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Nonlinear drift-diffusion model of gating in the fast Cl channel
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The dynamics of the open or closed state region of an ion channel may be described by a probability density
p(x,t) which satisfies a Fokker-Planck equation. The closed state dwell-time distribution f,.(¢) derived from the
Fokker-Planck equation with a nonlinear diffusion coefficient D(x) «exp(—7yx), >0 and a linear ramp poten-
tial U,(x), is in good agreement with experimental data and it may be shown analytically that if vy is sufficiently
large, f.(r) o r~27" for intermediate times, where v= U/ y=-0.3 for a fast CI channel. The solution of a master
equation which approximates the Fokker-Planck equation exhibits an oscillation superimposed on the power

law trend and can account for an empirical rate-amplitude correlation that applies to several ion channels.
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INTRODUCTION

Ion channels are macromolecules which permit the con-
duction of ions across the membrane and are essential for
metabolic cellular processes and information processing in
the nervous system. The transition of a channel from the
closed to the open state is regulated by the motion of one or
more helical molecules which may depend on the membrane
potential or the binding of a neurotransmitter to a receptor
[1,2]. The open and closed state dwell-time distributions ob-
tained from the patch clamp recording of stochastic current
pulses in ion channels may be represented by a finite sum of
exponential functions of time [3]

N
£(6) = X ak; exp(= k). (1)
i=1

The discrete state Markov model assumes that the rate con-
stants k; and the amplitudes @; may be derived from the tran-
sition rates between a small number N of distinct conforma-
tional substates that form the open or closed state, and has
been successful in describing gating current and dwell-time
distributions in ion channels with the transition rates usually
assumed to be independent. However, by assuming that the
amplitude a; and the rate k; satisfy an empirical correlation
a;<k? where p=~0.5 [4], the resulting f(r) exhibits an oscil-
lation superimposed on a power law which provides an ap-
proximate fit to the dwell-time distribution obtained from
some ion channels [5].

By contrast to the discrete state Markov model, diffusion
models assume that there are a large number of closed states,
and are able to describe the approximate time course of gat-
ing currents [6,7], the intermediate power law behavior of
the dwell-time distribution f,(¢) > ¢~'> when the diffusion co-
efficient is constant [8—12], and £,(f) &> when the approxi-
mately equal forward and backward transition rates between
neighboring states decrease geometrically away from the
open state [13,14]. An intermediate power law of the type
f(t)ct72%2 where « is the index of anomalous diffusion
(a=1 for normal diffusion) may be derived from a fractional
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diffusion model of ion channel gating and is in qualitative
agreement with the data from a locust Ca-dependent BK
channel when a=0.14 [15].

The voltage dependence of the channel opening and clos-
ing rate functions may be derived from the mean state resi-
dence time for an interacting diffusion regime [11,12] or
from an expression for the quasistationary diffusion current
between the open and closed regions at each membrane sur-
face, and in the latter case, the interaction between the open
state probability and the membrane potential may be de-
scribed by a Lagrangian (see the Appendix). It may be shown
that the closed state dwell-time distribution f.(r) derived
from a Fokker-Planck equation with a nonlinear diffusion
coefficient D(x)=D, exp(-7yx), y>0 and a linear potential
U.(x) is in good agreement with experimental data from a K
and nACh channel and for intermediate times, f.(¢)or '
when v=U_/y=-0.5 where U.=dU(x)dx is a constant [16].
In this paper, it is shown analytically that if 7y is sufficiently
large, the solution of the Fokker-Planck equation has an in-
termediate power law approximation f.(f)<¢ >, and pro-
vides a good description of the data from a fast CI channel
when v=~—0.3. The solution of the master equation approxi-
mation to the Fokker-Planck equation can also account for
the empirical rate-amplitude correlation a;*<k! where p
~(.65 for a fast Cl channel.

