until no further firing occurs; then, the next stimulus is ap-
plied. Our model therefore does not describe the real evolu-
tion in time but only the sequence of events on the artificial
time scale imposed by the propagation of the signals, which
are discrete by nature.

IV. NUMERICAL RESULTS

We consider an Apollonian net at the generation N=9
(29 527 neurons and 177 150 synapses). The three corner
sites of the system have always zero potential and represent
open boundaries. The input site is either chosen at random or
fixed. Synapses can be excitatory or inhibitory with probabil-
ity pian- Initial conductances are assigned either all equal to
g0=0.25 or randomly distributed between 0 and 1. The other
parameters in the simulation are the firing threshold v,.=6
and the conductance cutoff for pruning ¢,=0.0001. Their
value does not influence the simulation results. In the first
three subsections, we consider a network composed exclu-
sively by excitatory synapses. In the last subsection, we in-
vestigate the dependence of the results on the percentage of
inhibitory synapses.

A. Pruning

The strength of the parameter «, controlling both the in-
crease and decrease of synaptic strengths, determines the
plasticity dynamics in the network. In fact, the more the
system learns, strengthening the used synapses, the more the
unused connections will weaken. We apply a sequence of
external stimuli and we measure the total number of pruned
bonds at the end of each avalanche, N,,. This quantity in
general could depend on the initial conductance gg; there-
fore, the two cases of all initial conductances equal to 0.25,
and uniformly distributed between 0 and 1, are investigated.

First the case of equal initial conductances is analyzed.
For each value of a the average number of pruned bonds,
N, is monitored as function of the number of applied ex-
ternal stimuli. For input sites randomly chosen at each stimu-
lus, Fig. 2 shows that pruning starts after applying a certain
number of stimuli, since all conductances are initially equal
to 0.25 and N,,, increases more rapidly with N, for larger a.
The plateau is reached after about 2000 stimuli (for every a)
after which N, increases only of few units in time. From the
asymptotic value of each curve we can evaluate the
asymptotic number of active bonds as the difference of the
total number of bonds minus the asymptotic value of N,,,. We
plot it as function of & and determine that the value of «
maximizing the number of active bonds is about 0.020. This
could be interpreted as an optimal value for the system with
respect to plastic adaptation: it maximizes the number of
active connections under the competing strengthening and
weakening rules.

In order to understand if pruning acts in the same way on
bonds created at different iterations n, n=0,...,N, or rather
tends to eliminate bonds of some particular iteration, the
probability to prune bonds of different n is evaluated—that
is, the number of pruned bonds over the total number of
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FIG. 2. Average number of pruned bonds as function of the
number of external stimuli, Ny, for three different values of « and
equal initial conductances. In the inset, the percentage of the
asymptotic number of active bonds as function of . The maximum
is for «=0.020, where are active about 80% of bonds.

bonds for each iteration stage—as a function of the number
of applied stimuli. Figure 3 shows that the plateau is reached
at about the same value of N, and the shape of the curve is
similar for each n. However, the probability to prune bonds
with large n is higher: These are the bonds created in the last
iterations and therefore embedded in the interior of the net-
work. This suggests that the most active bonds are the long-
range ones (small n), which therefore support most of the
information transport through the network. In the inset of
Fig. 3 we show the asymptotic number of pruned bonds per
generation on a semilogorithmic scale; this quantity is well
fitted by the exponential behavior N, =exp n.

The same analysis has been performed for random initial
conductances between 0 and 1. The results are similar to the
previous case. It can be noticed that pruning starts already at
N,=1, since conductances close to zero are present, and the
plateau is reached after about 1000 stimuli. The value of «
which now optimizes the number of active bonds is about
0.030. Finally the pruning behavior for different iterations is
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FIG. 3. (Color online) Probability of pruning for bonds of dif-
ferent iterations n, from bottom n=0 to top n=9, as a function of
the number of external stimuli, N, for equal initial conductances. In
the inset, the asymptotic N, (after 5000 stimuli) as a function of n
with the exponential fit N,,=exp 1.2n.
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FIG. 4. (Color online) Connectivity degree distribution n(k) at
different pruning stages N, for equal initial conductances and @
=0.020. As soon as pruning starts to eliminate bonds, new connec-
tivity degrees appear, not present in the original network. For in-
stance one of the three-corner sites, which for the generation N=9
has initially a connectivity degree 1025, may lose one bond because
of pruning. As a result, n(1025)=2 and the new degree value 1024
appears in the distribution n(k). In the inset, the corresponding be-
havior of the number of pruned bonds.

