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The dynamics of the open or closed state region of an ion channel may be described by a probability density
p�x , t� which satisfies a Fokker-Planck equation. The closed state dwell-time distribution fc�t� derived from the
Fokker-Planck equation with a nonlinear diffusion coefficient D�x��exp�−�x�, ��0 and a linear ramp poten-
tial Uc�x�, is in good agreement with experimental data and it may be shown analytically that if � is sufficiently
large, fc�t�� t−2−� for intermediate times, where �=Uc� /��−0.3 for a fast Cl channel. The solution of a master
equation which approximates the Fokker-Planck equation exhibits an oscillation superimposed on the power
law trend and can account for an empirical rate-amplitude correlation that applies to several ion channels.
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INTRODUCTION

Ion channels are macromolecules which permit the con-
duction of ions across the membrane and are essential for
metabolic cellular processes and information processing in
the nervous system. The transition of a channel from the
closed to the open state is regulated by the motion of one or
more helical molecules which may depend on the membrane
potential or the binding of a neurotransmitter to a receptor
�1,2�. The open and closed state dwell-time distributions ob-
tained from the patch clamp recording of stochastic current
pulses in ion channels may be represented by a finite sum of
exponential functions of time �3�

f�t� = �
i=1

N

aiki exp�− kit� . �1�

The discrete state Markov model assumes that the rate con-
stants ki and the amplitudes ai may be derived from the tran-
sition rates between a small number N of distinct conforma-
tional substates that form the open or closed state, and has
been successful in describing gating current and dwell-time
distributions in ion channels with the transition rates usually
assumed to be independent. However, by assuming that the
amplitude ai and the rate ki satisfy an empirical correlation
ai�ki

p where p�0.5 �4�, the resulting f�t� exhibits an oscil-
lation superimposed on a power law which provides an ap-
proximate fit to the dwell-time distribution obtained from
some ion channels �5�.

By contrast to the discrete state Markov model, diffusion
models assume that there are a large number of closed states,
and are able to describe the approximate time course of gat-
ing currents �6,7�, the intermediate power law behavior of
the dwell-time distribution fc�t�� t−1.5 when the diffusion co-
efficient is constant �8–12�, and fc�t�� t−2 when the approxi-
mately equal forward and backward transition rates between
neighboring states decrease geometrically away from the
open state �13,14�. An intermediate power law of the type
fc�t�� t−2+�/2, where � is the index of anomalous diffusion
��=1 for normal diffusion� may be derived from a fractional

diffusion model of ion channel gating and is in qualitative
agreement with the data from a locust Ca-dependent BK
channel when �=0.14 �15�.

The voltage dependence of the channel opening and clos-
ing rate functions may be derived from the mean state resi-
dence time for an interacting diffusion regime �11,12� or
from an expression for the quasistationary diffusion current
between the open and closed regions at each membrane sur-
face, and in the latter case, the interaction between the open
state probability and the membrane potential may be de-
scribed by a Lagrangian �see the Appendix�. It may be shown
that the closed state dwell-time distribution fc�t� derived
from a Fokker-Planck equation with a nonlinear diffusion
coefficient D�x�=Dc exp�−�x�, ��0 and a linear potential
Uc�x� is in good agreement with experimental data from a K
and nACh channel and for intermediate times, fc�t�� t−1.5

when �=Uc� /�=−0.5 where Uc�=�Uc�x��x is a constant �16�.
In this paper, it is shown analytically that if � is sufficiently
large, the solution of the Fokker-Planck equation has an in-
termediate power law approximation fc�t�� t−2−�, and pro-
vides a good description of the data from a fast Cl channel
when ��−0.3. The solution of the master equation approxi-
mation to the Fokker-Planck equation can also account for
the empirical rate-amplitude correlation ai�ki

p where p
�0.65 for a fast Cl channel.