NONLINEAR DRIFT-DIFFUSION MODEL

The opening of voltage and ligand gated channels is de-
pendent on the configuration of a sensor which is comprised
of one or more helical molecules which may undergo rota-
tion and translation between each surface of the membrane
[2]. The states of the sensor are considered to form a linear
chain and therefore, in a continuous model, each physical
variable is a function of the one-dimensional reaction coor-
dinate x. Positively charged residues on each sensor mol-
ecule are arranged in a regular array and interact with mul-
tiple charged chemical groups on adjacent structures and the
electrostatic environment to generate a sequence of energy
wells and barriers [17]. It is assumed that the open state
region R, (-d,—d,,<x<-d,,) is adjacent to the closed state
region for the sensor which is comprised of R,, (-d,<x
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FIG. 1. The potential function U(x) (solid line) and

—In[D(x)/D,] (dotted line) for the Brownian dynamics of a channel
sensor with reaction coordinate x in the closed state regions R,, and
R

c*

<(), where the diffusion coefficient D(x) is a constant D,,,
and R. (0=<x=<d,) where the increase in barrier height be-
tween closed states in the direction away from the open state
is represented by a nonlinear diffusion coefficient D(x) (see
Fig. 1). The continuous diffusion regime in R, may be ap-
proximated by discrete diffusion between a large number N
of states where the transition rates g,=g,0"' ™, b,=b,0"'~" for
i=2 to N-1, o>1 (see Fig. 2), D(x;)<g;, x;=d.(i—1)/(N
—1) and therefore D(x)><exp(—yx), y=(N-1)Ino/d.>0.
Qualitative agreement between gating current observed in K
channels and that computed from a Fokker-Planck equation
is obtained by assuming that the diffusion coefficient is de-
pendent on the reaction coordinate [6].

The probability density p(x,7) of states of the sensor sat-
isfies a Fokker-Planck equation [18-20]

ap(x,t)  djlxt) 9 ap(x,1)  dU(x)
a ox _ax[D(x)< x T o p(x’t)ﬂ’

2)

where j(x,?) is the probability current, and U(x) is assumed
to be a linear potential function, in units of k7" where k is
Boltzman’s constant and 7T is the absolute temperature. The
Brownian motion of the sensor in R,, R,, and R, is a con-
tinuous generalization of thermally activated transitions be-
tween a finite number of closed states and an open state in

Energy

g1 g2 9IN-1
O« 1= 2= 3,.N-1 = N
bo b1 by by-1

FIG. 2. Energy level diagram for a Markov chain of N closed
states of a channel sensor with increasing barrier height and de-
creasing energy away from the open state O.

PHYSICAL REVIEW E 76, 011923 (2007)

discrete diffusion models of gating (see Figs. 1 and 2)
[8,10,14]. An analytical solution of Eq. (2) has been pre-
sented when the diffusion coefficient D(x) and the potential
function U(x) are independent of x [11,12].

We shall assume that in the region R,,, U,,(x) is dependent
on the charge Q transferred across R, and the potential dif-
ference V across the membrane relative to the external me-
dium, the diffusion time Tm=d'2n/Dm is small relative to the
mean time that the sensor resides in R,, and that p(-d,,,?)
=0 at the boundary between the open and closed regions.
Therefore, the unidirectional probability current is quasista-
tionary and may be approximated by the expression [18]

p(0,)D,,
P24 explU,(x) = U,,(0)Jdx

jm(t) == (3)

The transitions between closed states in R, are confined
by the inner surface of the membrane, and therefore a reflect-
ing boundary is imposed at x=d,. [4,10-12]

ap(x,1)

+U.p(x,1)=0, 4)
ox

where U. is a constant. The probability current at the inter-
face between R,, and R, is continuous and thus

7e(0,1) = ji, (1), (5)

where j,,(¢) is given by Eq. (3). It is assumed that, for each
channel opening, the dwell time for the closed region begins
when a sensor molecule is transferred across the region R,, to
the closed state at x=0 in R, and thus p(x,0)=&(x).

