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In mesoscopic systems, conductance fluctuations are a sensitive probe of electron dynamics and chaotic
phenomena. We show that the conductance of a purely classical chaotic system, with either fully chaotic or
mixed phase space, generically exhibits fractal conductance fluctuations unrelated to quantum interference.
This might explain the unexpected dependence of the fractal dimension of the conductance curves on the
�quantum� phase breaking length observed in experiments on semiconductor quantum dots.
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A prominent feature of transport in mesoscopic systems is
that the conductance as a function of an external parameter
�e.g., a gate voltage or a magnetic field� shows reproducible
fluctuations caused by quantum interference �1�. A prediction
from semiclassical theory that inspired a number of both
theoretical and experimental works in the fields of mesos-
copic systems and quantum chaos was that, in chaotic sys-
tems with a mixed phase space, these fluctuations would re-
sult in fractal conductance curves �2,3�. Such fractal
conductance fluctuations �FCFs� have since been confirmed
in gold nanowires and in mesoscopic semiconductor billiards
in various experiments �4–8�. In addition, FCFs have more
recently been predicted to occur in strongly dynamically lo-
calized �9� and in diffusive systems �10�. Due to the quantum
nature of the FCFs, it came as a surprise when recent experi-
ments indicated that decoherence does not destroy the fractal
nature of the conductance curve, but only changes its fractal
dimension �11,12�. In the present Rapid Communication, we
show that the conductance of purely classical �i.e., incoher-
ent� low-dimensional Hamiltonian systems very fundamen-
tally exhibits fractal fluctuations, as long as transport is at
least partially conducted by chaotic dynamics. Thus, mixed
phase space systems and fully chaotic systems alike gener-
ally show FCFs with a fractal dimension that is determined
analytically. We show that it is governed by fundamental
properties of chaotic dynamics.

In a disordered mesoscopic conductor—which is smaller
than the phase coherence length of the charge carriers but
large compared to the average impurity spacing—the trans-
mission is the result of the interference of many different,
multiply scattered, and complicated paths through the sys-
tem. As these paths are typically very long compared to the
wavelength of the charge carriers, the accumulated phase
along a path changes basically randomly when an external
parameter, such as the energy or the magnetic field, is varied.
This results in a random interference pattern, i.e., reproduc-
ible fluctuations in the conductance of a universal magnitude
on the order of 2e2 /h, the so-called universal conductance
fluctuations. For a review, see �13� or �14�. The role of dis-
order in providing a distribution of random phases can as
well be taken by chaos. Thus ballistic mesoscopic cavities
like quantum dots in high-mobility two-dimensional electron
gases that form chaotic billiards show the same universal
fluctuations �1,15,16�. If the average of the phase gain accu-

mulated on the different paths traversing the system exists,
the conductance curves are smooth on parameter scales that
correspond to a change of the average phase gain on the
order of and smaller than the wavelength of the carriers. In
systems with mixed phase space, where chaotic and regular
motion coexist, this phase gain, however, is typically alge-
braically distributed, and an average phase gain does not
exist �neglecting the finiteness of the coherence length and
assuming the semiclassical limit �ef f →0; the role of the fi-
nite �ef f is discussed in �3��. Therefore, as shown in �2�, the
conductance curve of such a system fluctuates on all param-
eter scales and forms a fractal. The fractal dimension D is
connected to the exponent � of the algebraic distribution of
phase gains by D=2−� /2.

Experiments on quantum dots that study the dependence
of the conductance fluctuations on several system parameters
like size and temperature seem to partly contradict the semi-
classical theory of fractal scaling �11,12�. Namely, it was
found that with decreasing coherence length the scaling re-
gion over which the fractal was observed did not shrink—as
would be expected from the semiclassical arguments—but
that the fractal dimension changed. An implicit assumption
of the semiclassical theory is that the classical dynamics re-
mains unchanged as the external parameter is varied, and
thus only phase changes are relevant. In most experimental
setups, however, the classical phase space changes with
variation of the control parameter. In this Rapid Communi-
cation, we show that the classical chaotic dynamics itself
already leads to fractal conductance curves. Moreover, from
this it follows that, even on very small parameter scales, the
fluctuations due to changes in the classical dynamics are im-
portant. In general, the conductance curve is a superposition
of two fractals: one originating in interference, which is sup-
pressed by decoherence to reveal the fractal fluctuations re-
flecting the changes in the classical phase space structure. In
addition, we predict that FCFs are observable not only in
systems with a mixed phase space, but in purely chaotic
systems.

As a starting point of our investigation and to connect it to
the experiments, we numerically study the classical conduc-
tance through a rectangular �hard wall� and a stadium billiard
�soft wall� as a function of magnetic field, as shown in Fig. 1
�Throughout this Rapid Communication, we will study the
transmission, which, in accordance with the Landauer theory
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of conductance, is proportional to the conductance; see, e.g.,
�17�.� Note that not only the phase space of the stadium but
also that of the rectangular billiard is mixed in the presence
of a perpendicular magnetic field. In both cases, a modified
version �18,19� of the box-counting analysis clearly reveals
the fractal nature of the conductance curves. As the simula-
tion is purely classical, the fractal scaling cannot be caused
by interference effects. So what is the underlying mechanism
for the fractality of the conductance curve, and how can we
understand its dimension?