NONLINEAR DRIFT-DIFFUSION MODEL

The opening of voltage and ligand gated channels is de-
pendent on the configuration of a sensor which is comprised
of one or more helical molecules which may undergo rota-
tion and translation between each surface of the membrane
�2�. The states of the sensor are considered to form a linear
chain and therefore, in a continuous model, each physical
variable is a function of the one-dimensional reaction coor-
dinate x. Positively charged residues on each sensor mol-
ecule are arranged in a regular array and interact with mul-
tiple charged chemical groups on adjacent structures and the
electrostatic environment to generate a sequence of energy
wells and barriers �17�. It is assumed that the open state
region Ro �−do−dm�x�−dm� is adjacent to the closed state
region for the sensor which is comprised of Rm �−dm�x*svaccaro@physics.adelaide.edu.au
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�0�, where the diffusion coefficient D�x� is a constant Dm,
and Rc �0�x�dc� where the increase in barrier height be-
tween closed states in the direction away from the open state
is represented by a nonlinear diffusion coefficient D�x� �see
Fig. 1�. The continuous diffusion regime in Rc may be ap-
proximated by discrete diffusion between a large number N
of states where the transition rates gi=g1�1−i, bi=b1�1−i for
i=2 to N−1, ��1 �see Fig. 2�, D�xi��gi, xi=dc�i−1� / �N
−1� and therefore D�x��exp�−�x�, �= �N−1�ln � /dc�0.
Qualitative agreement between gating current observed in K
channels and that computed from a Fokker-Planck equation
is obtained by assuming that the diffusion coefficient is de-
pendent on the reaction coordinate �6�.

The probability density p�x , t� of states of the sensor sat-
isfies a Fokker-Planck equation �18–20�

�p�x,t�
�t

= −
�j�x,t�

�x
=

�

�x
�D�x�� �p�x,t�

�x
+

�U�x�
�x

p�x,t�	
 ,

�2�

where j�x , t� is the probability current, and U�x� is assumed
to be a linear potential function, in units of kT where k is
Boltzman’s constant and T is the absolute temperature. The
Brownian motion of the sensor in Ro, Rm and Rc is a con-
tinuous generalization of thermally activated transitions be-
tween a finite number of closed states and an open state in

discrete diffusion models of gating �see Figs. 1 and 2�
�8,10,14�. An analytical solution of Eq. �2� has been pre-
sented when the diffusion coefficient D�x� and the potential
function U�x� are independent of x �11,12�.

We shall assume that in the region Rm, Um�x� is dependent
on the charge Q transferred across Rm and the potential dif-
ference V across the membrane relative to the external me-
dium, the diffusion time �m=dm

2 /Dm is small relative to the
mean time that the sensor resides in Rc, and that p�−dm , t�
=0 at the boundary between the open and closed regions.
Therefore, the unidirectional probability current is quasista-
tionary and may be approximated by the expression �18�

jm�t� = −
p�0,t�Dm

�−dm

0 exp�Um�x� − Um�0��dx
. �3�

The transitions between closed states in Rc are confined
by the inner surface of the membrane, and therefore a reflect-
ing boundary is imposed at x=dc �4,10–12�

�p�x,t�
�x

+ Uc�p�x,t� = 0, �4�

where Uc� is a constant. The probability current at the inter-
face between Rm and Rc is continuous and thus

jc�0,t� = jm�t� , �5�

where jm�t� is given by Eq. �3�. It is assumed that, for each
channel opening, the dwell time for the closed region begins
when a sensor molecule is transferred across the region Rm to
the closed state at x=0 in Rc, and thus p�x ,0�=	�x�.

In the region Rc, Eq. �2� may be expressed as

�n�z,t�
�t

= Dc� �2n�z,t�
�z2 +

1

z

�n�z,t�
�z

−
n�z,t��� + 1�2

z2 	 , �6�

where z=z0 exp��x /2�, z0=2/�, zd=z0 exp��dc /2�, �=Uc� /�,
and n�z , t�=z�−1p�x , t�. From the solution of Eq. �6� with the
initial condition and the boundary conditions �4� and �5� us-
ing the method of Laplace transforms, it may be shown that
the probability that the sensor is in the closed state region Rc
is

Pc�t� = �
0

dc

p�x,t�dx = �
i=1




ai exp�− �it� , �7�

where �i=Dc�i
2, �i �
�i+1� is a solution of the eigenvalue

equation

S���i,z0�
C���i,z0�

=
rc

�i�zd − z0�
, �8�

rc=2Dm�exp��dc /2�−1� /�DcYm, Ym=�−dm

0 exp�Um�x�
−Um�0��dx, C���i ,z�, and S���i ,z� are defined in terms of
Bessel functions of the first kind

C���,z� = J−���zd�J�+1��z� + J���zd�J−�−1��z� ,

S���,z� = J−���zd�J���z� − J���zd�J−���z� ,

ai=2/ �1+h1��i�+h2��i�� and

�do�dm �dm 0 dc
x

U��dm�

U�0�

U�dc�

U�x�

Ro Rm Rc
Γdc

0

�ln�D�x��Dc�

FIG. 1. The potential function U�x� �solid line� and
−ln�D�x� /Dc� �dotted line� for the Brownian dynamics of a channel
sensor with reaction coordinate x in the closed state regions Rm and
Rc.