In the region R, Eq. (2) may be expressed as

an(z,1) :Dc( #n(z,1) . Lan(z) n@n)(v+ 1)2)’ ©

ot 9z z 0z 2

where z=z, exp(yx/2), zo=2/7, z4=z¢ exp(yd./2), v=U_/,
and n(z,t)=z""'p(x,t). From the solution of Eq. (6) with the
initial condition and the boundary conditions (4) and (5) us-
ing the method of Laplace transforms, it may be shown that
the probability that the sensor is in the closed state region R,
is

d, =
P(t)= f plx,0)dx =2 a;exp(- wi), (7)
0 i=1

where w,-:DC,u,f, i (<uyp) is a solution of the eigenvalue
equation

SV(lu‘i’ZO) _ re
Co(minzo)  mi(zq—20) |
re=2D,[exp(yd./2)-1]/yD.Y,, Y=/, explU,(x)

-U,(0)]dx, C,(u;,z), and S,(w;,z) are defined in terms of
Bessel functions of the first kind

(8)

Co(,2) = J_(puzg)d 1 (u2) + T (2 ) -y (uz)

S (u2) = J_ () (pz) = T (puzg) I (uz),
a;=2/[1+h(p;) +hy(;)] and
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FIG. 3. The closed state dwell-time distribution function f,.(t)
for a fast Cl channel [22] (dotted line) and the nonlinear drift-
diffusion model (solid line) where 7.=1200 ms, r.=228, y=8/d.,
and v=-0.3.

w(zg—z0) dlpS,(1.20)]
r.C,(u.z20) du

hy(w) = . )

1 dpC,(1,20)]
C (.20 dp '

ho(p) =

When v is an integer, the solution of Eq. (6) may be ex-
pressed in terms of Bessel functions of the first and second
kind. If r, is sufficiently small, it may be shown from Eq. (9)
that a;=1, a;=0 for i>1, the probability P,(r)=exp(
—wt) where w;=D,U./Y,[1-exp(-U.d,)], and therefore
the solution accounts for the exponential distribution of
closed times described in slow K channels [21].

The distribution function f,.(f)=—dP_(t)/dt obtained from
Eq. (7) is also in good agreement with the approximate
power law distributions of closed times from a K channel
and a nACh channel when v=-0.5 [16], and a fast CI chan-
nel when v=-0.3 (see Fig. 3). For vd.>1, r,>1 and -1
<v<0, the power law behaviour of f.(z) o =277, for interme-
diate times, may be derived by adopting a small argument
approximation for J,(uz,) and a large argument approxima-
tion for J,(uz,) [23],

hy(u) = ,U«Z(Zd - Zo)z/’c,

L+ ) (/)
N T (= v) ’

()

_cos[uzy+ m(v-0.5)/2]

cos[uz,— m(v+1.5)/12]

There exists a positive integer m such that for i <m, h,(u;)
> h,(u;) and hence for 1> 1/ w,,

0

2mA7"
> v exp(= i), (10)
i=1

Pl =10 2

where A=60'(-v)[2 exp(yd,/2)] "1 r.m, 1.=(24=20)*/D,,
and y;~ W(i—O.S)/\f:c. For large 7., Ay;=yi.—yi=2y,
~/ \J’Z is small, and if << 7., the sum of the infinite series
may be approximated by the integral
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— —
A Nr.L(1 + )t
f Y142 explo )y =TT
T J 2w
and thus
1+v
T,
P(?) ~A<7‘) . (11)
When v=-0.5 this expression reduces to P.(7)

~ V’%/ r. which describes the power law approximation
for a K and nACh ion channel [16] whereas for a fast CI
channel, v=-0.3 and P.(t)=0.1(7./0)*/r.m. If t>1,
P(t)=a, exp(=D_u’t) where u, is a solution of Eq. (8) and
therefore the continuous diffusion model describes the expo-
nential tail that is often observed in the closed-time distribu-
tion. However, the patch clamp procedure has limited reso-
Iution whereas the solution of the Fokker-Planck equation
includes an infinite number of high frequency components
and therefore the agreement between the small time behav-
iour of the continuous model and the histogram data is only
approximate. If yd.<<1, adopting the large argument ap-
proximation for both J,(uz,) and J,(uz,), it may be shown
that P(t)=~\7./mt/r, for intermediate times, in agreement
with the power law for the constant diffusion model (y=0)
[8,10-12].
The mean closed time for the ion channel is [3,24]

Tc=fm tfc(t)dt=foc P (t)dt, (12)

0 0

and from the solution (7), when U, (x)=Q(V-V)(1
+x/d,,)/ kT and V is a constant,

DmQ(V - Vf) U/

[

1
T, d,kT(1 —expl— Q(V = V)/KT]) 1 —exp(- U'd,)’
(13)

and is independent of the mathematical form of the ion chan-
nel closed-time distribution. Equation (13) may also be de-
rived in the special case when a quasistationary state is at-
tained in the closed region R, in a time <T, (see the
Appendix), and if U.— 0, the expression reduces to that ob-
tained from the constant diffusion model [11]. The voltage
dependence of the mean closed time determined from patch
clamp data is generally in agreement with Eq. (13), but for
some ion channels 7, is only weakly dependent on V [21,25].