similar to the previous case, with the pruning probability
exponentially increasing with n, as N,,=exp n.

The effect of pruning on the connectivity degree of the
network (Fig. 4) has also been analyzed. We evaluate the
number of sites with a number of outgoing connections k as
function of k in the initial network and after application of a
given number of external stimuli. For each neuron, k repre-
sents the number of connected post-synaptic neurons. In or-
der to identify the different stages in the pruning process, the
inset of Fig. 4 shows the total number of pruned bonds as
function of N, After the application of few external
stimuli—i.e., for a short plastic training—the distribution
n(k) shows the same scaling behavior of the Apollonian net-
work. As the pruning process goes on, sites vary their con-
nectivity degree and new values of k appear. The result is
that the scaling behavior is progressively lost, as well as the
scale-free character of the network, since there is a general-
ized decrease of the connectivity in the network.

B. Avalanche distributions

After training the system applying plasticity rules during
N, external stimuli, we submit the system to a new sequence
of stimuli with no modification of synapse strengths. The
response of the system to this second sequence models the
activity of a trained neuronal network with a given level of
experience. We analyze this response by measuring the ava-
lanche size distribution n(s), the time duration distribution
n(T), and the power spectrum S(f).

The avalanche size distribution n(s) consistently exhibits
power law behavior for different values of model parameters.
Figure 5 shows the avalanche size distribution for different
values of N, including also the case N,=0 (no plasticity
training), for random initial conductances and the optimal
value of @=0.030. We notice that, for fixed size s, increasing
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FIG. 5. (Color online) Avalanche size distribution for different
values of N, random initial conductances, @=0.030, and random
input site. Data are logarithmically binned. In the inset, the corre-
sponding behavior of the number of pruned bonds.

N, decreases the number of avalanches of that size, suggest-
ing that strong plasticity remodeling decreases activity. The
exponent appears to be independent of N,, as long as the
number of pruned bonds, Npps is far from the plateau (see
inset in Fig. 5). Similar results are found for equal initial
conductances. The value of the exponent is 0=1.8+0.2 and
is stable with respect to variations of the parameter a for
both equal and random initial conductances. This value is
compatible within error bars with the value found in the
experiments of Beggs and Plentz [2], 1.5+0.4, and with pre-
vious results of the model on both regular and small-world
lattices. However, one has to notice that experimental results
for neuronal avalanches were obtained for local field poten-
tials; i.e., the underlying events correspond to local popula-
tion spikes, whereas the numerical events are single neuronal
spikes. The slightly larger value of the exponent, found on
the Apollonian network, suggests that the high level of con-
nectivity reduces the probability of very large avalanches but
does not change substantially the electrical activity behav-
iour. For largerN,, the distribution exhibits an increase in the
scaling exponent and finally loses the scaling behavior for
very large N, values, in the plateau regime for the number of
pruned bonds.

It is important to investigate the role of the choice of the
fixed input site, since in the Apollonian network, contrary to
the regular network, sites have very different connectivity
degrees. Figure 6 shows the avalanche size distribution for
fixed input sites chosen among sites with given connectivity
degree k. In this way it is possible to detect solely the effect
due to the connectivity of the input site, eliminating all other
effects due to the particular position of the input site in the
network. Power law behavior is found for connectivity de-
grees of the input site up to k=12. The scaling exponent
decreases with increasing input site connectivity degree k;
that is, for larger k larger avalanches become more probable.
However, if the connectivity degree increases above 12, the
scaling behavior is lost. This is due to the fact that an input
site with very high connectivity must distribute its charge to
many connected sites and therefore the network activity will
be damped already at the initial stage. Therefore, to repro-
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FIG. 6. (Color online) Avalanche size distribution for input sites
randomly chosen among sites with the same connectivity degree k.
Data are logarithmically binned. Only distributions for small k are
shown; for higher k, the scaling behavior is lost (random initial
conductances, a=0.030, N,=100).