O �
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1
g1
�
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�
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�
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FIG. 2. Energy level diagram for a Markov chain of N closed
states of a channel sensor with increasing barrier height and de-
creasing energy away from the open state O.
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h1��� =
��zd − z0�
rcC���,z0�

d��S���,z0��
d�

, �9�

h2��� =
1

C���,z0�
d��C���,z0��

d�
.

When � is an integer, the solution of Eq. �6� may be ex-
pressed in terms of Bessel functions of the first and second
kind. If rc is sufficiently small, it may be shown from Eq. �9�
that a1�1, ai�0 for i�1, the probability Pc�t��exp�
−�1t� where �1=DmUc� /Ym�1−exp�−Uc�dc��, and therefore
the solution accounts for the exponential distribution of
closed times described in slow K channels �21�.

The distribution function fc�t�=−dPc�t� /dt obtained from
Eq. �7� is also in good agreement with the approximate
power law distributions of closed times from a K channel
and a nACh channel when ��−0.5 �16�, and a fast Cl chan-
nel when ��−0.3 �see Fig. 3�. For �dc�1, rc�1 and −1

�
0, the power law behaviour of fc�t�� t−2−�, for interme-
diate times, may be derived by adopting a small argument
approximation for J���z0� and a large argument approxima-
tion for J���zd� �23�,

h1��� � �2�zd − z0�2/rc,

h2��� �
rc��1 + ����/��−1−2�

���− ��
,

� �
cos��zd + ��� − 0.5�/2�
cos��zd − ��� + 1.5�/2�

.

There exists a positive integer m such that for i
m, h2��i�
�h1��i� and hence for t�1/�m,

Pc�t� �
2�A�c

�+1/2

��1 + �� �
i=1




yi
1+2� exp�− yi

2t� , �10�

where A=���−���2 exp��dc /2��−1−2� /rc�, �c= �zd−z0�2 /Dc,
and yi���i−0.5� /
�c. For large �c, �yi=yi+1−yi=2y1

�� /
�c is small, and if t��c, the sum of the infinite series
may be approximated by the integral


�c

�
�

0




y1+2� exp�− y2t�dy =

�c��1 + ��t−1−�

2�

and thus

Pc�t� � A� �c

t
	1+�

. �11�

When �=−0.5 this expression reduces to Pc�t�
�
�c /�t /rc which describes the power law approximation
for a K and nACh ion channel �16� whereas for a fast Cl
channel, ��−0.3 and Pc�t��0.1��c / t�0.7 /rc�. If t��c,
Pc�t��a1 exp�−Dc�1

2t� where �1 is a solution of Eq. �8� and
therefore the continuous diffusion model describes the expo-
nential tail that is often observed in the closed-time distribu-
tion. However, the patch clamp procedure has limited reso-
lution whereas the solution of the Fokker-Planck equation
includes an infinite number of high frequency components
and therefore the agreement between the small time behav-
iour of the continuous model and the histogram data is only
approximate. If �dc�1, adopting the large argument ap-
proximation for both J���z0� and J���zd�, it may be shown
that Pc�t��
�c /�t /rc for intermediate times, in agreement
with the power law for the constant diffusion model ��=0�
�8,10–12�.

The mean closed time for the ion channel is �3,24�

Tc = �
0




tfc�t�dt = �
0




Pc�t�dt , �12�

and from the solution �7�, when Um�x�=Q�V−Vf��1
+x /dm� /kT and Vf is a constant,

1

Tc
=

DmQ�V − Vf�
dmkT�1 − exp�− Q�V − Vf�/kT��

Uc�

1 − exp�− Uc�dc�
,

�13�

and is independent of the mathematical form of the ion chan-
nel closed-time distribution. Equation �13� may also be de-
rived in the special case when a quasistationary state is at-
tained in the closed region Rc in a time �Tc �see the
Appendix�, and if Uc�→0, the expression reduces to that ob-
tained from the constant diffusion model �11�. The voltage
dependence of the mean closed time determined from patch
clamp data is generally in agreement with Eq. �13�, but for
some ion channels Tc is only weakly dependent on V �21,25�.