Although the intermediate power law (11) may be derived
from the Fokker-Planck equation, the solution does not sat-
isfy a rate-amplitude law ;% k?. Therefore, assuming that the
ion channel sensor has a finite number of closed states [2],
we may consider a Markovian master equation which ap-
proximates Eq. (2). If the channel sensor is able to undergo
thermally activated transitions between N closed states and
an open state (see Fig. 2), it may be assumed that the dynam-
ics are described by a master equation

dp,
— =bp,— +b ,
di P2 — (g 0)P1
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FIG. 4. The closed-time distribution function f.(z) for a fast Cl
channel [22] (dotted line) and the master equation approximation to
the nonlinear drift-diffusion model (solid line), where N=5, b
=3200, g,=870.4, b; =512, and 0;=8 for each i.

dp; .

g &P +biipi — (g +bis)pi, (1 <i<N),
dpy
; = gN-1PN-1 — Dn1Pws (14)

where p,(f) is the probability of occupying the ith closed
state at time ¢, the transition rates are

8i=8-1/0i_1, bi=bi_ /0o (15)

for | <i<N, oy...0y_; are the transition rate ratios, and b
is the rate between the first closed state and the open state.
The master equation model with the transition rates (15) is a
more general form of discrete diffusion models where g,
=b,, o,=0 for each i and either =1 [8] or 6> 1 [14]. As the
difference in reaction coordinate between states —0 and N
— oo, the limit of the master equation when o;=0o for each i,
is a Fokker-Planck equation in the region R, [24,26].
The survival probability is given by

N
P.(1) = 2 pil), (16)
i=1

and the closed-time distribution function f,(f)=—dP,/dt may
be obtained by solving Eq. (14) with the initial condition
p1(0)=1, p,(0)=0 for i> 1. The function f,.(¢) derived with
uniform values for o; provides a good fit to the data from a
fast Cl channel (see Fig. 4), and exhibits an oscillation su-
perimposed on the power law trend for intermediate times.
However, a better fit to the experimental data may be ob-
tained by choosing nonuniform values for o; (see Fig. 5).
The values of a; and k; that are derived from the solution are
comparable to those obtained experimentally and satisfy an
approximate rate-amplitude correlation a;<k? [4] (see Fig. 6
where p=0.65 for a fast Cl channel). The solution of the
constant diffusion model (o;=1) does not satisfy a rate-
amplitude correlation but for sufficiently large N, f.(r)
=13 for intermediate times [8].

The rate-amplitude correlation and the intermediate power
law that are observed for the closed-time distribution f,(¢) of
several types of ion channels [4] may be derived by consid-
ering Eq. (14) with g;=g,0'™, b;=b,0'™ for i=2 to N-1,
by=b;oc where o>1 is sufficiently large and p
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FIG. 5. The closed-time distribution function f.(z) for a fast Cl
channel [22] (dotted line) and the master equation approximation to
the nonlinear drift-diffusion model (solid line), where N=5, b
=3900, g,=1200, b,;=380, and o;=(15,3.5,4.7,21).

=In(b;/ g;;1)/In o. Using matrix methods, it may be shown
that P.(1)=3 a;exp(~k;) where a;/a;,~b;/g;i, =07,
k;/k;.; =~ o, and hence a;ok!. For t;=1/k;,
P!
fle) = =5 (1 + Tj),
j#i
j:

where T;=e(k;/k)"*" exp(~k;/k;), 2,.T;<1, and hence
f(t) = ;77" follows a general power law.