duce the experimentally observed scaling behavior, the fixed
input site should be chosen with low connectivity degree
(k=12). The avalanche size distribution for fixed input site,
with connectivity k=3 or k=6, exhibits power law behavior
with the same exponents found for random input site: o
=1.8+0.2 for equal and random initial conductances.

At time =0 a neuron is activated by an external stimulus
initiating the avalanche. This will continue until no neuron is
at or above threshold. The number of avalanches lasting a
time 7T, n(T), as a function of T exhibits power law behavior
(Fig. 7) with an exponential cutoff. The scaling exponent is
found to be 7=2.1+0.2 for equal and random initial conduc-
tances. This value is found to be stable with respect to dif-
ferent « (Fig. 7) and N,,, provided that the number of pruned
bonds, Nyps is lower than the plateau for that value of «a.
Moreover, it does not depend on the choice of the input site,
either fixed or random. Finally both values agree within error
bars with the value 2.0, the exponent found experimentally
by Beggs and Plentz [2].

n(T) ™~ v 0 =0.015
10°F 0 =0080

— 0.=0.030

| ek
1 10 100 1000
T

FIG. 7. (Color online) Avalanche duration distribution for dif-
ferent values of « (random initial conductances, random input sites,
N,=500). Data are logarithmically binned. The dotted line has slope
2.1.
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FIG. 8. Total current flowing in the system as function of time.
Avalanches of all sizes can be observed.

C. Power spectra for electrical activity

The power spectrum of the time signal for the overall
electrical activity can be calculated. The aim is to compare
the scaling behavior of the numerical spectrum with the
power law observed usually in medical data [39,40]. For this
purpose, the number of active neurons is monitored as func-
tion of time for random external stimuli, which recalls the
experimental condition in which electrodes are placed on the
scalp in order to study neuronal network spontaneous elec-
trical activity. Figure 8 shows an example of neuronal activ-
ity where avalanches of all sizes can be generated in re-
sponse to the external stimulus. Here the unit time is the time
for the avalanche to propagate from one neuron to the con-
nected one. The power spectrum is calculated as the squared
amplitude of the time Fourier transform as a function of fre-
quency, averaged over many initial configurations. Because
of the definition of the numerical time unit, the frequency
unit does not correspond to the experimental one in hertz.

Figure 9 shows the spectrum for equal initial conduc-
tances and different values of N,. For Np=0—i.e., when no
plasticity mechanism is applied—the spectrum has a behav-

< I
TSl . N =1700
] T - N =1900
0001~ | Ssol v N, =2000 |
2100
£ :
5
= 101
[
17
0.1~ ‘ ‘ ‘
1 10 100 1000

frequency

FIG. 9. (Color online) Power spectra obtained for different N,
equal initial conductances, a=0.020, and random input sites. The
experimental data (black line) are from Ref. [40] with frequency in
Hz. Experimental data are shifted in order to be in the same fre-
quency range of numerical data.
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ior 1/f, characteristic of SOC. For values of N, different
from zero, but before the N,, plateau, one can distinguish
two different regimes: a power law behavior with exponent
B=0.8+£0.1 at high frequency, followed by a crossover to-
ward white noise at low frequency. However, for N,=2000
(close to the plateau value for N,,) the scaling behavior with
exponent 0.8 is detected over a wider frequency range. The
difference between S=1 for N,=0 and S=0.8 for higher N,
suggests that plasticity reduces the power spectrum expo-
nent, in better agreement with experimental EEG spectra
[39,40]. The stability of the exponent with respect to a has
also been verified, finding consistently 8=0.8+0.1 at high
frequency. Finally the power spectrum for fixed input site
shows a scaling exponent 8=0.8+0.1 over two orders of
magnitude. The measured value for the power spectra expo-
nent is in agreement with the expected relation S=3—7, be-
ing the scaling exponent of the avalanche duration distribu-
tion, —7<<-1 [12].