Although the intermediate power law �11� may be derived
from the Fokker-Planck equation, the solution does not sat-
isfy a rate-amplitude law ai�ki

p. Therefore, assuming that the
ion channel sensor has a finite number of closed states �2�,
we may consider a Markovian master equation which ap-
proximates Eq. �2�. If the channel sensor is able to undergo
thermally activated transitions between N closed states and
an open state �see Fig. 2�, it may be assumed that the dynam-
ics are described by a master equation

dp1

dt
= b1p2 − �g1 + b0�p1,

10�2 10�1 100 101 102 103

t �ms�

10�8

10�6

10�4

10�2

100
f
c
�
m
s

�
1
�

FIG. 3. The closed state dwell-time distribution function fc�t�
for a fast Cl channel �22� �dotted line� and the nonlinear drift-
diffusion model �solid line� where �c=1200 ms, rc=228, �=8/dc,
and �=−0.3.
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dpi

dt
= gi−1pi−1 + bi+1pi+1 − �gi + bi−1�pi, �1 
 i 
 N� ,

dpN

dt
= gN−1pN−1 − bN−1pN, �14�

where pi�t� is the probability of occupying the ith closed
state at time t, the transition rates are

gi = gi−1/�i−1, bi = bi−1/�i �15�

for 1
 i
N, �1 . . .�N−1 are the transition rate ratios, and b0
is the rate between the first closed state and the open state.
The master equation model with the transition rates �15� is a
more general form of discrete diffusion models where g1
=b1, �i=� for each i and either �=1 �8� or ��1 �14�. As the
difference in reaction coordinate between states →0 and N
→
, the limit of the master equation when �i=� for each i,
is a Fokker-Planck equation in the region Rc �24,26�.

The survival probability is given by

Pc�t� = �
i=1

N

pi�t� , �16�

and the closed-time distribution function fc�t�=−dPc /dt may
be obtained by solving Eq. �14� with the initial condition
p1�0�=1, pi�0�=0 for i�1. The function fc�t� derived with
uniform values for �i provides a good fit to the data from a
fast Cl channel �see Fig. 4�, and exhibits an oscillation su-
perimposed on the power law trend for intermediate times.
However, a better fit to the experimental data may be ob-
tained by choosing nonuniform values for �i �see Fig. 5�.
The values of ai and ki that are derived from the solution are
comparable to those obtained experimentally and satisfy an
approximate rate-amplitude correlation ai�ki

p �4� �see Fig. 6
where p�0.65 for a fast Cl channel�. The solution of the
constant diffusion model ��i=1� does not satisfy a rate-
amplitude correlation but for sufficiently large N, fc�t�
� t−1.5 for intermediate times �8�.

The rate-amplitude correlation and the intermediate power
law that are observed for the closed-time distribution fc�t� of
several types of ion channels �4� may be derived by consid-
ering Eq. �14� with gi=g1�1−i, bi=b1�1−i for i=2 to N−1,
b0=b1� where ��1 is sufficiently large and p

=ln�bi /gi+1� / ln �. Using matrix methods, it may be shown
that Pc�t�=�i=1

N ai exp�−kit� where ai /ai+1�bi /gi+1=�p,
ki /ki+1��, and hence ai�ki

p. For ti=1/ki,

fc�ti� �
ti
−p−1

e�
j=1

N

kj

�1 + �
j�i

Tj	 ,

where Tj =e�kj /ki�p+1 exp�−kj /ki�, � j�iTj �1, and hence
fc�ti�� ti

−p−1 follows a general power law.

DISCUSSION

Discrete diffusion models of ion channel gating have
dwell-time distributions which may be approximated by the
intermediate power law t−3/2 when the transition rates are
constant �8,10�, and by t−2 when the forward and backward
transition rates between neighboring states decrease geo-
metrically away from the open state �14�. In this paper, we
have considered a Fokker-Planck equation which describes
the dynamics of an ion channel sensor in the presence of a
linear ramp potential Uc�x� and an exponentially decreasing
diffusion coefficient D�x�=Dc exp�−�x�, and is a more gen-
eral form of discrete and continuous diffusion models
�11,12�. The solution of the nonlinear diffusion model is de-
pendent on the parameter �=Uc� /� and provides a good fit to
the closed-time distribution function fc�t� for a delayed rec-
tifier K channel and a nACh channel ���−0.5� and a fast Cl

10�2 10�1 100 101 102 103

t �ms�

10�8

10�6

10�4

10�2

100

f
c
�
m
s

�
1
�

FIG. 4. The closed-time distribution function fc�t� for a fast Cl
channel �22� �dotted line� and the master equation approximation to
the nonlinear drift-diffusion model �solid line�, where N=5, b0

=3200, g1=870.4, b1=512, and �i=8 for each i.
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FIG. 5. The closed-time distribution function fc�t� for a fast Cl
channel �22� �dotted line� and the master equation approximation to
the nonlinear drift-diffusion model �solid line�, where N=5, b0

=3900, g1=1200, b1=380, and �i= �15,3.5,4.7,21�.