DISCUSSION

Discrete diffusion models of ion channel gating have
dwell-time distributions which may be approximated by the
intermediate power law #¥? when the transition rates are
constant [8,10], and by 7> when the forward and backward
transition rates between neighboring states decrease geo-
metrically away from the open state [14]. In this paper, we
have considered a Fokker-Planck equation which describes
the dynamics of an ion channel sensor in the presence of a
linear ramp potential U,.(x) and an exponentially decreasing
diffusion coefficient D(x)=D, exp(—vyx), and is a more gen-
eral form of discrete and continuous diffusion models
[11,12]. The solution of the nonlinear diffusion model is de-
pendent on the parameter v=_U/y and provides a good fit to
the closed-time distribution function f.(r) for a delayed rec-
tifier K channel and a nACh channel (v=-0.5) and a fast CI

10° 10t 102 10° 104 10°

FIG. 6. The amplitudes a; and the rates k; that are calculated
from the master equation model of a fast ClI channel (see Fig. 5)
satisfy the equation a; k! where p~0.65 (solid line).
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ion channel (v=-0.3), and it may be shown analytically that
for sufficiently large 7, f.(f) «<¢™>~" for intermediate times.

Although the Fokker-Planck equation assumes a con-
tinuum of states, the ion channel sensor has a discrete struc-
ture and therefore the dynamics may be described by a Mar-
kovian master equation which approximates the nonlinear
drift-diffusion equation. The distribution function f.(r) ob-
tained from the solution to the master equation provides a
good fit to the data from a fast Cl channel and exhibits an
approximate rate-amplitude correlation a;%k? where p
~0.65 [4]. Therefore, a variation in the energy of closed
states and an increase in the barrier height away from the
open state are important factors in the closed-state dynamics
of several ion channels.

APPENDIX

The channel opening and closing rate functions may be
derived from an expression for the quasi-stationary diffusion

PHYSICAL REVIEW E 76, 011923 (2007)

current between the open and closed regions at each mem-
brane surface when p(-d,,,t) =P, (1)=[ :Z'"_d Up(x,t)a')c and
p(0,1)c P.(¢) (unpublished). If a quasistatignary state is at-
tained in the closed region R, in a time <7, and therefore
corresponds to a small r.. solution of the Fokker-Planck equa-
tion, from Egs. (7) and (12), we may write

_ P(1)
PO = U0~ U0 17
and dP,./dt=-P,./T,, where
i J— D"‘l
T, | ?dm explU,,(x) = U,,(0)]dx[% exp[U,(0) = U (x)]dx”
(18)

Similarly, if a quasistationary state is attained in the open
region R, in a time <T,, where T, is the mean open time,

D

1
T,

Therefore, each of the dwell-time distributions f,.(¢) and f,(z)
is a single exponential function and in agreement with the
data from slow K channels [21]. If U, (x)=Q(V-V)(1
+x/d,)/kT [1] and U.(x)=U.(0)+ U x, the mean closed time
T, reduces to Eq. (13) and a similar expression may be ob-
tained for 7,.

The probability current between the open and closed state
regions may be approximated by the expression [18]

Dm[p(oat)exp Um(o) - P(_ dm7t)exp Um(_ dm)]
f(_)dm exp U,,(x)dx

jm(t) ==

(20)

when the diffusion time 7,,<7, or T,. Therefore, assuming
that P,(1) = 1-P(t) and P;=a/(a+p) is the stationary value
of P, where a=1/T, is the mean opening rate, and
B=1/T, is the mean closing rate, from Eq. (17) and
p(=d,,,t) < P,(t) we may write

dp,(t)

dr =a(l _Pf)_:BPf_(a+B)[Po(t) —Pf], (21)

a rate equation that describes the variation of K conductance
in slow K channels (gg o« P,) [21], and in delayed rectifier K
channels assuming that the opening of the channel is deter-
mined by four identical and independent subunits (g > P?%)
[1].