To study this mechanism in detail, we will, because of its
numerical and conceptual advantages, analyze the transport
in Chirikov’s standard map �21–23�. This paradigmatic sys-
tem shows all the richness of Hamiltonian chaos. And
since—as will become apparent below—our theory relies
only on very fundamental properties of chaotic systems, it is
a natural choice as a model system. The standard map is
defined by ��= p+�, p�= p+K sin ��, with momentum p,
angle �, and the “nonlinearity parameter” K, which drives
the dynamics from fully integrable �K=0� to fully chaotic
�K�7�. In between, the phase space is mixed. The standard
map can be seen as the Poincaré surface of a conservative
system of two degrees of freedom. As such, the map can by
viewed as directly corresponding to the Poincaré map at the
boundary of a chaotic ballistic cavity, connecting it concep-
tually with the experimental system. We introduce absorbing
boundary conditions �see, e.g., Ref. �24��, i.e., when p ex-
ceeds �drops below� a maximum �minimum� threshold value,
the particle is transmitted �reflected� and leaves the cavity. As
can be seen right from the definition of the standard map, the
envelope of the entry set �which is the phase space projection
of the injection lead� is simply half a period of a sine func-
tion times K.

A trajectory entering the system eventually contributes to
either the total transmission or reflection, and we mark the
corresponding point in the entry set by a color code �trans-
mission, red; reflection, blue�. Chaotic dynamics, through its
fundamental property of stretching and folding in phase
space, leads to a lobe structure �see Fig. 2 bottom�, which is
typical for chaotic systems and not special to the standard
map. The distribution of widths w of lobes exhibits a power
law,

n�w� � w−�. �1�

The lobe structure is translated into transmission by sum-
ming up the intersections of the transmission lobes along a
horizontal line �see Fig. 2�. A lobe of thickness w gives rise
to a maximum contribution �T�w�. Variation of the external
parameter K leads to a fractal transmission curve T�K� with
D�1.25.

How does the fractal dimension depend on the power law
distribution of lobe widths and the curvature of the lobes?
With this aim, we study a random sequence of curve seg-
ments mimicking the intersection of consecutive lobes of
widths w, distributed algebraically with exponent �, and
curved as w�. We define Xiª� j=1

i wj and T�X�= �−1�i�X
−Xi�� , Xi	X
Xi+1. An example of this curve of “random
lobes” with �=1.9 and �= 1

2 is shown in Fig. 3 �top�. The
box-counting analysis clearly reveals a fractal structure.

We further simplify the problem by replacing the lobes by
a sequence of stripes of widths x with power law distribution
n�x��x�. Dispensing with the sign of the fluctuation, the
transmission reads T�X�= �Xi+1−Xi��. This yields histogram-
matic transmission curves T�X� like the bottom curve of Fig.
3. As shown in the inset, the fractal dimension of the result-
ing transmission curve remains unchanged compared to the
corresponding calculation with random lobes, within the pre-
cision of the box-counting analysis. Thus, the fractal dimen-
sion of the curve does not change noticeably when consider-
ing stripes instead of lobes, nor when neglecting the sign of
each contribution, confirming the intuition that the fractal
dimension depends only on the relative scaling, i.e., � and �,
but not on the detailed form of the curve sections.

For these curves like the bottom one of Fig. 3 with �
−��1, we can give an analytical expression for the fractal
dimension and then estimate the fractal dimension of the
transmission curve in the standard map. We apply the box-
counting method, which we therefore review briefly �see,
e.g., �19� for a more detailed introduction�. In this approach
the fractal curve lying in an n-dimensional space is covered
by an n-dimensional grid. Let the grid consist of boxes of
length scale s. The box-counting dimension is then given by

D = − lim
s→0

log N�s�
log s

, �2�

where N�s� is the number of nonempty boxes. For our prob-
lem, we divide N�s� into three contributions N�s�=na+nb