The scaling behavior of the power spectrum can be inter-
preted in terms of a stochastic process determined by mul-
tiple random inputs [41]. In fact, the output signal resulting
from different and uncorrelated superimposed processes is
characterized by a power spectrum with power law behavior
and a crossover to white noise at low frequencies. The cross-
over frequency is related to the inverse of the longest char-
acteristic time among the superimposed processes. The value
of the scaling exponent depends on the ratio of the relative
effect (signal amplitude) on the output of a process of given
frequency with respect to processes with a different fre-
quency. 1/f noise corresponds to a superposition of pro-
cesses of different frequencies, all having the same ampli-
tude. In our case the scaling exponent is smaller than unity,
suggesting that processes with high characteristic frequency
are more relevant than processes with low frequency in the
superposition [41].

D. Inhibitory synapses

We have investigated the dependence of the previous re-
sults on the probability p;,, for a synapse to be inhibitory.
The avalanche size and duration distributions show that the
exponents o and 7 increase for increasing p;,; therefore, for a
high percentage of inhibitory synapses the probability of
large avalanches decreases (Fig. 10). On the regular lattice
for p;,=0.5 no longer power law but exponential behavior is
found [23]. In the present case scaling behavior persists, due
to the very high connectivity degree.

The power spectra for different values of p;, exhibit a
complex behavior. In fact, for a small fraction of inhibitory
synapses (p;,=0.05), the power law exponent B increases
with respect to the case where synapses are all excitatory, up
to a value 1.2. Then, for p;,~0.10, the exponent decreases
toward values compatible with experimental results—i.e.,
between 0.7 and 1.0. By increasing further the percentage of
inhibitory synapses, to values close or greater than 0.2, the
spectrum becomes the white noise one.

V. CONCLUSIONS

Extensive simulations have been performed for the
activity-dependent neural network model implemented on
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FIG. 10. (Color online) Avalanche size distributions for different
Pin» €qual initial conductances, «=0.020, random input sites, and
N,=1700. Data are logarithmically binned.

the scale-free Apollonian network. The results are compared
with previous simulations on regular and small-world lattices
and with experimental data. We first find that an optimal
value of the plasticity strength « exists with respect to the
pruning process: this value maximizes the number of active
connections under the competing strengthening and weaken-
ing rules. Moreover, it appears that synapses of later genera-
tions, deeply embedded in the network, are pruned with
higher probability with respect to bonds of the earlier gen-
erations, mostly long range, that mainly support information
transmission. Pruning therefore does not affect the small-
world property of the Apollonian network. Moreover, the

PHYSICAL REVIEW E 76, 016107 (2007)

avalanche size distribution shows a power law behavior with
an exponent o=1.8+0.2 for equal and random initial con-
ductances. This value is compatible with 1.5+0.4, experi-
mentally found for neuronal avalanches and recovered by the
model on the square-lattice and small-world networks. The
avalanche duration distribution exhibits power law behavior
with an exponential cutoff, in agreement with experimental
results of Beggs and Plentz [2]. The exponent has value 7
=2.1+£0.2 for equal and random initial conductance, in
agreement with the value 2.0 found experimentally. Further-
more, the power spectrum exhibits power law behavior at
high frequency with 8=0.8+0.1, in agreement with experi-
mental data [39,40]. At intermediate frequencies, the slope
becomes greater than unity, crossing over to white noise at
low frequencies. None of the scaling exponents for the elec-
trical activity in the case of excitatory synapses depends on
the particular choice for the length or strength of the plastic-
ity training and are quite stable with respect to the initial
conductance configurations. These results suggest that also
on Apollonian network universal behavior, found for regular
and small world networks [23], holds.
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