If 7,, is the macroscopic membrane K current across a
membrane when each K channel is open, the linear compo-

nent of the ionic current is 1,,(P,—Py)=—C V. The nonlinear

- (19)

P24 explUu(0) = Uy(=dy) Jdx [ Zg_ explU,(= d,,) = U, () Jdx”

component of the K current and the other ionic currents
through the membrane, such as Na, are considered to be
perturbations to the membrane potential. The net flow of ions
across a membrane is dependent on the K conductance
which, in turn, is determined by the membrane potential. The
voltage dependence of the rate functions (18) and (19) may
also be derived from a Lagrangian L and dissipation function
F which describes the interaction between the linear compo-
nent of the ionic current and the quasistationary gating cur-
rent between the closed and open region at each membrane
surface

NCV)?2 CD KT [ 1- U, (-d,)-U,(0
e (Cv)” ¢D, f explU,,(-d,,) - U,,(0)] .
21, 0 Y

m

>

ACV)?

P MCV?

21,7

where  Y,=[{ exp[U(0)-U.(0)]dx, Y,=["9"_, exp[U,(

-d,)-U,(x)]dx, \=(Y.+Y,)d,kT/D,Q, 7=1/(a+p), the
Lagrangian L satisfies the equation

d(aL) oL OF
—|=]-=+==0,

dt\aoq) dq g

and the canonical coordinates ¢=C(V-V,) and p
=—\(P,—P)).

011923-5



S. R. VACCARO

[1] A. L. Hodgkin and A. F. Huxley, J. Physiol. (London) 117,
500 (1952).

[2] B. Hille, Ion Channels of Excitable Membranes, 3rd ed.
(Sinauer, Sunderland, MA, 2001).

[3] D. Colquhoun and A. Hawkes, in Single Channel Recording,
edited by B. Sakmann and E. Neher (Plenum, New York,
1995), pp. 397-482.

[4] G. L. Millhauser, E. E. Salpeter, and R. E. Oswald, Biophys. J.
54, 1165 (1988).

[5] T. E. Nonnenmacher and D. J. F. Nonnenmacher, Phys. Lett. A
140, 323 (1989).

[6] D. Sigg, H. Qian, and F. Bezanilla, Biophys. J. 76, 782 (1999).

[7] D. G. Levitt, Biophys. J. 55, 489 (1989).

[8] G. L. Millhauser, E. E. Salpeter, and R. E. Oswald, Proc. Natl.
Acad. Sci. U.S.A. 85, 1503 (1988).

[9] P. Lauger, Biophys. J. 53, 877 (1988).

[10] C. A. Condat and J. Jackle, Biophys. J. 55, 915 (1989).

[11] I. Goychuk and P. Hanggi, Proc. Natl. Acad. Sci. U.S.A. 99,
3552 (2002).

[12] I. Goychuk and P. Hanggi, Physica A 325, 9 (2003).

[13] L. S. Liebovitch, J. Fischbarg, and J. P. Koniarek, Math. Bio-
sci. 84, 37 (1987).

[14] L. S. Liebovitch, Math. Biosci. 93, 97 (1989).

PHYSICAL REVIEW E 76, 011923 (2007)

[15] I. Goychuk and P. Hanggi, Phys. Rev. E 70, 051915 (2003).

[16] S. R. Vaccaro, Phys. Lett. A (to be published).

[17] H. Lecar, H. P. Larrson, and M. Grabe, Biophys. J. 85, 2854
(2003).

[18] H. A. Kramers, Physica (Amsterdam) 7, 284 (1940).

[19] N. G. Van Kampen, Stochastic Processes in Physics and
Chemistry (North Holland, Amsterdam, 1981).

[20] H. Risken, The Fokker-Planck Equation (Springer-Verlag, Ber-
lin, 1984).

[21] G. Reid, A. Scholtz, H. Bostock, and J. Schwartz, J. Physiol.
(London) 518.3, 681 (1999).

[22] A. L. Blatz and K. L. Magleby, J. Physiol. (London) 410, 561
(1989).

[23] M. Abramowitz and 1. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1972).

[24] C. W. Gardiner, Handbook of Stochastic Methods for Physics,
Chemistry and the Natural Sciences (Springer-Verlag, Berlin,
1990).

[25] T. Hoshi, W. N. Zagotta, and R. W. Aldrich, J. Gen. Physiol.
103, 249 (1994).

[26] G. H. Weiss, Aspects and Applications of the Random Walk
(North Holland, Amsterdam, 1994).

011923-6