100 101 102 103 104 105

ki�s�1�
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10�2

10�1

100

a
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FIG. 6. The amplitudes ai and the rates ki that are calculated
from the master equation model of a fast Cl channel �see Fig. 5�
satisfy the equation ai�ki

p where p�0.65 �solid line�.
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ion channel ���−0.3�, and it may be shown analytically that
for sufficiently large �, fc�t�� t−2−� for intermediate times.

Although the Fokker-Planck equation assumes a con-
tinuum of states, the ion channel sensor has a discrete struc-
ture and therefore the dynamics may be described by a Mar-
kovian master equation which approximates the nonlinear
drift-diffusion equation. The distribution function fc�t� ob-
tained from the solution to the master equation provides a
good fit to the data from a fast Cl channel and exhibits an
approximate rate-amplitude correlation ai�ki

p where p
�0.65 �4�. Therefore, a variation in the energy of closed
states and an increase in the barrier height away from the
open state are important factors in the closed-state dynamics
of several ion channels.

APPENDIX

The channel opening and closing rate functions may be
derived from an expression for the quasi-stationary diffusion

current between the open and closed regions at each mem-
brane surface when p�−dm , t�� Po�t�=�−dm−d0

−dm p�x , t�dx and
p�0, t�� Pc�t� �unpublished�. If a quasistationary state is at-
tained in the closed region Rc in a time �Tc, and therefore
corresponds to a small rc solution of the Fokker-Planck equa-
tion, from Eqs. �7� and �12�, we may write

p�0,t� =
Pc�t�

�0
dc exp�Uc�0� − Uc�x��dx

�17�

and dPc /dt=−Pc /Tc, where

1

Tc
=

Dm

�−dm

0 exp�Um�x� − Um�0��dx�0
dc exp�Uc�0� − Uc�x��dx

.

�18�

Similarly, if a quasistationary state is attained in the open
region Ro in a time �To, where To is the mean open time,

1

To
=

Dm

�−dm

0 exp�Um�x� − Um�− dm��dx�−dm−d0

−dm exp�Uo�− dm� − Uo�x��dx
. �19�

Therefore, each of the dwell-time distributions fc�t� and fo�t�
is a single exponential function and in agreement with the
data from slow K channels �21�. If Um�x�=Q�V−Vf��1
+x /dm� /kT �1� and Uc�x�=Uc�0�+Uc�x, the mean closed time
Tc reduces to Eq. �13� and a similar expression may be ob-
tained for To.

The probability current between the open and closed state
regions may be approximated by the expression �18�

jm�t� = −
Dm�p�0,t�exp Um�0� − p�− dm,t�exp Um�− dm��

�−dm

0 exp Um�x�dx

�20�

when the diffusion time �m�Tc or To. Therefore, assuming
that Po�t��1− Pc�t� and Pf =� / ��+�� is the stationary value
of Po, where �=1/Tc is the mean opening rate, and
�=1/To is the mean closing rate, from Eq. �17� and
p�−dm , t�� Po�t� we may write

dPo�t�
dt

= ��1 − Pf� − �Pf − �� + ���Po�t� − Pf� , �21�

a rate equation that describes the variation of K conductance
in slow K channels �gK� Po� �21�, and in delayed rectifier K
channels assuming that the opening of the channel is deter-
mined by four identical and independent subunits �gK� Po

4�
�1�.

If Im is the macroscopic membrane K current across a
membrane when each K channel is open, the linear compo-

nent of the ionic current is Im�Po− Pf�=−CV̇. The nonlinear

component of the K current and the other ionic currents
through the membrane, such as Na, are considered to be
perturbations to the membrane potential. The net flow of ions
across a membrane is dependent on the K conductance
which, in turn, is determined by the membrane potential. The
voltage dependence of the rate functions �18� and �19� may
also be derived from a Lagrangian L and dissipation function
F which describes the interaction between the linear compo-
nent of the ionic current and the quasistationary gating cur-
rent between the closed and open region at each membrane
surface

L =
��CV̇�2

2Im
−

CDmkT

Q
� 1 − exp�Um�− dm� − Um�0��

Ym
dV ,

F =
��CV̇�2

2Im�
,

where Yc=�0
dc exp�Uc�0�−Uc�x��dx, Yo=�−dm−do

−dm exp�Uo�
−dm�−Uo�x��dx, �= �Yc+Yo�dmkT /DmQ, �=1/ ��+��, the
Lagrangian L satisfies the equation

d

dt
� �L

�q̇
	 −

�L

�q
+

�F

�q̇
= 0,

and the canonical coordinates q=C�V−Vf� and p
=−��Po− Pf�.
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