+nc, as schematically drawn in Fig. 4�a�. The number na of
vertically placed boxes �see mark �a�� covering contributions
from stripes of widths x�s reads

na�s� �
1

s
�

s

�

p�x�x�dx � s−��−��. �3�

Second, the number nb of horizontally placed boxes covering
horizontal contributions of stripes of widths larger than s �see
Fig. 4�Ab��, is given by

nb�s� =
1

s
�

s

�

p�x�xdx 	
1

s
�

0

�

p�x�xdx . �4�

FIG. 1. Classical conductance g�B� through a stadium �left, ge-
ometry as in Ref. �5�� and a square billiard �right, geometry as in
Ref. �11�� versus magnetic field B. Both fluctuating conductance
curves are fractals �see insets and text�. Their dimensions are D
�1.28 for the stadium and D�1.25 for the square billiard. The
fractal dimensions are in good agreement with experimental mea-
surements �5,11�.
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Hence nb scales like s−1 and can be neglected in comparison
to na, because �−��1. Finally, we determine an upper
estimate for the number nc of vertically placed boxes cover-
ing the contribution from stripes of widths x
s. The total
length of these widths is L�s�=�0

s p�x�xdx; therefore L�s� /s
boxes are needed to cover the length. Inflating all heights of
the stripes x
s to the maximum possible size s� �see Fig.
4�Ac��, we find

nc�s� 	 �L�s�/s��s�/s� � s−�+�. �5�

Thus for s
1 the dominant term is na�s�. With Eq. �2�, N�s�
gives rise to the box-counting dimension �25�

D = − lim
s→0

log s−�+�

log s
= � − � . �6�

To connect the analytical result with the calculations of
the transmission of the open standard map, we numerically

FIG. 2. �Color� How lobes translate into fluctuations. In the
bottom row, the entry set of the standard map with absorbing
boundary conditions at ±3� for K=7.5 and 7.6, respectively, can be
seen. The three pictures in the center row show the magnification of
the central sections of the entry set for three different values of K
=7.5, 7.55, and 7.6. The transmission T�K� for K=7.5–7.6 �20� is
shown in the top left picture. Note that a small change in K shifts
the lobes vertically, but conserves the overall phase space structure,
and that the largest fluctuations are caused by intersection with the
apex of lobes. Starting from K=7.5, a large transmission lobe is cut
by the horizontal line �see text�, i.e., the transmission increases with
K. In the same way, e.g., the fluctuations of T�K� near K=7.55 can
be understood. The box-counting analysis reveals a fractal structure
�top right�.

FIG. 3. �Color� Transmission T�X� for lobes �red upper curve,
shifted along the y axis for clarity� and stripes �black lower curve�
for one and the same random distribution with �=1.9, �=0.5. The
inset shows the box-counting analysis for the upper �red triangles�
and lower �black squares� transmission curves. The regression line
is drawn for the upper curve, whose fractal dimension is 1.41.

FIG. 4. �Color� �A� Schematic transmission according to Fig. 3
�bottom�, covered with boxes of size s. There are three contribu-
tions marked �a�–�c�. �B� Total number Nint�w�=�w

�n�w��dw� of
lobes �for the open standard map with 	p		4�� of width larger than
w on a double-logarithmic scale. The four curves show estimates
for increasing resolution wmin=10−5�pink�–10−8�black�. The curves
clearly approach a power law corresponding to n�w��w−1.9. The
insets show the transmission curve T�K� for values K=8.0–8.1 cal-
culated from 2�1013 trajectories, and its box-counting dimension.
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estimate the distribution of lobe widths in the entry set for
K=8, finding ��1.9, as shown in Fig. 4�B�. Together with
�= 1

2 , corresponding to first-order Taylor expansion of the
cosine function, Eq. �6� predicts a fractal dimension
D�1.4. Direct analysis of the transmission curve �see insets
of Fig. 4�B�� yields a fractal dimension D�1.39, in good
agreement with the expected value.

How can a power law distribution of lobe widths emerge
in a fully chaotic open system? One might rather expect to
find an exponential distribution of lobes in a fully chaotic
system. To see why the distribution is algebraic, however, let
us examine the simplest case of an open chaotic area-
preserving map, the dynamics of which is governed by a
single, positive homogeneous Lyapunov exponent �. In
each iteration, phase space structures are stretched in one
direction by exp���, shrunk by exp�−�� in the other, and then
folded back. The entry set of the open system is thus
stretched into lobes of decaying width w�ti��exp�−�ti�. The
phase space volume flux out of the system decays exponen-
tially, as is typical for a fully chaotic phase space, i.e.,
��ti��exp�−ti /��, with �mean� dwell time �. The area ��ti��t

is the fraction of the exit set that leaves the system at time ti.
With ti�w��−ln�w� /�, the number of lobes of width w in the
exit set is �26�

N�w� =
�„ti�w�…�t

w
�

1

w
exp
 �ln�w�

��
� = w1/��−1.

This suggests that the power law distribution of lobe widths
is a generic property even for fully chaotic systems. A quan-
titative expression for the exponent, however, is not as easy
to derive, as, e.g., the Lyapunov exponent for the standard
map is not homogeneous.

In conclusion, we have shown that transport through cha-
otic systems due to the typical lobe structure of the phase
space in general produces fractal conductance curves, where
the fractal dimension reflects the distribution of lobes in the
exit and/or entry set. In contrast to the semiclassical effect,
the size of the fluctuations is not universal, but depends on
specific system parameters. Due to the fractal nature of the
classical conductance, however, there is no parameter scale
that separates coherent and incoherent fluctuations.
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